Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc (Version 11.3.0) and /processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc (Version 8.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4MuBremsstrahlungModel.cc,v 1.21 2006/06/29 19:49:42 gunter Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-08-03-patch-01 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4MuBremsstrahlungModel          34 // File name:     G4MuBremsstrahlungModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Laszlo Urban code
 35 //                                                 37 //
 36 // Creation date: 24.06.2002                       38 // Creation date: 24.06.2002
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 //                                                 41 //
 40 // 04-12-02 Change G4DynamicParticle construct     42 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko)
 41 // 23-12-02 Change interface in order to move      43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
 42 // 24-01-03 Fix for compounds (V.Ivanchenko)       44 // 24-01-03 Fix for compounds (V.Ivanchenko)
 43 // 27-01-03 Make models region aware (V.Ivanch     45 // 27-01-03 Make models region aware (V.Ivanchenko)
 44 // 13-02-03 Add name (V.Ivanchenko)                46 // 13-02-03 Add name (V.Ivanchenko)
 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko)     47 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko)
 46 // 08-04-05 Major optimisation of internal int <<  48 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
 47 // 03-08-05 Angular correlations according to  <<  49 // 03-08-05 Angular correlations according to PRM (V.Ivantchenko)
 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm     50 // 13-02-06 add ComputeCrossSectionPerAtom (mma)
 49 // 21-03-06 Fix problem of initialisation in c     51 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI)
 50 // 07-11-07 Improve sampling of final state (A <<  52 //
 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) ( <<  53 
 52 // 31-05-13 Use element selectors instead of l <<  54 //
                                                   >>  55 // Class Description:
                                                   >>  56 //
 53 //                                                 57 //
 54 // -------------------------------------------     58 // -------------------------------------------------------------------
 55 //                                                 59 //
 56 //....oooOO0OOooo........oooOO0OOooo........oo     60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57 //....oooOO0OOooo........oooOO0OOooo........oo     61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 58                                                    62 
 59 #include "G4MuBremsstrahlungModel.hh"              63 #include "G4MuBremsstrahlungModel.hh"
 60 #include "G4PhysicalConstants.hh"              << 
 61 #include "G4SystemOfUnits.hh"                  << 
 62 #include "G4Gamma.hh"                              64 #include "G4Gamma.hh"
 63 #include "G4MuonMinus.hh"                          65 #include "G4MuonMinus.hh"
 64 #include "G4MuonPlus.hh"                           66 #include "G4MuonPlus.hh"
 65 #include "Randomize.hh"                            67 #include "Randomize.hh"
 66 #include "G4Material.hh"                           68 #include "G4Material.hh"
 67 #include "G4Element.hh"                            69 #include "G4Element.hh"
 68 #include "G4ElementVector.hh"                      70 #include "G4ElementVector.hh"
 69 #include "G4ProductionCutsTable.hh"                71 #include "G4ProductionCutsTable.hh"
 70 #include "G4ModifiedMephi.hh"                  << 
 71 #include "G4ParticleChangeForLoss.hh"              72 #include "G4ParticleChangeForLoss.hh"
 72 #include "G4Log.hh"                            << 
 73                                                    73 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  75 
                                                   >>  76 // static members
                                                   >>  77 //
                                                   >>  78 G4double G4MuBremsstrahlungModel::zdat[]={1., 4., 13., 29., 92.};
                                                   >>  79 G4double G4MuBremsstrahlungModel::adat[]={1.01, 9.01, 26.98, 63.55, 238.03};
                                                   >>  80 G4double G4MuBremsstrahlungModel::tdat[]={1.e3, 1.e4, 1.e5, 1.e6, 1.e7, 1.e8,
                                                   >>  81                                           1.e9, 1.e10};
                                                   >>  82 
 75 //....oooOO0OOooo........oooOO0OOooo........oo     83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 76                                                    84 
 77 const G4double G4MuBremsstrahlungModel::xgi[]  <<  85 using namespace std;
 78   {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 << 
 79 const G4double G4MuBremsstrahlungModel::wgi[]  << 
 80   {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 << 
 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 << 
 82                                                    86 
 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod     87 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p,
 84                                                    88                                                  const G4String& nam)
 85   : G4VEmModel(nam),                               89   : G4VEmModel(nam),
 86     sqrte(std::sqrt(G4Exp(1.))),               <<  90   particle(0),
 87     lowestKinEnergy(0.1*CLHEP::GeV),           <<  91   lowestKinEnergy(1.0*GeV),
 88     minThreshold(0.9*CLHEP::keV)               <<  92   minThreshold(1.0*keV),
                                                   >>  93   nzdat(5),
                                                   >>  94   ntdat(8),
                                                   >>  95   NBIN(1000),
                                                   >>  96   cutFixed(0.98*keV),
                                                   >>  97   samplingTablesAreFilled(false)
 89 {                                                  98 {
 90   theGamma = G4Gamma::Gamma();                     99   theGamma = G4Gamma::Gamma();
 91   nist = G4NistManager::Instance();            << 
 92                                                   100 
 93   SetAngularDistribution(new G4ModifiedMephi() << 101   if(p) SetParticle(p);
                                                   >> 102 }
 94                                                   103 
 95   if (nullptr != p) { SetParticle(p); }        << 104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 96   if (0.0 == fDN[1]) {                         << 105 
 97     for (G4int i=1; i<93; ++i) {               << 106 G4MuBremsstrahlungModel::~G4MuBremsstrahlungModel()
 98       G4double dn = 1.54*nist->GetA27(i);      << 107 {
 99       fDN[i] = dn;                             << 108   size_t n = partialSumSigma.size();
100       if(1 < i) {                              << 109   if(n > 0) {
101   fDN[i] /= std::pow(dn, 1./G4double(i));      << 110     for(size_t i=0; i<n; i++) {
102       }                                        << 111       delete partialSumSigma[i];
103     }                                             112     }
104   }                                               113   }
105 }                                                 114 }
106                                                   115 
107 //....oooOO0OOooo........oooOO0OOooo........oo    116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
108                                                   117 
109 G4double G4MuBremsstrahlungModel::MinEnergyCut    118 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*,
110                                                   119                                                const G4MaterialCutsCouple*)
111 {                                                 120 {
112   return minThreshold;                            121   return minThreshold;
113 }                                                 122 }
114                                                   123 
115 //....oooOO0OOooo........oooOO0OOooo........oo    124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
116                                                   125 
117 G4double G4MuBremsstrahlungModel::MinPrimaryEn << 
118                                                << 
119                                                << 
120 {                                              << 
121   return std::max(lowestKinEnergy, cut);       << 
122 }                                              << 
123                                                << 
124 //....oooOO0OOooo........oooOO0OOooo........oo << 
125                                                << 
126 void G4MuBremsstrahlungModel::SetParticle(cons    126 void G4MuBremsstrahlungModel::SetParticle(const G4ParticleDefinition* p)
127 {                                                 127 {
128   if(nullptr == particle) {                    << 128   if(!particle) {
129     particle = p;                                 129     particle = p;
130     mass = particle->GetPDGMass();                130     mass = particle->GetPDGMass();
131     rmass = mass/CLHEP::electron_mass_c2 ;     << 
132     cc = CLHEP::classic_electr_radius/rmass ;  << 
133     coeff = 16.*CLHEP::fine_structure_const*cc << 
134   }                                               131   }
135 }                                                 132 }
136                                                   133 
137 //....oooOO0OOooo........oooOO0OOooo........oo    134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138                                                   135 
139 void G4MuBremsstrahlungModel::Initialise(const    136 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p,
140                                          const    137                                          const G4DataVector& cuts)
141 {                                                 138 {
142   SetParticle(p);                              << 139   if(p) SetParticle(p);
143   if(nullptr == fParticleChange) {             << 
144     fParticleChange = GetParticleChangeForLoss << 
145   }                                            << 
146   if(IsMaster() && p == particle && lowestKinE << 
147     InitialiseElementSelectors(p, cuts);       << 
148   }                                            << 
149 }                                              << 
150                                                   140 
151 //....oooOO0OOooo........oooOO0OOooo........oo << 141   highKinEnergy = HighEnergyLimit();
152                                                   142 
153 void G4MuBremsstrahlungModel::InitialiseLocal( << 143   G4double fixedEnergy = 0.5*highKinEnergy;
154                                                << 144 //  G4double fixedEnergy = 500000.*TeV;
155 {                                              << 145 
156   if(p == particle && lowestKinEnergy < HighEn << 146   const G4ProductionCutsTable* theCoupleTable=
157     SetElementSelectors(masterModel->GetElemen << 147         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 148   if(theCoupleTable) {
                                                   >> 149     G4int numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 150     
                                                   >> 151     G4int nn = partialSumSigma.size();
                                                   >> 152     G4int nc = cuts.size();
                                                   >> 153     if(nn > 0) {
                                                   >> 154       for (G4int ii=0; ii<nn; ii++){
                                                   >> 155   G4DataVector* a=partialSumSigma[ii];
                                                   >> 156   if ( a )  delete a;    
                                                   >> 157       } 
                                                   >> 158       partialSumSigma.clear();
                                                   >> 159     }
                                                   >> 160     if (numOfCouples>0) {
                                                   >> 161       for (G4int i=0; i<numOfCouples; i++) {
                                                   >> 162         G4double cute = DBL_MAX;
                                                   >> 163         if(i < nc) cute = cuts[i];
                                                   >> 164         const G4MaterialCutsCouple* couple = 
                                                   >> 165                                  theCoupleTable->GetMaterialCutsCouple(i);
                                                   >> 166   const G4Material* material = couple->GetMaterial();
                                                   >> 167   G4DataVector* dv = ComputePartialSumSigma(material,fixedEnergy,cute);
                                                   >> 168   partialSumSigma.push_back(dv);
                                                   >> 169       }
                                                   >> 170     }
158   }                                               171   }
                                                   >> 172   if(!samplingTablesAreFilled) MakeSamplingTables();
                                                   >> 173   if(pParticleChange)
                                                   >> 174     fParticleChange = reinterpret_cast<G4ParticleChangeForLoss*>
                                                   >> 175                                                               (pParticleChange);
                                                   >> 176   else
                                                   >> 177     fParticleChange = new G4ParticleChangeForLoss();
159 }                                                 178 }
160                                                   179 
161 //....oooOO0OOooo........oooOO0OOooo........oo    180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
162                                                   181 
163 G4double G4MuBremsstrahlungModel::ComputeDEDXP    182 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume(
164                                                << 183                 const G4Material* material,
165                                                   184                                               const G4ParticleDefinition*,
166                                                   185                                                     G4double kineticEnergy,
167                                                   186                                                     G4double cutEnergy)
168 {                                                 187 {
169   G4double dedx = 0.0;                            188   G4double dedx = 0.0;
170   if (kineticEnergy <= lowestKinEnergy) { retu << 189   if (kineticEnergy <= lowestKinEnergy) return dedx;
171                                                   190 
172   G4double cut = std::max(cutEnergy, minThresh << 191   G4double tmax = kineticEnergy;
173   cut = std::min(cut, kineticEnergy);          << 192   G4double cut  = min(cutEnergy,tmax);
174                                                   193 
175   const G4ElementVector* theElementVector = ma    194   const G4ElementVector* theElementVector = material->GetElementVector();
176   const G4double* theAtomicNumDensityVector =     195   const G4double* theAtomicNumDensityVector =
177     material->GetAtomicNumDensityVector();     << 196                                           material->GetAtomicNumDensityVector();
178                                                   197 
179   //  loop for elements in the material           198   //  loop for elements in the material
180   for (size_t i=0; i<material->GetNumberOfElem << 199   for (size_t i=0; i<material->GetNumberOfElements(); i++) {
181     G4double loss =                            << 200 
182       ComputMuBremLoss((*theElementVector)[i]- << 201     G4double Z = (*theElementVector)[i]->GetZ();
                                                   >> 202     G4double A = (*theElementVector)[i]->GetA()/(g/mole) ;
                                                   >> 203 
                                                   >> 204     G4double loss = ComputMuBremLoss(Z, A, kineticEnergy, cut);
                                                   >> 205 
183     dedx += loss*theAtomicNumDensityVector[i];    206     dedx += loss*theAtomicNumDensityVector[i];
184   }                                               207   }
185   //  G4cout << "BR e= " << kineticEnergy << " << 208   if(dedx < 0.) dedx = 0.;
186   dedx = std::max(dedx, 0.);                   << 
187   return dedx;                                    209   return dedx;
188 }                                                 210 }
189                                                   211 
190 //....oooOO0OOooo........oooOO0OOooo........oo    212 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
191                                                   213 
192 G4double G4MuBremsstrahlungModel::ComputMuBrem << 214 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z, G4double A,
193                                                   215                                                    G4double tkin, G4double cut)
194 {                                                 216 {
195   G4double totalEnergy = mass + tkin;             217   G4double totalEnergy = mass + tkin;
196   static const G4double ak1 = 0.05;            << 218   G4double ak1 = 0.05;
197   static const G4int k2 = 5;                   << 219   G4int    k2=5;
                                                   >> 220   G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623};
                                                   >> 221   G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566};
198   G4double loss = 0.;                             222   G4double loss = 0.;
199                                                   223 
200   G4double vcut = cut/totalEnergy;                224   G4double vcut = cut/totalEnergy;
201   G4int kkk = (G4int)(vcut/ak1) + k2;          << 225   G4double vmax = tkin/totalEnergy;
202   if (kkk > 8) { kkk = 8; }                    << 226 
203   else if (kkk < 1) { kkk = 1; }               << 227   G4double aaa = 0.;
204   G4double hhh = vcut/(G4double)(kkk);         << 228   G4double bbb = vcut;
205                                                << 229   if(vcut>vmax) bbb=vmax ;
206   G4double aa = 0.;                            << 230   G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ;
207   for(G4int l=0; l<kkk; ++l) {                 << 231   G4double hhh=(bbb-aaa)/float(kkk) ;
208     for(G4int i=0; i<6; ++i) {                 << 232 
                                                   >> 233   G4double aa = aaa;
                                                   >> 234   for(G4int l=0; l<kkk; l++)
                                                   >> 235   {
                                                   >> 236     for(G4int i=0; i<6; i++)
                                                   >> 237     {
209       G4double ep = (aa + xgi[i]*hhh)*totalEne    238       G4double ep = (aa + xgi[i]*hhh)*totalEnergy;
210       loss += ep*wgi[i]*ComputeDMicroscopicCro << 239       loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, A, ep);
211     }                                             240     }
212     aa += hhh;                                    241     aa += hhh;
213   }                                               242   }
214                                                   243 
215   loss *= hhh*totalEnergy;                     << 244   loss *=hhh*totalEnergy ;
                                                   >> 245 
216   return loss;                                    246   return loss;
217 }                                                 247 }
218                                                   248 
219 //....oooOO0OOooo........oooOO0OOooo........oo    249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
220                                                   250 
221 G4double G4MuBremsstrahlungModel::ComputeMicro    251 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection(
222                                            G4d    252                                            G4double tkin,
223                                            G4d    253                                            G4double Z,
                                                   >> 254                                            G4double A,
224                                            G4d    255                                            G4double cut)
225 {                                                 256 {
226   G4double totalEnergy = tkin + mass;             257   G4double totalEnergy = tkin + mass;
227   static const G4double ak1 = 2.3;             << 258   G4double ak1 = 2.3;
228   static const G4int k2 = 4;                   << 259   G4int    k2  = 4;
                                                   >> 260   G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623};
                                                   >> 261   G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566};
229   G4double cross = 0.;                            262   G4double cross = 0.;
230                                                   263 
231   if(cut >= tkin) return cross;                   264   if(cut >= tkin) return cross;
232                                                   265 
233   G4double vcut = cut/totalEnergy;                266   G4double vcut = cut/totalEnergy;
234   G4double vmax = tkin/totalEnergy;               267   G4double vmax = tkin/totalEnergy;
235                                                   268 
236   G4double aaa = G4Log(vcut);                  << 269   G4double aaa = log(vcut);
237   G4double bbb = G4Log(vmax);                  << 270   G4double bbb = log(vmax);
238   G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ;    << 271   G4int    kkk = (G4int)((bbb-aaa)/ak1)+k2 ;
239   if(kkk > 8) { kkk = 8; }                     << 272   G4double hhh = (bbb-aaa)/float(kkk);
240   else if (kkk < 1) { kkk = 1; }               << 273 
241   G4double hhh = (bbb-aaa)/(G4double)(kkk);    << 
242   G4double aa = aaa;                              274   G4double aa = aaa;
243                                                   275 
244   for(G4int l=0; l<kkk; ++l) {                 << 276   for(G4int l=0; l<kkk; l++)
245     for(G4int i=0; i<6; ++i) {                 << 277   {
246       G4double ep = G4Exp(aa + xgi[i]*hhh)*tot << 278     for(G4int i=0; i<6; i++)
247       cross += ep*wgi[i]*ComputeDMicroscopicCr << 279     {
                                                   >> 280       G4double ep = exp(aa + xgi[i]*hhh)*totalEnergy;
                                                   >> 281       cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, A, ep);
248     }                                             282     }
249     aa += hhh;                                    283     aa += hhh;
250   }                                               284   }
251                                                   285 
252   cross *= hhh;                                << 286   cross *=hhh;
253   //G4cout << "BR e= " << tkin<< "  cross= " < << 287 
254   return cross;                                   288   return cross;
255 }                                                 289 }
256                                                   290 
257 //....oooOO0OOooo........oooOO0OOooo........oo    291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
258                                                   292 
259 G4double G4MuBremsstrahlungModel::ComputeDMicr    293 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection(
260                                            G4d    294                                            G4double tkin,
261                                            G4d    295                                            G4double Z,
                                                   >> 296                                            G4double A,
262                                            G4d    297                                            G4double gammaEnergy)
263 //  differential cross section                    298 //  differential cross section
264 {                                                 299 {
                                                   >> 300   static const G4double sqrte=sqrt(exp(1.)) ;
                                                   >> 301   static const G4double bh=202.4,bh1=446.,btf=183.,btf1=1429. ;
                                                   >> 302   static const G4double rmass=mass/electron_mass_c2 ;
                                                   >> 303   static const G4double cc=classic_electr_radius/rmass ;
                                                   >> 304   static const G4double coeff= 16.*fine_structure_const*cc*cc/3. ;
                                                   >> 305 
265   G4double dxsection = 0.;                        306   G4double dxsection = 0.;
266   if(gammaEnergy > tkin) { return dxsection; } << 307 
                                                   >> 308   if( gammaEnergy > tkin) return dxsection ;
267                                                   309 
268   G4double E = tkin + mass ;                      310   G4double E = tkin + mass ;
269   G4double v = gammaEnergy/E ;                    311   G4double v = gammaEnergy/E ;
270   G4double delta = 0.5*mass*mass*v/(E-gammaEne    312   G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ;
271   G4double rab0  = delta*sqrte ;               << 313   G4double rab0=delta*sqrte ;
                                                   >> 314 
                                                   >> 315   G4double z13 = exp(-log(Z)/3.) ;
                                                   >> 316   G4double dn  = 1.54*exp(0.27*log(A)) ;
272                                                   317 
273   G4int iz = G4lrint(Z);                       << 318   G4double b,b1,dnstar ;
274   if(iz < 1) { iz = 1; }                       << 319 
275   else if(iz > 92) { iz = 92; }                << 320   if(Z<1.5)
276                                                << 321   {
277   G4double z13 = 1.0/nist->GetZ13(iz);         << 322     b=bh;
278   G4double dnstar = fDN[iz];                   << 323     b1=bh1;
279                                                << 324     dnstar=dn ;
280   G4double b,b1;                               << 325   }
281   if(1 == iz) {                                << 326   else
282     b  = bh;                                   << 327   {
283     b1 = bh1;                                  << 328     b=btf;
284   } else {                                     << 329     b1=btf1;
285     b  = btf;                                  << 330     dnstar = exp((1.-1./Z)*log(dn)) ;
286     b1 = btf1;                                 << 
287   }                                               331   }
288                                                   332 
289   // nucleus contribution logarithm               333   // nucleus contribution logarithm
290   G4double rab1 = b*z13;                       << 334   G4double rab1=b*z13;
291   G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 335   G4double fn=log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))*
292   (mass + delta*(dnstar*sqrte-2.)));           << 336               (mass+delta*(dnstar*sqrte-2.))) ;
293   fn = std::max(fn, 0.);                       << 337   if(fn <0.) fn = 0. ;
294   // electron contribution logarithm              338   // electron contribution logarithm
295   G4double epmax1 = E/(1.+0.5*mass*rmass/E);   << 339   G4double epmax1=E/(1.+0.5*mass*rmass/E) ;
296   G4double fe = 0.;                            << 340   G4double fe=0.;
297   if(gammaEnergy < epmax1) {                   << 341   if(gammaEnergy<epmax1)
298     G4double rab2 = b1*z13*z13;                << 342   {
299     fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 343     G4double rab2=b1*z13*z13 ;
300   (CLHEP::electron_mass_c2+rab0*rab2)));       << 344     fe=log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))*
301     fe = std::max(fe, 0.);                     << 345                               (electron_mass_c2+rab0*rab2))) ;
                                                   >> 346     if(fe<0.) fe=0. ;
302   }                                               347   }
303                                                   348 
304   dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn    349   dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy;
305   dxsection = std::max(dxsection, 0.0);        << 350 
306   return dxsection;                               351   return dxsection;
307 }                                                 352 }
308                                                   353 
309 //....oooOO0OOooo........oooOO0OOooo........oo    354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
310                                                   355 
311 G4double G4MuBremsstrahlungModel::ComputeCross    356 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom(
312                                            con    357                                            const G4ParticleDefinition*,
313                                                   358                                                  G4double kineticEnergy,
314                                                << 359              G4double Z, G4double A,
315                                                   360                                                  G4double cutEnergy,
316                                                << 361                                                  G4double)
                                                   >> 362 {
                                                   >> 363   G4double cross = ComputeMicroscopicCrossSection (kineticEnergy,
                                                   >> 364                                                      Z, A/(g/mole), cutEnergy);
                                                   >> 365   return cross;
                                                   >> 366 }
                                                   >> 367 
                                                   >> 368 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 369 
                                                   >> 370 G4double G4MuBremsstrahlungModel::CrossSectionPerVolume(
                                                   >> 371                  const G4Material* material,
                                                   >> 372                                                const G4ParticleDefinition*,
                                                   >> 373                                                      G4double kineticEnergy,
                                                   >> 374                                                      G4double cutEnergy,
                                                   >> 375                                                      G4double maxEnergy)
317 {                                                 376 {
318   G4double cross = 0.0;                           377   G4double cross = 0.0;
319   if (kineticEnergy <= lowestKinEnergy) return << 378   if (cutEnergy >= maxEnergy || kineticEnergy <= lowestKinEnergy) return cross;
320   G4double tmax = std::min(maxEnergy, kineticE << 379   
321   G4double cut  = std::min(cutEnergy, kineticE << 380   G4double tmax = min(maxEnergy, kineticEnergy);
322   if (cut < minThreshold) cut = minThreshold;  << 381   G4double cut  = min(cutEnergy, tmax);
323   if (cut >= tmax) return cross;               << 382 
324                                                << 383   const G4ElementVector* theElementVector = material->GetElementVector();
325   cross = ComputeMicroscopicCrossSection (kine << 384   const G4double* theAtomNumDensityVector =
326   if(tmax < kineticEnergy) {                   << 385                                           material->GetAtomicNumDensityVector();
327     cross -= ComputeMicroscopicCrossSection(ki << 386 
                                                   >> 387   for (size_t i=0; i<material->GetNumberOfElements(); i++) {
                                                   >> 388 
                                                   >> 389     G4double Z = (*theElementVector)[i]->GetZ();
                                                   >> 390     G4double A = (*theElementVector)[i]->GetA()/(g/mole);
                                                   >> 391 
                                                   >> 392     G4double cr = ComputeMicroscopicCrossSection(kineticEnergy, Z, A, cut);
                                                   >> 393 
                                                   >> 394     if(tmax < kineticEnergy) {
                                                   >> 395       cr -= ComputeMicroscopicCrossSection(kineticEnergy, Z, A, tmax);
                                                   >> 396     }
                                                   >> 397     cross += theAtomNumDensityVector[i] * cr;
328   }                                               398   }
                                                   >> 399 
329   return cross;                                   400   return cross;
330 }                                                 401 }
331                                                   402 
332 //....oooOO0OOooo........oooOO0OOooo........oo    403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
333                                                   404 
334 void G4MuBremsstrahlungModel::SampleSecondarie << 405 G4DataVector* G4MuBremsstrahlungModel::ComputePartialSumSigma(
335                               std::vector<G4Dy << 406                                        const G4Material* material,
336                               const G4Material << 407                                              G4double kineticEnergy,
337                               const G4DynamicP << 408                                              G4double cut)
338                               G4double minEner << 409 
339                               G4double maxEner << 410 // Build the table of cross section per element. The table is built for MATERIAL
                                                   >> 411 // This table is used by DoIt to select randomly an element in the material.
                                                   >> 412 {
                                                   >> 413   G4int nElements = material->GetNumberOfElements();
                                                   >> 414   const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 415   const G4double* theAtomNumDensityVector = 
                                                   >> 416                                           material->GetAtomicNumDensityVector();
                                                   >> 417 
                                                   >> 418   G4DataVector* dv = new G4DataVector();
                                                   >> 419 
                                                   >> 420   G4double cross = 0.0;
                                                   >> 421 
                                                   >> 422   for (G4int i=0; i<nElements; i++ ) {
                                                   >> 423 
                                                   >> 424     G4double Z = (*theElementVector)[i]->GetZ();
                                                   >> 425     G4double A = (*theElementVector)[i]->GetA()/(g/mole) ;
                                                   >> 426     cross += theAtomNumDensityVector[i] 
                                                   >> 427              * ComputeMicroscopicCrossSection(kineticEnergy, Z, A, cut);
                                                   >> 428     dv->push_back(cross);
                                                   >> 429   }
                                                   >> 430   return dv;
                                                   >> 431 }
                                                   >> 432 
                                                   >> 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 434 
                                                   >> 435 void G4MuBremsstrahlungModel::MakeSamplingTables()
                                                   >> 436 {
                                                   >> 437 
                                                   >> 438   G4double AtomicNumber,AtomicWeight,KineticEnergy,
                                                   >> 439            TotalEnergy,Maxep;
                                                   >> 440 
                                                   >> 441   for (G4int iz=0; iz<nzdat; iz++)
                                                   >> 442    {
                                                   >> 443      AtomicNumber = zdat[iz];
                                                   >> 444      AtomicWeight = adat[iz]*g/mole ;
                                                   >> 445 
                                                   >> 446      for (G4int it=0; it<ntdat; it++)
                                                   >> 447      {
                                                   >> 448        KineticEnergy = tdat[it];
                                                   >> 449        TotalEnergy = KineticEnergy + mass;
                                                   >> 450        Maxep = KineticEnergy ;
                                                   >> 451 
                                                   >> 452        G4double CrossSection = 0.0 ;
                                                   >> 453 
                                                   >> 454        // calculate the differential cross section
                                                   >> 455        // numerical integration in
                                                   >> 456        //  log ...............
                                                   >> 457        G4double c = log(Maxep/cutFixed) ;
                                                   >> 458        G4double ymin = -5. ;
                                                   >> 459        G4double ymax = 0. ;
                                                   >> 460        G4double dy = (ymax-ymin)/NBIN ;
                                                   >> 461 
                                                   >> 462        G4double y = ymin - 0.5*dy ;
                                                   >> 463        G4double yy = ymin - dy ;
                                                   >> 464        G4double x = exp(y);
                                                   >> 465        G4double fac = exp(dy);
                                                   >> 466        G4double dx = exp(yy)*(fac - 1.0);
                                                   >> 467 
                                                   >> 468        for (G4int i=0 ; i<NBIN; i++)
                                                   >> 469        {
                                                   >> 470          y += dy ;
                                                   >> 471          x *= fac;
                                                   >> 472          dx*= fac;
                                                   >> 473          G4double ep = cutFixed*exp(c*x) ;
                                                   >> 474 
                                                   >> 475          CrossSection += ep*dx*ComputeDMicroscopicCrossSection(
                                                   >> 476                                                  KineticEnergy,AtomicNumber,
                                                   >> 477                                                  AtomicWeight,ep) ;
                                                   >> 478          ya[i]=y ;
                                                   >> 479          proba[iz][it][i] = CrossSection ;
                                                   >> 480 
                                                   >> 481        }
                                                   >> 482 
                                                   >> 483        proba[iz][it][NBIN] = CrossSection ;
                                                   >> 484        ya[NBIN] = 0. ;   //   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                                                   >> 485 
                                                   >> 486        if(CrossSection > 0.)
                                                   >> 487        {
                                                   >> 488          for(G4int ib=0; ib<=NBIN; ib++)
                                                   >> 489          {
                                                   >> 490            proba[iz][it][ib] /= CrossSection ;
                                                   >> 491          }
                                                   >> 492        }
                                                   >> 493      }
                                                   >> 494    }
                                                   >> 495   samplingTablesAreFilled = true;
                                                   >> 496 }
                                                   >> 497 
                                                   >> 498 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 499 
                                                   >> 500 vector<G4DynamicParticle*>* G4MuBremsstrahlungModel::SampleSecondaries(
                                                   >> 501                              const G4MaterialCutsCouple* couple,
                                                   >> 502                              const G4DynamicParticle* dp,
                                                   >> 503                                    G4double tmin,
                                                   >> 504                                    G4double maxEnergy)
340 {                                                 505 {
                                                   >> 506 
341   G4double kineticEnergy = dp->GetKineticEnerg    507   G4double kineticEnergy = dp->GetKineticEnergy();
342   // check against insufficient energy            508   // check against insufficient energy
343   G4double tmax = std::min(kineticEnergy, maxE << 509   G4double tmax = min(kineticEnergy, maxEnergy);
344   G4double tmin = std::min(kineticEnergy, minE << 510   if(tmin >= tmax) return 0;
345   tmin = std::max(tmin, minThreshold);         << 
346   if(tmin >= tmax) return;                     << 
347                                                   511 
348   // ===== sampling of energy transfer ======  << 512   static const G4double ysmall = -100. ;
                                                   >> 513   static const G4double ytablelow = -5. ;
349                                                   514 
350   G4ParticleMomentum partDirection = dp->GetMo    515   G4ParticleMomentum partDirection = dp->GetMomentumDirection();
351                                                   516 
352   // select randomly one element constituing t    517   // select randomly one element constituing the material
353   const G4Element* anElement = SelectRandomAto << 518   const G4Element* anElement = SelectRandomAtom(couple);
354   G4double Z = anElement->GetZ();              << 519 
355   G4double func1 = tmin*                       << 520   G4double totalEnergy   = kineticEnergy + mass;
356     ComputeDMicroscopicCrossSection(kineticEne << 521   G4double totalMomentum = sqrt(kineticEnergy*(kineticEnergy + 2.0*mass));
357                                                   522 
358   G4double gEnergy;                            << 523   G4double dy = 5./G4float(NBIN);
359   G4double func2;                              << 
360                                                   524 
361   G4double xmin = G4Log(tmin/minThreshold);    << 525   // This sampling should be checked!!! VI
362   G4double xmax = G4Log(tmax/tmin);            << 526   G4double ymin=log(log(tmin/cutFixed)/log(tmax/cutFixed));
                                                   >> 527 
                                                   >> 528   if(ymin < ysmall) return 0;
                                                   >> 529 
                                                   >> 530   //  sampling using tables
                                                   >> 531 
                                                   >> 532   G4double v,x,y ;
                                                   >> 533   G4int iy;
                                                   >> 534   // select sampling table ;
                                                   >> 535   G4double lnZ = log(anElement->GetZ()) ;
                                                   >> 536   G4double delmin = 1.e10 ;
                                                   >> 537   G4double del ;
                                                   >> 538   G4int izz = 0;
                                                   >> 539   G4int itt = 0;
                                                   >> 540   G4int NBINminus1;
                                                   >> 541   NBINminus1 = NBIN-1 ;
                                                   >> 542   for (G4int iz=0; iz<nzdat; iz++)
                                                   >> 543   {
                                                   >> 544     del = std::abs(lnZ-log(zdat[iz])) ;
                                                   >> 545     if(del<delmin)
                                                   >> 546     {
                                                   >> 547        delmin=del ;
                                                   >> 548        izz=iz ;
                                                   >> 549     }
                                                   >> 550   }
                                                   >> 551 
                                                   >> 552   delmin = 1.e10 ;
                                                   >> 553   for (G4int it=0; it<ntdat; it++)
                                                   >> 554   {
                                                   >> 555     del = std::abs(log(tmax)-log(tdat[it])) ;
                                                   >> 556     if(del<delmin)
                                                   >> 557     {
                                                   >> 558       delmin=del;
                                                   >> 559       itt=it ;
                                                   >> 560     }
                                                   >> 561   }
                                                   >> 562   G4int iymin = G4int((ymin+5.)/dy+0.5) ;
363                                                   563 
364   do {                                            564   do {
365     gEnergy = minThreshold*G4Exp(xmin + G4Unif << 565     if(ymin < ytablelow)
366     func2 = gEnergy*ComputeDMicroscopicCrossSe << 566     {
367                                                << 567       y = ymin + G4UniformRand()*(ytablelow-ymin) ;
368     // Loop checking, 03-Aug-2015, Vladimir Iv << 568     }
369   } while(func2 < func1*G4UniformRand());      << 569     else
                                                   >> 570     {
                                                   >> 571       G4double r = G4UniformRand() ;
                                                   >> 572 
                                                   >> 573       iy = iymin-1 ;
                                                   >> 574       delmin = proba[izz][itt][NBINminus1]-proba[izz][itt][iymin] ;
                                                   >> 575       do {
                                                   >> 576          iy += 1 ;
                                                   >> 577       } while ((r > (proba[izz][itt][iy]-proba[izz][itt][iymin])/delmin)
                                                   >> 578                  &&(iy < NBINminus1)) ;
                                                   >> 579 
                                                   >> 580       //sampling is Done uniformly in y in the bin
                                                   >> 581       y = ya[iy] + G4UniformRand() * ( ya[iy+1] - ya[iy] ) ;
                                                   >> 582     }
                                                   >> 583 
                                                   >> 584     x = exp(y) ;
                                                   >> 585 
                                                   >> 586     v = cutFixed*exp(x*log(tmax/cutFixed)) ;
                                                   >> 587 
                                                   >> 588   } while ( v <= 0.);
370                                                   589 
371   // angles of the emitted gamma using general << 
372   G4ThreeVector gamDir =                       << 
373     GetAngularDistribution()->SampleDirection( << 
374                                                << 
375   // create G4DynamicParticle object for the G    590   // create G4DynamicParticle object for the Gamma
376   G4DynamicParticle* gamma = new G4DynamicPart << 591   G4double gEnergy = v;
377   vdp->push_back(gamma);                       << 592 
                                                   >> 593   // sample angle
                                                   >> 594   G4double gam  = totalEnergy/mass;
                                                   >> 595   G4double rmax = gam*min(1.0, totalEnergy/gEnergy - 1.0);
                                                   >> 596   rmax *= rmax;
                                                   >> 597   x = G4UniformRand()*rmax/(1.0 + rmax);
                                                   >> 598 
                                                   >> 599   G4double theta = sqrt(x/(1.0 - x))/gam;
                                                   >> 600   G4double sint  = sin(theta);
                                                   >> 601   G4double phi   = twopi * G4UniformRand() ;
                                                   >> 602   G4double dirx  = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ;
                                                   >> 603 
                                                   >> 604   G4ThreeVector gDirection(dirx, diry, dirz);
                                                   >> 605   gDirection.rotateUz(partDirection);
                                                   >> 606 
                                                   >> 607   partDirection *= totalMomentum;
                                                   >> 608   partDirection -= gEnergy*gDirection;
                                                   >> 609   partDirection = partDirection.unit();
                                                   >> 610 
                                                   >> 611   // primary change
                                                   >> 612   kineticEnergy -= gEnergy;
                                                   >> 613   fParticleChange->SetProposedKineticEnergy(kineticEnergy);
                                                   >> 614   fParticleChange->SetProposedMomentumDirection(partDirection);
                                                   >> 615 
                                                   >> 616   // save secondary
                                                   >> 617  G4DynamicParticle* aGamma = new G4DynamicParticle(theGamma,gDirection,gEnergy);
                                                   >> 618   vector<G4DynamicParticle*>* vdp = new vector<G4DynamicParticle*>;
                                                   >> 619   vdp->push_back(aGamma);
                                                   >> 620 
                                                   >> 621   return vdp;
                                                   >> 622 }
                                                   >> 623 
                                                   >> 624 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 625 
                                                   >> 626 const G4Element* G4MuBremsstrahlungModel::SelectRandomAtom(
                                                   >> 627            const G4MaterialCutsCouple* couple) const
                                                   >> 628 {
                                                   >> 629   // select randomly 1 element within the material
                                                   >> 630 
                                                   >> 631   const G4Material* material = couple->GetMaterial();
                                                   >> 632   G4int nElements = material->GetNumberOfElements();
                                                   >> 633   const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 634   if(1 == nElements) return (*theElementVector)[0];
                                                   >> 635   else if(1 > nElements) return 0;
378                                                   636 
379   // compute post-interaction kinematics of pr << 637   G4DataVector* dv = partialSumSigma[couple->GetIndex()];
380   // energy-momentum conservation              << 638   G4double rval = G4UniformRand()*((*dv)[nElements-1]);
381   const G4double totMomentum =                 << 639   for (G4int i=0; i<nElements; i++) {
382     std::sqrt(kineticEnergy*(kineticEnergy + 2 << 640     if (rval <= (*dv)[i]) return (*theElementVector)[i];
383   G4ThreeVector dir =                          << 
384     (totMomentum*dp->GetMomentumDirection() -  << 
385   const G4double finalE = kineticEnergy - gEne << 
386                                                << 
387   // if secondary gamma energy is higher than  << 
388   // then stop tracking the primary particle a << 
389   // instead of the primary one                << 
390   if (gEnergy > SecondaryThreshold()) {        << 
391     fParticleChange->ProposeTrackStatus(fStopA << 
392     fParticleChange->SetProposedKineticEnergy( << 
393     G4DynamicParticle* newdp = new G4DynamicPa << 
394     vdp->push_back(newdp);                     << 
395   } else {                                     << 
396     // continue tracking the primary e-/e+ oth << 
397     fParticleChange->SetProposedMomentumDirect << 
398     fParticleChange->SetProposedKineticEnergy( << 
399   }                                               641   }
                                                   >> 642   return (*theElementVector)[nElements-1];
400 }                                                 643 }
401                                                   644 
402 //....oooOO0OOooo........oooOO0OOooo........oo    645 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
403                                                   646