Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4MuBremsstrahlungModel 32 // File name: G4MuBremsstrahlungModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 35 // 36 // Creation date: 24.06.2002 36 // Creation date: 24.06.2002 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 39 // 40 // 04-12-02 Change G4DynamicParticle construct 40 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 43 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 46 // 08-04-05 Major optimisation of internal int 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 47 // 03-08-05 Angular correlations according to 47 // 03-08-05 Angular correlations according to PRM (V.Ivanchenko) 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm 48 // 13-02-06 add ComputeCrossSectionPerAtom (mma) 49 // 21-03-06 Fix problem of initialisation in c 49 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI) 50 // 07-11-07 Improve sampling of final state (A 50 // 07-11-07 Improve sampling of final state (A.Bogdanov) 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) ( 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) (V.Ivanchenko) 52 // 31-05-13 Use element selectors instead of l 52 // 31-05-13 Use element selectors instead of local data structure (V.Ivanchenko) 53 // 53 // 54 // ------------------------------------------- 54 // ------------------------------------------------------------------- 55 // 55 // 56 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 58 59 #include "G4MuBremsstrahlungModel.hh" 59 #include "G4MuBremsstrahlungModel.hh" 60 #include "G4PhysicalConstants.hh" 60 #include "G4PhysicalConstants.hh" 61 #include "G4SystemOfUnits.hh" 61 #include "G4SystemOfUnits.hh" 62 #include "G4Gamma.hh" 62 #include "G4Gamma.hh" 63 #include "G4MuonMinus.hh" 63 #include "G4MuonMinus.hh" 64 #include "G4MuonPlus.hh" 64 #include "G4MuonPlus.hh" 65 #include "Randomize.hh" 65 #include "Randomize.hh" 66 #include "G4Material.hh" 66 #include "G4Material.hh" 67 #include "G4Element.hh" 67 #include "G4Element.hh" 68 #include "G4ElementVector.hh" 68 #include "G4ElementVector.hh" 69 #include "G4ProductionCutsTable.hh" 69 #include "G4ProductionCutsTable.hh" 70 #include "G4ModifiedMephi.hh" 70 #include "G4ModifiedMephi.hh" 71 #include "G4ParticleChangeForLoss.hh" 71 #include "G4ParticleChangeForLoss.hh" 72 #include "G4Log.hh" 72 #include "G4Log.hh" >> 73 #include "G4Exp.hh" >> 74 #include "G4NistManager.hh" 73 75 74 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 //....oooOO0OOooo........oooOO0OOooo........oo 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 78 >> 79 using namespace std; >> 80 77 const G4double G4MuBremsstrahlungModel::xgi[] 81 const G4double G4MuBremsstrahlungModel::xgi[] = 78 {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 82 {0.03377,0.16940,0.38069,0.61931,0.83060,0.96623}; 79 const G4double G4MuBremsstrahlungModel::wgi[] 83 const G4double G4MuBremsstrahlungModel::wgi[] = 80 {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 84 {0.08566,0.18038,0.23396,0.23396,0.18038,0.08566}; 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 85 G4double G4MuBremsstrahlungModel::fDN[] = {0.0}; >> 86 #ifdef G4MULTITHREADED >> 87 G4Mutex G4MuBremsstrahlungModel::theMuBremMutex = G4MUTEX_INITIALIZER; >> 88 #endif 82 89 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod 90 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p, 84 91 const G4String& nam) 85 : G4VEmModel(nam), 92 : G4VEmModel(nam), 86 sqrte(std::sqrt(G4Exp(1.))), << 93 sqrte(sqrt(G4Exp(1.))), 87 lowestKinEnergy(0.1*CLHEP::GeV), << 94 lowestKinEnergy(1.0*CLHEP::GeV), 88 minThreshold(0.9*CLHEP::keV) 95 minThreshold(0.9*CLHEP::keV) 89 { 96 { 90 theGamma = G4Gamma::Gamma(); 97 theGamma = G4Gamma::Gamma(); 91 nist = G4NistManager::Instance(); 98 nist = G4NistManager::Instance(); 92 99 93 SetAngularDistribution(new G4ModifiedMephi() << 100 if(0.0 == fDN[1]) { 94 << 101 #ifdef G4MULTITHREADED 95 if (nullptr != p) { SetParticle(p); } << 102 G4MUTEXLOCK(&theMuBremMutex); 96 if (0.0 == fDN[1]) { << 103 if(0.0 == fDN[1]) { 97 for (G4int i=1; i<93; ++i) { << 104 #endif 98 G4double dn = 1.54*nist->GetA27(i); << 105 for(G4int i=1; i<93; ++i) { 99 fDN[i] = dn; << 106 G4double dn = 1.54*nist->GetA27(i); 100 if(1 < i) { << 107 fDN[i] = dn; 101 fDN[i] /= std::pow(dn, 1./G4double(i)); << 108 if(1 < i) { >> 109 fDN[i] /= std::pow(dn, 1./G4double(i)); >> 110 } 102 } 111 } >> 112 #ifdef G4MULTITHREADED 103 } 113 } >> 114 G4MUTEXUNLOCK(&theMuBremMutex); >> 115 #endif 104 } 116 } >> 117 SetAngularDistribution(new G4ModifiedMephi()); >> 118 >> 119 if(nullptr != p) { SetParticle(p); } 105 } 120 } 106 121 107 //....oooOO0OOooo........oooOO0OOooo........oo 122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 108 123 109 G4double G4MuBremsstrahlungModel::MinEnergyCut 124 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*, 110 125 const G4MaterialCutsCouple*) 111 { 126 { 112 return minThreshold; 127 return minThreshold; 113 } 128 } 114 129 115 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 116 131 117 G4double G4MuBremsstrahlungModel::MinPrimaryEn 132 G4double G4MuBremsstrahlungModel::MinPrimaryEnergy(const G4Material*, 118 133 const G4ParticleDefinition*, 119 134 G4double cut) 120 { 135 { 121 return std::max(lowestKinEnergy, cut); << 136 return std::max(lowestKinEnergy,cut); 122 } << 123 << 124 //....oooOO0OOooo........oooOO0OOooo........oo << 125 << 126 void G4MuBremsstrahlungModel::SetParticle(cons << 127 { << 128 if(nullptr == particle) { << 129 particle = p; << 130 mass = particle->GetPDGMass(); << 131 rmass = mass/CLHEP::electron_mass_c2 ; << 132 cc = CLHEP::classic_electr_radius/rmass ; << 133 coeff = 16.*CLHEP::fine_structure_const*cc << 134 } << 135 } 137 } 136 138 137 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 138 140 139 void G4MuBremsstrahlungModel::Initialise(const 141 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p, 140 const 142 const G4DataVector& cuts) 141 { 143 { 142 SetParticle(p); 144 SetParticle(p); >> 145 143 if(nullptr == fParticleChange) { 146 if(nullptr == fParticleChange) { 144 fParticleChange = GetParticleChangeForLoss 147 fParticleChange = GetParticleChangeForLoss(); 145 } 148 } >> 149 146 if(IsMaster() && p == particle && lowestKinE 150 if(IsMaster() && p == particle && lowestKinEnergy < HighEnergyLimit()) { 147 InitialiseElementSelectors(p, cuts); 151 InitialiseElementSelectors(p, cuts); 148 } 152 } 149 } 153 } 150 154 151 //....oooOO0OOooo........oooOO0OOooo........oo 155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 152 156 153 void G4MuBremsstrahlungModel::InitialiseLocal( 157 void G4MuBremsstrahlungModel::InitialiseLocal(const G4ParticleDefinition* p, 154 158 G4VEmModel* masterModel) 155 { 159 { 156 if(p == particle && lowestKinEnergy < HighEn 160 if(p == particle && lowestKinEnergy < HighEnergyLimit()) { 157 SetElementSelectors(masterModel->GetElemen 161 SetElementSelectors(masterModel->GetElementSelectors()); 158 } 162 } 159 } 163 } 160 164 161 //....oooOO0OOooo........oooOO0OOooo........oo 165 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 162 166 163 G4double G4MuBremsstrahlungModel::ComputeDEDXP 167 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume( 164 168 const G4Material* material, 165 169 const G4ParticleDefinition*, 166 170 G4double kineticEnergy, 167 171 G4double cutEnergy) 168 { 172 { 169 G4double dedx = 0.0; 173 G4double dedx = 0.0; 170 if (kineticEnergy <= lowestKinEnergy) { retu 174 if (kineticEnergy <= lowestKinEnergy) { return dedx; } 171 175 172 G4double cut = std::max(cutEnergy, minThresh << 176 G4double tmax = kineticEnergy; 173 cut = std::min(cut, kineticEnergy); << 177 G4double cut = std::min(cutEnergy,tmax); >> 178 if(cut < minThreshold) { cut = minThreshold; } 174 179 175 const G4ElementVector* theElementVector = ma 180 const G4ElementVector* theElementVector = material->GetElementVector(); 176 const G4double* theAtomicNumDensityVector = 181 const G4double* theAtomicNumDensityVector = 177 material->GetAtomicNumDensityVector(); 182 material->GetAtomicNumDensityVector(); 178 183 179 // loop for elements in the material 184 // loop for elements in the material 180 for (size_t i=0; i<material->GetNumberOfElem 185 for (size_t i=0; i<material->GetNumberOfElements(); ++i) { >> 186 181 G4double loss = 187 G4double loss = 182 ComputMuBremLoss((*theElementVector)[i]- 188 ComputMuBremLoss((*theElementVector)[i]->GetZ(), kineticEnergy, cut); >> 189 183 dedx += loss*theAtomicNumDensityVector[i]; 190 dedx += loss*theAtomicNumDensityVector[i]; 184 } 191 } 185 // G4cout << "BR e= " << kineticEnergy << " 192 // G4cout << "BR e= " << kineticEnergy << " dedx= " << dedx << G4endl; 186 dedx = std::max(dedx, 0.); << 193 if(dedx < 0.) dedx = 0.; 187 return dedx; 194 return dedx; 188 } 195 } 189 196 190 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 191 198 192 G4double G4MuBremsstrahlungModel::ComputMuBrem 199 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z, 193 200 G4double tkin, G4double cut) 194 { 201 { 195 G4double totalEnergy = mass + tkin; 202 G4double totalEnergy = mass + tkin; 196 static const G4double ak1 = 0.05; 203 static const G4double ak1 = 0.05; 197 static const G4int k2 = 5; << 204 static const G4int k2=5; 198 G4double loss = 0.; 205 G4double loss = 0.; 199 206 200 G4double vcut = cut/totalEnergy; 207 G4double vcut = cut/totalEnergy; 201 G4int kkk = (G4int)(vcut/ak1) + k2; << 208 G4double vmax = tkin/totalEnergy; 202 if (kkk > 8) { kkk = 8; } << 209 203 else if (kkk < 1) { kkk = 1; } << 210 G4double aaa = 0.; 204 G4double hhh = vcut/(G4double)(kkk); << 211 G4double bbb = vcut; 205 << 212 if(vcut>vmax) { bbb = vmax; } 206 G4double aa = 0.; << 213 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2; 207 for(G4int l=0; l<kkk; ++l) { << 214 if(kkk < 1) { kkk = 1; } 208 for(G4int i=0; i<6; ++i) { << 215 >> 216 G4double hhh=(bbb-aaa)/G4double(kkk); >> 217 >> 218 G4double aa = aaa; >> 219 for(G4int l=0; l<kkk; l++) >> 220 { >> 221 for(G4int i=0; i<6; i++) >> 222 { 209 G4double ep = (aa + xgi[i]*hhh)*totalEne 223 G4double ep = (aa + xgi[i]*hhh)*totalEnergy; 210 loss += ep*wgi[i]*ComputeDMicroscopicCro 224 loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 211 } 225 } 212 aa += hhh; 226 aa += hhh; 213 } 227 } 214 228 215 loss *= hhh*totalEnergy; << 229 loss *=hhh*totalEnergy ; >> 230 216 return loss; 231 return loss; 217 } 232 } 218 233 219 //....oooOO0OOooo........oooOO0OOooo........oo 234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 220 235 221 G4double G4MuBremsstrahlungModel::ComputeMicro 236 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection( 222 G4d 237 G4double tkin, 223 G4d 238 G4double Z, 224 G4d 239 G4double cut) 225 { 240 { 226 G4double totalEnergy = tkin + mass; 241 G4double totalEnergy = tkin + mass; 227 static const G4double ak1 = 2.3; 242 static const G4double ak1 = 2.3; 228 static const G4int k2 = 4; << 243 static const G4int k2 = 4; 229 G4double cross = 0.; 244 G4double cross = 0.; 230 245 231 if(cut >= tkin) return cross; 246 if(cut >= tkin) return cross; 232 247 233 G4double vcut = cut/totalEnergy; 248 G4double vcut = cut/totalEnergy; 234 G4double vmax = tkin/totalEnergy; 249 G4double vmax = tkin/totalEnergy; 235 250 236 G4double aaa = G4Log(vcut); 251 G4double aaa = G4Log(vcut); 237 G4double bbb = G4Log(vmax); 252 G4double bbb = G4Log(vmax); 238 G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ; << 253 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ; 239 if(kkk > 8) { kkk = 8; } << 254 if(kkk < 1) { kkk = 1; } 240 else if (kkk < 1) { kkk = 1; } << 255 241 G4double hhh = (bbb-aaa)/(G4double)(kkk); << 256 G4double hhh = (bbb-aaa)/G4double(kkk); >> 257 242 G4double aa = aaa; 258 G4double aa = aaa; 243 259 244 for(G4int l=0; l<kkk; ++l) { << 260 for(G4int l=0; l<kkk; ++l) 245 for(G4int i=0; i<6; ++i) { << 261 { >> 262 for(G4int i=0; i<6; ++i) >> 263 { 246 G4double ep = G4Exp(aa + xgi[i]*hhh)*tot 264 G4double ep = G4Exp(aa + xgi[i]*hhh)*totalEnergy; 247 cross += ep*wgi[i]*ComputeDMicroscopicCr 265 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 248 } 266 } 249 aa += hhh; 267 aa += hhh; 250 } 268 } 251 269 252 cross *= hhh; << 270 cross *=hhh; >> 271 253 //G4cout << "BR e= " << tkin<< " cross= " < 272 //G4cout << "BR e= " << tkin<< " cross= " << cross/barn << G4endl; >> 273 254 return cross; 274 return cross; 255 } 275 } 256 276 257 //....oooOO0OOooo........oooOO0OOooo........oo 277 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 258 278 259 G4double G4MuBremsstrahlungModel::ComputeDMicr 279 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection( 260 G4d 280 G4double tkin, 261 G4d 281 G4double Z, 262 G4d 282 G4double gammaEnergy) 263 // differential cross section 283 // differential cross section 264 { 284 { 265 G4double dxsection = 0.; 285 G4double dxsection = 0.; >> 286 266 if(gammaEnergy > tkin) { return dxsection; } 287 if(gammaEnergy > tkin) { return dxsection; } 267 288 268 G4double E = tkin + mass ; 289 G4double E = tkin + mass ; 269 G4double v = gammaEnergy/E ; 290 G4double v = gammaEnergy/E ; 270 G4double delta = 0.5*mass*mass*v/(E-gammaEne 291 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ; 271 G4double rab0 = delta*sqrte ; 292 G4double rab0 = delta*sqrte ; 272 293 273 G4int iz = G4lrint(Z); 294 G4int iz = G4lrint(Z); 274 if(iz < 1) { iz = 1; } 295 if(iz < 1) { iz = 1; } 275 else if(iz > 92) { iz = 92; } 296 else if(iz > 92) { iz = 92; } 276 297 277 G4double z13 = 1.0/nist->GetZ13(iz); 298 G4double z13 = 1.0/nist->GetZ13(iz); 278 G4double dnstar = fDN[iz]; 299 G4double dnstar = fDN[iz]; 279 300 280 G4double b,b1; 301 G4double b,b1; >> 302 281 if(1 == iz) { 303 if(1 == iz) { 282 b = bh; 304 b = bh; 283 b1 = bh1; 305 b1 = bh1; 284 } else { 306 } else { 285 b = btf; 307 b = btf; 286 b1 = btf1; 308 b1 = btf1; 287 } 309 } 288 310 289 // nucleus contribution logarithm 311 // nucleus contribution logarithm 290 G4double rab1 = b*z13; << 312 G4double rab1=b*z13; 291 G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 313 G4double fn=G4Log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))* 292 (mass + delta*(dnstar*sqrte-2.))); << 314 (mass+delta*(dnstar*sqrte-2.))) ; 293 fn = std::max(fn, 0.); << 315 if(fn <0.) { fn = 0.; } 294 // electron contribution logarithm 316 // electron contribution logarithm 295 G4double epmax1 = E/(1.+0.5*mass*rmass/E); << 317 G4double epmax1=E/(1.+0.5*mass*rmass/E) ; 296 G4double fe = 0.; << 318 G4double fe=0.; 297 if(gammaEnergy < epmax1) { << 319 if(gammaEnergy<epmax1) 298 G4double rab2 = b1*z13*z13; << 320 { 299 fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 321 G4double rab2=b1*z13*z13 ; 300 (CLHEP::electron_mass_c2+rab0*rab2))); << 322 fe=G4Log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))* 301 fe = std::max(fe, 0.); << 323 (electron_mass_c2+rab0*rab2))) ; >> 324 if(fe<0.) { fe=0.; } 302 } 325 } 303 326 304 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn 327 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy; 305 dxsection = std::max(dxsection, 0.0); << 328 306 return dxsection; 329 return dxsection; 307 } 330 } 308 331 309 //....oooOO0OOooo........oooOO0OOooo........oo 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 333 311 G4double G4MuBremsstrahlungModel::ComputeCross 334 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom( 312 con 335 const G4ParticleDefinition*, 313 336 G4double kineticEnergy, 314 337 G4double Z, G4double, 315 338 G4double cutEnergy, 316 339 G4double maxEnergy) 317 { 340 { 318 G4double cross = 0.0; 341 G4double cross = 0.0; 319 if (kineticEnergy <= lowestKinEnergy) return 342 if (kineticEnergy <= lowestKinEnergy) return cross; 320 G4double tmax = std::min(maxEnergy, kineticE 343 G4double tmax = std::min(maxEnergy, kineticEnergy); 321 G4double cut = std::min(cutEnergy, kineticE 344 G4double cut = std::min(cutEnergy, kineticEnergy); 322 if (cut < minThreshold) cut = minThreshold; << 345 if(cut < minThreshold) cut = minThreshold; 323 if (cut >= tmax) return cross; 346 if (cut >= tmax) return cross; 324 347 325 cross = ComputeMicroscopicCrossSection (kine 348 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut); 326 if(tmax < kineticEnergy) { 349 if(tmax < kineticEnergy) { 327 cross -= ComputeMicroscopicCrossSection(ki 350 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 328 } 351 } 329 return cross; 352 return cross; 330 } 353 } 331 354 332 //....oooOO0OOooo........oooOO0OOooo........oo 355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 333 356 334 void G4MuBremsstrahlungModel::SampleSecondarie 357 void G4MuBremsstrahlungModel::SampleSecondaries( 335 std::vector<G4Dy 358 std::vector<G4DynamicParticle*>* vdp, 336 const G4Material 359 const G4MaterialCutsCouple* couple, 337 const G4DynamicP 360 const G4DynamicParticle* dp, 338 G4double minEner 361 G4double minEnergy, 339 G4double maxEner 362 G4double maxEnergy) 340 { 363 { 341 G4double kineticEnergy = dp->GetKineticEnerg 364 G4double kineticEnergy = dp->GetKineticEnergy(); 342 // check against insufficient energy 365 // check against insufficient energy 343 G4double tmax = std::min(kineticEnergy, maxE 366 G4double tmax = std::min(kineticEnergy, maxEnergy); 344 G4double tmin = std::min(kineticEnergy, minE 367 G4double tmin = std::min(kineticEnergy, minEnergy); 345 tmin = std::max(tmin, minThreshold); << 368 if(tmin < minThreshold) tmin = minThreshold; 346 if(tmin >= tmax) return; 369 if(tmin >= tmax) return; 347 370 348 // ===== sampling of energy transfer ====== 371 // ===== sampling of energy transfer ====== 349 372 350 G4ParticleMomentum partDirection = dp->GetMo 373 G4ParticleMomentum partDirection = dp->GetMomentumDirection(); 351 374 352 // select randomly one element constituing t 375 // select randomly one element constituing the material 353 const G4Element* anElement = SelectRandomAto 376 const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy); 354 G4double Z = anElement->GetZ(); 377 G4double Z = anElement->GetZ(); >> 378 355 G4double func1 = tmin* 379 G4double func1 = tmin* 356 ComputeDMicroscopicCrossSection(kineticEne << 380 ComputeDMicroscopicCrossSection(kineticEnergy,Z,tmin); 357 381 358 G4double gEnergy; << 382 G4double lnepksi, epksi; 359 G4double func2; 383 G4double func2; 360 384 361 G4double xmin = G4Log(tmin/minThreshold); << 385 G4double xmin = G4Log(tmin/CLHEP::MeV); 362 G4double xmax = G4Log(tmax/tmin); << 386 G4double xmax = G4Log(kineticEnergy/tmin); 363 387 364 do { 388 do { 365 gEnergy = minThreshold*G4Exp(xmin + G4Unif << 389 lnepksi = xmin + G4UniformRand()*xmax; 366 func2 = gEnergy*ComputeDMicroscopicCrossSe << 390 epksi = CLHEP::MeV*G4Exp(lnepksi); 367 << 391 func2 = epksi*ComputeDMicroscopicCrossSection(kineticEnergy,Z,epksi); >> 392 368 // Loop checking, 03-Aug-2015, Vladimir Iv 393 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 369 } while(func2 < func1*G4UniformRand()); 394 } while(func2 < func1*G4UniformRand()); 370 395 >> 396 G4double gEnergy = epksi; >> 397 >> 398 // ===== sample angle ===== >> 399 >> 400 // 371 // angles of the emitted gamma using general 401 // angles of the emitted gamma using general interface >> 402 372 G4ThreeVector gamDir = 403 G4ThreeVector gamDir = 373 GetAngularDistribution()->SampleDirection( 404 GetAngularDistribution()->SampleDirection(dp, gEnergy, Z, 374 405 couple->GetMaterial()); 375 // create G4DynamicParticle object for the G 406 // create G4DynamicParticle object for the Gamma 376 G4DynamicParticle* gamma = new G4DynamicPart 407 G4DynamicParticle* gamma = new G4DynamicParticle(theGamma, gamDir, gEnergy); 377 vdp->push_back(gamma); 408 vdp->push_back(gamma); 378 << 379 // compute post-interaction kinematics of pr 409 // compute post-interaction kinematics of primary e-/e+ based on 380 // energy-momentum conservation 410 // energy-momentum conservation 381 const G4double totMomentum = 411 const G4double totMomentum = 382 std::sqrt(kineticEnergy*(kineticEnergy + 2 412 std::sqrt(kineticEnergy*(kineticEnergy + 2.0*mass)); 383 G4ThreeVector dir = 413 G4ThreeVector dir = 384 (totMomentum*dp->GetMomentumDirection() - << 414 (totMomentum*dp->GetMomentumDirection()-gEnergy*gamDir).unit(); 385 const G4double finalE = kineticEnergy - gEne 415 const G4double finalE = kineticEnergy - gEnergy; 386 << 387 // if secondary gamma energy is higher than 416 // if secondary gamma energy is higher than threshold(very high by default) 388 // then stop tracking the primary particle a 417 // then stop tracking the primary particle and create new secondary e-/e+ 389 // instead of the primary one 418 // instead of the primary one 390 if (gEnergy > SecondaryThreshold()) { 419 if (gEnergy > SecondaryThreshold()) { 391 fParticleChange->ProposeTrackStatus(fStopA 420 fParticleChange->ProposeTrackStatus(fStopAndKill); 392 fParticleChange->SetProposedKineticEnergy( 421 fParticleChange->SetProposedKineticEnergy(0.0); 393 G4DynamicParticle* newdp = new G4DynamicPa 422 G4DynamicParticle* newdp = new G4DynamicParticle(particle, dir, finalE); 394 vdp->push_back(newdp); 423 vdp->push_back(newdp); 395 } else { << 424 } else { // continue tracking the primary e-/e+ otherwise 396 // continue tracking the primary e-/e+ oth << 397 fParticleChange->SetProposedMomentumDirect 425 fParticleChange->SetProposedMomentumDirection(dir); 398 fParticleChange->SetProposedKineticEnergy( 426 fParticleChange->SetProposedKineticEnergy(finalE); 399 } 427 } 400 } 428 } 401 429 402 //....oooOO0OOooo........oooOO0OOooo........oo 430 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 403 431