Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4MuBremsstrahlungModel 32 // File name: G4MuBremsstrahlungModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 35 // 36 // Creation date: 24.06.2002 36 // Creation date: 24.06.2002 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 39 // 40 // 04-12-02 Change G4DynamicParticle construct 40 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 43 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 46 // 08-04-05 Major optimisation of internal int 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 47 // 03-08-05 Angular correlations according to 47 // 03-08-05 Angular correlations according to PRM (V.Ivanchenko) 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm 48 // 13-02-06 add ComputeCrossSectionPerAtom (mma) 49 // 21-03-06 Fix problem of initialisation in c 49 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI) 50 // 07-11-07 Improve sampling of final state (A 50 // 07-11-07 Improve sampling of final state (A.Bogdanov) 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) ( 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) (V.Ivanchenko) 52 // 31-05-13 Use element selectors instead of l 52 // 31-05-13 Use element selectors instead of local data structure (V.Ivanchenko) 53 // 53 // >> 54 >> 55 // >> 56 // Class Description: >> 57 // >> 58 // 54 // ------------------------------------------- 59 // ------------------------------------------------------------------- 55 // 60 // 56 //....oooOO0OOooo........oooOO0OOooo........oo 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 63 59 #include "G4MuBremsstrahlungModel.hh" 64 #include "G4MuBremsstrahlungModel.hh" 60 #include "G4PhysicalConstants.hh" 65 #include "G4PhysicalConstants.hh" 61 #include "G4SystemOfUnits.hh" 66 #include "G4SystemOfUnits.hh" 62 #include "G4Gamma.hh" 67 #include "G4Gamma.hh" 63 #include "G4MuonMinus.hh" 68 #include "G4MuonMinus.hh" 64 #include "G4MuonPlus.hh" 69 #include "G4MuonPlus.hh" 65 #include "Randomize.hh" 70 #include "Randomize.hh" 66 #include "G4Material.hh" 71 #include "G4Material.hh" 67 #include "G4Element.hh" 72 #include "G4Element.hh" 68 #include "G4ElementVector.hh" 73 #include "G4ElementVector.hh" 69 #include "G4ProductionCutsTable.hh" 74 #include "G4ProductionCutsTable.hh" 70 #include "G4ModifiedMephi.hh" 75 #include "G4ModifiedMephi.hh" 71 #include "G4ParticleChangeForLoss.hh" 76 #include "G4ParticleChangeForLoss.hh" 72 #include "G4Log.hh" 77 #include "G4Log.hh" >> 78 #include "G4Exp.hh" 73 79 74 //....oooOO0OOooo........oooOO0OOooo........oo 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 82 >> 83 using namespace std; >> 84 77 const G4double G4MuBremsstrahlungModel::xgi[] 85 const G4double G4MuBremsstrahlungModel::xgi[] = 78 {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 86 {0.03377,0.16940,0.38069,0.61931,0.83060,0.96623}; 79 const G4double G4MuBremsstrahlungModel::wgi[] 87 const G4double G4MuBremsstrahlungModel::wgi[] = 80 {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 88 {0.08566,0.18038,0.23396,0.23396,0.18038,0.08566}; 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 89 G4double G4MuBremsstrahlungModel::fDN[] = {0.0}; 82 90 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod 91 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p, 84 92 const G4String& nam) 85 : G4VEmModel(nam), 93 : G4VEmModel(nam), 86 sqrte(std::sqrt(G4Exp(1.))), << 94 particle(nullptr), 87 lowestKinEnergy(0.1*CLHEP::GeV), << 95 sqrte(sqrt(G4Exp(1.))), 88 minThreshold(0.9*CLHEP::keV) << 96 bh(202.4), >> 97 bh1(446.), >> 98 btf(183.), >> 99 btf1(1429.), >> 100 fParticleChange(nullptr), >> 101 lowestKinEnergy(1.0*GeV), >> 102 minThreshold(0.9*keV) 89 { 103 { 90 theGamma = G4Gamma::Gamma(); 104 theGamma = G4Gamma::Gamma(); 91 nist = G4NistManager::Instance(); << 105 nist = G4NistManager::Instance(); 92 106 93 SetAngularDistribution(new G4ModifiedMephi() << 107 lowestKinEnergy = 1.*GeV; 94 108 95 if (nullptr != p) { SetParticle(p); } << 109 mass = rmass = cc = coeff = 1.0; 96 if (0.0 == fDN[1]) { << 110 97 for (G4int i=1; i<93; ++i) { << 111 if(0.0 == fDN[1]) { >> 112 for(G4int i=1; i<93; ++i) { 98 G4double dn = 1.54*nist->GetA27(i); 113 G4double dn = 1.54*nist->GetA27(i); 99 fDN[i] = dn; 114 fDN[i] = dn; 100 if(1 < i) { 115 if(1 < i) { 101 fDN[i] /= std::pow(dn, 1./G4double(i)); << 116 fDN[i] /= std::pow(dn, 1./G4double(i)); 102 } 117 } 103 } 118 } 104 } 119 } >> 120 SetAngularDistribution(new G4ModifiedMephi()); >> 121 >> 122 if(p) { SetParticle(p); } 105 } 123 } 106 124 107 //....oooOO0OOooo........oooOO0OOooo........oo 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 108 126 109 G4double G4MuBremsstrahlungModel::MinEnergyCut 127 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*, 110 128 const G4MaterialCutsCouple*) 111 { 129 { 112 return minThreshold; 130 return minThreshold; 113 } 131 } 114 132 115 //....oooOO0OOooo........oooOO0OOooo........oo 133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 116 134 117 G4double G4MuBremsstrahlungModel::MinPrimaryEn 135 G4double G4MuBremsstrahlungModel::MinPrimaryEnergy(const G4Material*, 118 136 const G4ParticleDefinition*, 119 137 G4double cut) 120 { 138 { 121 return std::max(lowestKinEnergy, cut); << 139 return std::max(lowestKinEnergy,cut); 122 } << 123 << 124 //....oooOO0OOooo........oooOO0OOooo........oo << 125 << 126 void G4MuBremsstrahlungModel::SetParticle(cons << 127 { << 128 if(nullptr == particle) { << 129 particle = p; << 130 mass = particle->GetPDGMass(); << 131 rmass = mass/CLHEP::electron_mass_c2 ; << 132 cc = CLHEP::classic_electr_radius/rmass ; << 133 coeff = 16.*CLHEP::fine_structure_const*cc << 134 } << 135 } 140 } 136 141 137 //....oooOO0OOooo........oooOO0OOooo........oo 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 138 143 139 void G4MuBremsstrahlungModel::Initialise(const 144 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p, 140 const 145 const G4DataVector& cuts) 141 { 146 { 142 SetParticle(p); << 147 if(p) { SetParticle(p); } 143 if(nullptr == fParticleChange) { << 148 144 fParticleChange = GetParticleChangeForLoss << 149 // define pointer to G4ParticleChange 145 } << 150 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } >> 151 146 if(IsMaster() && p == particle && lowestKinE 152 if(IsMaster() && p == particle && lowestKinEnergy < HighEnergyLimit()) { 147 InitialiseElementSelectors(p, cuts); 153 InitialiseElementSelectors(p, cuts); 148 } 154 } 149 } 155 } 150 156 151 //....oooOO0OOooo........oooOO0OOooo........oo 157 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 152 158 153 void G4MuBremsstrahlungModel::InitialiseLocal( 159 void G4MuBremsstrahlungModel::InitialiseLocal(const G4ParticleDefinition* p, 154 160 G4VEmModel* masterModel) 155 { 161 { 156 if(p == particle && lowestKinEnergy < HighEn 162 if(p == particle && lowestKinEnergy < HighEnergyLimit()) { 157 SetElementSelectors(masterModel->GetElemen 163 SetElementSelectors(masterModel->GetElementSelectors()); 158 } 164 } 159 } 165 } 160 166 161 //....oooOO0OOooo........oooOO0OOooo........oo 167 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 162 168 163 G4double G4MuBremsstrahlungModel::ComputeDEDXP 169 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume( 164 170 const G4Material* material, 165 171 const G4ParticleDefinition*, 166 172 G4double kineticEnergy, 167 173 G4double cutEnergy) 168 { 174 { 169 G4double dedx = 0.0; 175 G4double dedx = 0.0; 170 if (kineticEnergy <= lowestKinEnergy) { retu 176 if (kineticEnergy <= lowestKinEnergy) { return dedx; } 171 177 172 G4double cut = std::max(cutEnergy, minThresh << 178 G4double tmax = kineticEnergy; 173 cut = std::min(cut, kineticEnergy); << 179 G4double cut = std::min(cutEnergy,tmax); >> 180 if(cut < minThreshold) { cut = minThreshold; } 174 181 175 const G4ElementVector* theElementVector = ma 182 const G4ElementVector* theElementVector = material->GetElementVector(); 176 const G4double* theAtomicNumDensityVector = 183 const G4double* theAtomicNumDensityVector = 177 material->GetAtomicNumDensityVector(); 184 material->GetAtomicNumDensityVector(); 178 185 179 // loop for elements in the material 186 // loop for elements in the material 180 for (size_t i=0; i<material->GetNumberOfElem << 187 for (size_t i=0; i<material->GetNumberOfElements(); i++) { >> 188 181 G4double loss = 189 G4double loss = 182 ComputMuBremLoss((*theElementVector)[i]- 190 ComputMuBremLoss((*theElementVector)[i]->GetZ(), kineticEnergy, cut); >> 191 183 dedx += loss*theAtomicNumDensityVector[i]; 192 dedx += loss*theAtomicNumDensityVector[i]; 184 } 193 } 185 // G4cout << "BR e= " << kineticEnergy << " 194 // G4cout << "BR e= " << kineticEnergy << " dedx= " << dedx << G4endl; 186 dedx = std::max(dedx, 0.); << 195 if(dedx < 0.) dedx = 0.; 187 return dedx; 196 return dedx; 188 } 197 } 189 198 190 //....oooOO0OOooo........oooOO0OOooo........oo 199 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 191 200 192 G4double G4MuBremsstrahlungModel::ComputMuBrem 201 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z, 193 202 G4double tkin, G4double cut) 194 { 203 { 195 G4double totalEnergy = mass + tkin; 204 G4double totalEnergy = mass + tkin; 196 static const G4double ak1 = 0.05; 205 static const G4double ak1 = 0.05; 197 static const G4int k2 = 5; << 206 static const G4int k2=5; 198 G4double loss = 0.; 207 G4double loss = 0.; 199 208 200 G4double vcut = cut/totalEnergy; 209 G4double vcut = cut/totalEnergy; 201 G4int kkk = (G4int)(vcut/ak1) + k2; << 210 G4double vmax = tkin/totalEnergy; 202 if (kkk > 8) { kkk = 8; } << 211 203 else if (kkk < 1) { kkk = 1; } << 212 G4double aaa = 0.; 204 G4double hhh = vcut/(G4double)(kkk); << 213 G4double bbb = vcut; 205 << 214 if(vcut>vmax) { bbb = vmax; } 206 G4double aa = 0.; << 215 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2; 207 for(G4int l=0; l<kkk; ++l) { << 216 if(kkk < 1) { kkk = 1; } 208 for(G4int i=0; i<6; ++i) { << 217 >> 218 G4double hhh=(bbb-aaa)/G4double(kkk); >> 219 >> 220 G4double aa = aaa; >> 221 for(G4int l=0; l<kkk; l++) >> 222 { >> 223 for(G4int i=0; i<6; i++) >> 224 { 209 G4double ep = (aa + xgi[i]*hhh)*totalEne 225 G4double ep = (aa + xgi[i]*hhh)*totalEnergy; 210 loss += ep*wgi[i]*ComputeDMicroscopicCro 226 loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 211 } 227 } 212 aa += hhh; 228 aa += hhh; 213 } 229 } 214 230 215 loss *= hhh*totalEnergy; << 231 loss *=hhh*totalEnergy ; >> 232 216 return loss; 233 return loss; 217 } 234 } 218 235 219 //....oooOO0OOooo........oooOO0OOooo........oo 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 220 237 221 G4double G4MuBremsstrahlungModel::ComputeMicro 238 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection( 222 G4d 239 G4double tkin, 223 G4d 240 G4double Z, 224 G4d 241 G4double cut) 225 { 242 { 226 G4double totalEnergy = tkin + mass; 243 G4double totalEnergy = tkin + mass; 227 static const G4double ak1 = 2.3; 244 static const G4double ak1 = 2.3; 228 static const G4int k2 = 4; << 245 static const G4int k2 = 4; 229 G4double cross = 0.; 246 G4double cross = 0.; 230 247 231 if(cut >= tkin) return cross; 248 if(cut >= tkin) return cross; 232 249 233 G4double vcut = cut/totalEnergy; 250 G4double vcut = cut/totalEnergy; 234 G4double vmax = tkin/totalEnergy; 251 G4double vmax = tkin/totalEnergy; 235 252 236 G4double aaa = G4Log(vcut); 253 G4double aaa = G4Log(vcut); 237 G4double bbb = G4Log(vmax); 254 G4double bbb = G4Log(vmax); 238 G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ; << 255 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ; 239 if(kkk > 8) { kkk = 8; } << 256 if(kkk < 1) { kkk = 1; } 240 else if (kkk < 1) { kkk = 1; } << 257 241 G4double hhh = (bbb-aaa)/(G4double)(kkk); << 258 G4double hhh = (bbb-aaa)/G4double(kkk); >> 259 242 G4double aa = aaa; 260 G4double aa = aaa; 243 261 244 for(G4int l=0; l<kkk; ++l) { << 262 for(G4int l=0; l<kkk; l++) 245 for(G4int i=0; i<6; ++i) { << 263 { >> 264 for(G4int i=0; i<6; i++) >> 265 { 246 G4double ep = G4Exp(aa + xgi[i]*hhh)*tot 266 G4double ep = G4Exp(aa + xgi[i]*hhh)*totalEnergy; 247 cross += ep*wgi[i]*ComputeDMicroscopicCr 267 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 248 } 268 } 249 aa += hhh; 269 aa += hhh; 250 } 270 } 251 271 252 cross *= hhh; << 272 cross *=hhh; >> 273 253 //G4cout << "BR e= " << tkin<< " cross= " < 274 //G4cout << "BR e= " << tkin<< " cross= " << cross/barn << G4endl; >> 275 254 return cross; 276 return cross; 255 } 277 } 256 278 257 //....oooOO0OOooo........oooOO0OOooo........oo 279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 258 280 259 G4double G4MuBremsstrahlungModel::ComputeDMicr 281 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection( 260 G4d 282 G4double tkin, 261 G4d 283 G4double Z, 262 G4d 284 G4double gammaEnergy) 263 // differential cross section 285 // differential cross section 264 { 286 { 265 G4double dxsection = 0.; 287 G4double dxsection = 0.; >> 288 266 if(gammaEnergy > tkin) { return dxsection; } 289 if(gammaEnergy > tkin) { return dxsection; } 267 290 268 G4double E = tkin + mass ; 291 G4double E = tkin + mass ; 269 G4double v = gammaEnergy/E ; 292 G4double v = gammaEnergy/E ; 270 G4double delta = 0.5*mass*mass*v/(E-gammaEne 293 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ; 271 G4double rab0 = delta*sqrte ; 294 G4double rab0 = delta*sqrte ; 272 295 273 G4int iz = G4lrint(Z); 296 G4int iz = G4lrint(Z); 274 if(iz < 1) { iz = 1; } 297 if(iz < 1) { iz = 1; } 275 else if(iz > 92) { iz = 92; } 298 else if(iz > 92) { iz = 92; } 276 299 277 G4double z13 = 1.0/nist->GetZ13(iz); 300 G4double z13 = 1.0/nist->GetZ13(iz); 278 G4double dnstar = fDN[iz]; 301 G4double dnstar = fDN[iz]; 279 302 280 G4double b,b1; 303 G4double b,b1; >> 304 281 if(1 == iz) { 305 if(1 == iz) { 282 b = bh; 306 b = bh; 283 b1 = bh1; 307 b1 = bh1; 284 } else { 308 } else { 285 b = btf; 309 b = btf; 286 b1 = btf1; 310 b1 = btf1; 287 } 311 } 288 312 289 // nucleus contribution logarithm 313 // nucleus contribution logarithm 290 G4double rab1 = b*z13; << 314 G4double rab1=b*z13; 291 G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 315 G4double fn=G4Log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))* 292 (mass + delta*(dnstar*sqrte-2.))); << 316 (mass+delta*(dnstar*sqrte-2.))) ; 293 fn = std::max(fn, 0.); << 317 if(fn <0.) { fn = 0.; } 294 // electron contribution logarithm 318 // electron contribution logarithm 295 G4double epmax1 = E/(1.+0.5*mass*rmass/E); << 319 G4double epmax1=E/(1.+0.5*mass*rmass/E) ; 296 G4double fe = 0.; << 320 G4double fe=0.; 297 if(gammaEnergy < epmax1) { << 321 if(gammaEnergy<epmax1) 298 G4double rab2 = b1*z13*z13; << 322 { 299 fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 323 G4double rab2=b1*z13*z13 ; 300 (CLHEP::electron_mass_c2+rab0*rab2))); << 324 fe=G4Log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))* 301 fe = std::max(fe, 0.); << 325 (electron_mass_c2+rab0*rab2))) ; >> 326 if(fe<0.) { fe=0.; } 302 } 327 } 303 328 304 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn 329 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy; 305 dxsection = std::max(dxsection, 0.0); << 330 306 return dxsection; 331 return dxsection; 307 } 332 } 308 333 309 //....oooOO0OOooo........oooOO0OOooo........oo 334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 335 311 G4double G4MuBremsstrahlungModel::ComputeCross 336 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom( 312 con 337 const G4ParticleDefinition*, 313 338 G4double kineticEnergy, 314 339 G4double Z, G4double, 315 340 G4double cutEnergy, 316 341 G4double maxEnergy) 317 { 342 { 318 G4double cross = 0.0; 343 G4double cross = 0.0; 319 if (kineticEnergy <= lowestKinEnergy) return 344 if (kineticEnergy <= lowestKinEnergy) return cross; 320 G4double tmax = std::min(maxEnergy, kineticE 345 G4double tmax = std::min(maxEnergy, kineticEnergy); 321 G4double cut = std::min(cutEnergy, kineticE 346 G4double cut = std::min(cutEnergy, kineticEnergy); 322 if (cut < minThreshold) cut = minThreshold; << 347 if(cut < minThreshold) cut = minThreshold; 323 if (cut >= tmax) return cross; 348 if (cut >= tmax) return cross; 324 349 325 cross = ComputeMicroscopicCrossSection (kine 350 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut); 326 if(tmax < kineticEnergy) { 351 if(tmax < kineticEnergy) { 327 cross -= ComputeMicroscopicCrossSection(ki 352 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 328 } 353 } 329 return cross; 354 return cross; 330 } 355 } 331 356 332 //....oooOO0OOooo........oooOO0OOooo........oo 357 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 333 358 334 void G4MuBremsstrahlungModel::SampleSecondarie 359 void G4MuBremsstrahlungModel::SampleSecondaries( 335 std::vector<G4Dy 360 std::vector<G4DynamicParticle*>* vdp, 336 const G4Material 361 const G4MaterialCutsCouple* couple, 337 const G4DynamicP 362 const G4DynamicParticle* dp, 338 G4double minEner 363 G4double minEnergy, 339 G4double maxEner 364 G4double maxEnergy) 340 { 365 { 341 G4double kineticEnergy = dp->GetKineticEnerg 366 G4double kineticEnergy = dp->GetKineticEnergy(); 342 // check against insufficient energy 367 // check against insufficient energy 343 G4double tmax = std::min(kineticEnergy, maxE 368 G4double tmax = std::min(kineticEnergy, maxEnergy); 344 G4double tmin = std::min(kineticEnergy, minE 369 G4double tmin = std::min(kineticEnergy, minEnergy); 345 tmin = std::max(tmin, minThreshold); << 370 if(tmin < minThreshold) tmin = minThreshold; 346 if(tmin >= tmax) return; 371 if(tmin >= tmax) return; 347 372 348 // ===== sampling of energy transfer ====== 373 // ===== sampling of energy transfer ====== 349 374 350 G4ParticleMomentum partDirection = dp->GetMo 375 G4ParticleMomentum partDirection = dp->GetMomentumDirection(); 351 376 352 // select randomly one element constituing t 377 // select randomly one element constituing the material 353 const G4Element* anElement = SelectRandomAto 378 const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy); 354 G4double Z = anElement->GetZ(); 379 G4double Z = anElement->GetZ(); >> 380 355 G4double func1 = tmin* 381 G4double func1 = tmin* 356 ComputeDMicroscopicCrossSection(kineticEne << 382 ComputeDMicroscopicCrossSection(kineticEnergy,Z,tmin); 357 383 358 G4double gEnergy; << 384 G4double lnepksi, epksi; 359 G4double func2; 385 G4double func2; 360 386 361 G4double xmin = G4Log(tmin/minThreshold); << 387 G4double xmin = G4Log(tmin/CLHEP::MeV); 362 G4double xmax = G4Log(tmax/tmin); << 388 G4double xmax = G4Log(kineticEnergy/tmin); 363 389 364 do { 390 do { 365 gEnergy = minThreshold*G4Exp(xmin + G4Unif << 391 lnepksi = xmin + G4UniformRand()*xmax; 366 func2 = gEnergy*ComputeDMicroscopicCrossSe << 392 epksi = CLHEP::MeV*G4Exp(lnepksi); 367 << 393 func2 = epksi*ComputeDMicroscopicCrossSection(kineticEnergy,Z,epksi); >> 394 368 // Loop checking, 03-Aug-2015, Vladimir Iv 395 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 369 } while(func2 < func1*G4UniformRand()); 396 } while(func2 < func1*G4UniformRand()); 370 397 >> 398 G4double gEnergy = epksi; >> 399 >> 400 // ===== sample angle ===== >> 401 >> 402 // 371 // angles of the emitted gamma using general 403 // angles of the emitted gamma using general interface >> 404 372 G4ThreeVector gamDir = 405 G4ThreeVector gamDir = 373 GetAngularDistribution()->SampleDirection( 406 GetAngularDistribution()->SampleDirection(dp, gEnergy, Z, 374 407 couple->GetMaterial()); 375 // create G4DynamicParticle object for the G 408 // create G4DynamicParticle object for the Gamma 376 G4DynamicParticle* gamma = new G4DynamicPart 409 G4DynamicParticle* gamma = new G4DynamicParticle(theGamma, gamDir, gEnergy); 377 vdp->push_back(gamma); 410 vdp->push_back(gamma); 378 << 379 // compute post-interaction kinematics of pr 411 // compute post-interaction kinematics of primary e-/e+ based on 380 // energy-momentum conservation 412 // energy-momentum conservation 381 const G4double totMomentum = 413 const G4double totMomentum = 382 std::sqrt(kineticEnergy*(kineticEnergy + 2 414 std::sqrt(kineticEnergy*(kineticEnergy + 2.0*mass)); 383 G4ThreeVector dir = 415 G4ThreeVector dir = 384 (totMomentum*dp->GetMomentumDirection() - << 416 (totMomentum*dp->GetMomentumDirection()-gEnergy*gamDir).unit(); 385 const G4double finalE = kineticEnergy - gEne 417 const G4double finalE = kineticEnergy - gEnergy; 386 << 387 // if secondary gamma energy is higher than 418 // if secondary gamma energy is higher than threshold(very high by default) 388 // then stop tracking the primary particle a 419 // then stop tracking the primary particle and create new secondary e-/e+ 389 // instead of the primary one 420 // instead of the primary one 390 if (gEnergy > SecondaryThreshold()) { 421 if (gEnergy > SecondaryThreshold()) { 391 fParticleChange->ProposeTrackStatus(fStopA 422 fParticleChange->ProposeTrackStatus(fStopAndKill); 392 fParticleChange->SetProposedKineticEnergy( 423 fParticleChange->SetProposedKineticEnergy(0.0); 393 G4DynamicParticle* newdp = new G4DynamicPa 424 G4DynamicParticle* newdp = new G4DynamicParticle(particle, dir, finalE); 394 vdp->push_back(newdp); 425 vdp->push_back(newdp); 395 } else { << 426 } else { // continue tracking the primary e-/e+ otherwise 396 // continue tracking the primary e-/e+ oth << 397 fParticleChange->SetProposedMomentumDirect 427 fParticleChange->SetProposedMomentumDirection(dir); 398 fParticleChange->SetProposedKineticEnergy( 428 fParticleChange->SetProposedKineticEnergy(finalE); 399 } 429 } 400 } 430 } 401 431 402 //....oooOO0OOooo........oooOO0OOooo........oo 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 403 433