Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MuBremsstrahlungModel.cc 85023 2014-10-23 09:56:39Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4MuBremsstrahlungModel 33 // File name: G4MuBremsstrahlungModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 24.06.2002 37 // Creation date: 24.06.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 04-12-02 Change G4DynamicParticle construct 41 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 42 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 44 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 13-02-03 Add name (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 46 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 46 // 08-04-05 Major optimisation of internal int 47 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 47 // 03-08-05 Angular correlations according to 48 // 03-08-05 Angular correlations according to PRM (V.Ivanchenko) 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm 49 // 13-02-06 add ComputeCrossSectionPerAtom (mma) 49 // 21-03-06 Fix problem of initialisation in c 50 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI) 50 // 07-11-07 Improve sampling of final state (A 51 // 07-11-07 Improve sampling of final state (A.Bogdanov) 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) ( 52 // 28-02-08 Use precomputed Z^1/3 and Log(A) (V.Ivanchenko) 52 // 31-05-13 Use element selectors instead of l 53 // 31-05-13 Use element selectors instead of local data structure (V.Ivanchenko) 53 // 54 // >> 55 >> 56 // >> 57 // Class Description: >> 58 // >> 59 // 54 // ------------------------------------------- 60 // ------------------------------------------------------------------- 55 // 61 // 56 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 64 59 #include "G4MuBremsstrahlungModel.hh" 65 #include "G4MuBremsstrahlungModel.hh" 60 #include "G4PhysicalConstants.hh" 66 #include "G4PhysicalConstants.hh" 61 #include "G4SystemOfUnits.hh" 67 #include "G4SystemOfUnits.hh" 62 #include "G4Gamma.hh" 68 #include "G4Gamma.hh" 63 #include "G4MuonMinus.hh" 69 #include "G4MuonMinus.hh" 64 #include "G4MuonPlus.hh" 70 #include "G4MuonPlus.hh" 65 #include "Randomize.hh" 71 #include "Randomize.hh" 66 #include "G4Material.hh" 72 #include "G4Material.hh" 67 #include "G4Element.hh" 73 #include "G4Element.hh" 68 #include "G4ElementVector.hh" 74 #include "G4ElementVector.hh" 69 #include "G4ProductionCutsTable.hh" 75 #include "G4ProductionCutsTable.hh" 70 #include "G4ModifiedMephi.hh" << 71 #include "G4ParticleChangeForLoss.hh" 76 #include "G4ParticleChangeForLoss.hh" >> 77 //#include "G4LossTableManager.hh" 72 #include "G4Log.hh" 78 #include "G4Log.hh" >> 79 #include "G4Exp.hh" 73 80 74 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 //....oooOO0OOooo........oooOO0OOooo........oo 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 83 >> 84 using namespace std; >> 85 77 const G4double G4MuBremsstrahlungModel::xgi[] 86 const G4double G4MuBremsstrahlungModel::xgi[] = 78 {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 87 {0.03377,0.16940,0.38069,0.61931,0.83060,0.96623}; 79 const G4double G4MuBremsstrahlungModel::wgi[] 88 const G4double G4MuBremsstrahlungModel::wgi[] = 80 {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 89 {0.08566,0.18038,0.23396,0.23396,0.18038,0.08566}; 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 90 G4double G4MuBremsstrahlungModel::fDN[] = {0.0}; 82 91 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod 92 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p, 84 93 const G4String& nam) 85 : G4VEmModel(nam), 94 : G4VEmModel(nam), 86 sqrte(std::sqrt(G4Exp(1.))), << 95 particle(0), 87 lowestKinEnergy(0.1*CLHEP::GeV), << 96 sqrte(sqrt(G4Exp(1.))), 88 minThreshold(0.9*CLHEP::keV) << 97 bh(202.4), >> 98 bh1(446.), >> 99 btf(183.), >> 100 btf1(1429.), >> 101 fParticleChange(0), >> 102 lowestKinEnergy(1.0*GeV), >> 103 minThreshold(0.9*keV) 89 { 104 { 90 theGamma = G4Gamma::Gamma(); 105 theGamma = G4Gamma::Gamma(); 91 nist = G4NistManager::Instance(); << 106 nist = G4NistManager::Instance(); >> 107 >> 108 lowestKinEnergy = 1.*GeV; 92 109 93 SetAngularDistribution(new G4ModifiedMephi() << 110 mass = rmass = cc = coeff = 1.0; 94 111 95 if (nullptr != p) { SetParticle(p); } << 112 if(0.0 == fDN[1]) { 96 if (0.0 == fDN[1]) { << 113 for(G4int i=1; i<93; ++i) { 97 for (G4int i=1; i<93; ++i) { << 98 G4double dn = 1.54*nist->GetA27(i); 114 G4double dn = 1.54*nist->GetA27(i); 99 fDN[i] = dn; 115 fDN[i] = dn; 100 if(1 < i) { 116 if(1 < i) { 101 fDN[i] /= std::pow(dn, 1./G4double(i)); 117 fDN[i] /= std::pow(dn, 1./G4double(i)); 102 } 118 } 103 } 119 } 104 } 120 } >> 121 >> 122 if(p) { SetParticle(p); } 105 } 123 } 106 124 107 //....oooOO0OOooo........oooOO0OOooo........oo 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 108 126 109 G4double G4MuBremsstrahlungModel::MinEnergyCut << 127 G4MuBremsstrahlungModel::~G4MuBremsstrahlungModel() 110 << 128 {} 111 { << 112 return minThreshold; << 113 } << 114 129 115 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 116 131 117 G4double G4MuBremsstrahlungModel::MinPrimaryEn << 132 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*, 118 << 133 const G4MaterialCutsCouple*) 119 << 120 { 134 { 121 return std::max(lowestKinEnergy, cut); << 135 return minThreshold; 122 } 136 } 123 137 124 //....oooOO0OOooo........oooOO0OOooo........oo 138 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 125 139 126 void G4MuBremsstrahlungModel::SetParticle(cons << 140 G4double G4MuBremsstrahlungModel::MinPrimaryEnergy(const G4Material*, >> 141 const G4ParticleDefinition*, >> 142 G4double cut) 127 { 143 { 128 if(nullptr == particle) { << 144 return std::max(lowestKinEnergy,cut); 129 particle = p; << 130 mass = particle->GetPDGMass(); << 131 rmass = mass/CLHEP::electron_mass_c2 ; << 132 cc = CLHEP::classic_electr_radius/rmass ; << 133 coeff = 16.*CLHEP::fine_structure_const*cc << 134 } << 135 } 145 } 136 146 137 //....oooOO0OOooo........oooOO0OOooo........oo 147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 138 148 139 void G4MuBremsstrahlungModel::Initialise(const 149 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p, 140 const 150 const G4DataVector& cuts) 141 { 151 { 142 SetParticle(p); << 152 if(p) { SetParticle(p); } 143 if(nullptr == fParticleChange) { << 153 144 fParticleChange = GetParticleChangeForLoss << 154 // define pointer to G4ParticleChange 145 } << 155 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } >> 156 146 if(IsMaster() && p == particle && lowestKinE 157 if(IsMaster() && p == particle && lowestKinEnergy < HighEnergyLimit()) { 147 InitialiseElementSelectors(p, cuts); 158 InitialiseElementSelectors(p, cuts); 148 } 159 } 149 } 160 } 150 161 151 //....oooOO0OOooo........oooOO0OOooo........oo 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 152 163 153 void G4MuBremsstrahlungModel::InitialiseLocal( 164 void G4MuBremsstrahlungModel::InitialiseLocal(const G4ParticleDefinition* p, 154 << 165 G4VEmModel* masterModel) 155 { 166 { 156 if(p == particle && lowestKinEnergy < HighEn 167 if(p == particle && lowestKinEnergy < HighEnergyLimit()) { 157 SetElementSelectors(masterModel->GetElemen 168 SetElementSelectors(masterModel->GetElementSelectors()); 158 } 169 } 159 } 170 } 160 171 161 //....oooOO0OOooo........oooOO0OOooo........oo 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 162 173 163 G4double G4MuBremsstrahlungModel::ComputeDEDXP 174 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume( 164 << 175 const G4Material* material, 165 176 const G4ParticleDefinition*, 166 177 G4double kineticEnergy, 167 178 G4double cutEnergy) 168 { 179 { 169 G4double dedx = 0.0; 180 G4double dedx = 0.0; 170 if (kineticEnergy <= lowestKinEnergy) { retu 181 if (kineticEnergy <= lowestKinEnergy) { return dedx; } 171 182 172 G4double cut = std::max(cutEnergy, minThresh << 183 G4double tmax = kineticEnergy; 173 cut = std::min(cut, kineticEnergy); << 184 G4double cut = std::min(cutEnergy,tmax); >> 185 if(cut < minThreshold) { cut = minThreshold; } 174 186 175 const G4ElementVector* theElementVector = ma 187 const G4ElementVector* theElementVector = material->GetElementVector(); 176 const G4double* theAtomicNumDensityVector = 188 const G4double* theAtomicNumDensityVector = 177 material->GetAtomicNumDensityVector(); 189 material->GetAtomicNumDensityVector(); 178 190 179 // loop for elements in the material 191 // loop for elements in the material 180 for (size_t i=0; i<material->GetNumberOfElem << 192 for (size_t i=0; i<material->GetNumberOfElements(); i++) { >> 193 181 G4double loss = 194 G4double loss = 182 ComputMuBremLoss((*theElementVector)[i]- 195 ComputMuBremLoss((*theElementVector)[i]->GetZ(), kineticEnergy, cut); >> 196 183 dedx += loss*theAtomicNumDensityVector[i]; 197 dedx += loss*theAtomicNumDensityVector[i]; 184 } 198 } 185 // G4cout << "BR e= " << kineticEnergy << " 199 // G4cout << "BR e= " << kineticEnergy << " dedx= " << dedx << G4endl; 186 dedx = std::max(dedx, 0.); << 200 if(dedx < 0.) dedx = 0.; 187 return dedx; 201 return dedx; 188 } 202 } 189 203 190 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 191 205 192 G4double G4MuBremsstrahlungModel::ComputMuBrem 206 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z, 193 207 G4double tkin, G4double cut) 194 { 208 { 195 G4double totalEnergy = mass + tkin; 209 G4double totalEnergy = mass + tkin; 196 static const G4double ak1 = 0.05; 210 static const G4double ak1 = 0.05; 197 static const G4int k2 = 5; << 211 static const G4int k2=5; 198 G4double loss = 0.; 212 G4double loss = 0.; 199 213 200 G4double vcut = cut/totalEnergy; 214 G4double vcut = cut/totalEnergy; 201 G4int kkk = (G4int)(vcut/ak1) + k2; << 215 G4double vmax = tkin/totalEnergy; 202 if (kkk > 8) { kkk = 8; } << 216 203 else if (kkk < 1) { kkk = 1; } << 217 G4double aaa = 0.; 204 G4double hhh = vcut/(G4double)(kkk); << 218 G4double bbb = vcut; 205 << 219 if(vcut>vmax) { bbb = vmax; } 206 G4double aa = 0.; << 220 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2; 207 for(G4int l=0; l<kkk; ++l) { << 221 if(kkk < 1) { kkk = 1; } 208 for(G4int i=0; i<6; ++i) { << 222 >> 223 G4double hhh=(bbb-aaa)/G4double(kkk); >> 224 >> 225 G4double aa = aaa; >> 226 for(G4int l=0; l<kkk; l++) >> 227 { >> 228 for(G4int i=0; i<6; i++) >> 229 { 209 G4double ep = (aa + xgi[i]*hhh)*totalEne 230 G4double ep = (aa + xgi[i]*hhh)*totalEnergy; 210 loss += ep*wgi[i]*ComputeDMicroscopicCro 231 loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 211 } 232 } 212 aa += hhh; 233 aa += hhh; 213 } 234 } 214 235 215 loss *= hhh*totalEnergy; << 236 loss *=hhh*totalEnergy ; >> 237 216 return loss; 238 return loss; 217 } 239 } 218 240 219 //....oooOO0OOooo........oooOO0OOooo........oo 241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 220 242 221 G4double G4MuBremsstrahlungModel::ComputeMicro 243 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection( 222 G4d 244 G4double tkin, 223 G4d 245 G4double Z, 224 G4d 246 G4double cut) 225 { 247 { 226 G4double totalEnergy = tkin + mass; 248 G4double totalEnergy = tkin + mass; 227 static const G4double ak1 = 2.3; 249 static const G4double ak1 = 2.3; 228 static const G4int k2 = 4; << 250 static const G4int k2 = 4; 229 G4double cross = 0.; 251 G4double cross = 0.; 230 252 231 if(cut >= tkin) return cross; 253 if(cut >= tkin) return cross; 232 254 233 G4double vcut = cut/totalEnergy; 255 G4double vcut = cut/totalEnergy; 234 G4double vmax = tkin/totalEnergy; 256 G4double vmax = tkin/totalEnergy; 235 257 236 G4double aaa = G4Log(vcut); 258 G4double aaa = G4Log(vcut); 237 G4double bbb = G4Log(vmax); 259 G4double bbb = G4Log(vmax); 238 G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ; << 260 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ; 239 if(kkk > 8) { kkk = 8; } << 261 if(kkk < 1) { kkk = 1; } 240 else if (kkk < 1) { kkk = 1; } << 262 241 G4double hhh = (bbb-aaa)/(G4double)(kkk); << 263 G4double hhh = (bbb-aaa)/G4double(kkk); >> 264 242 G4double aa = aaa; 265 G4double aa = aaa; 243 266 244 for(G4int l=0; l<kkk; ++l) { << 267 for(G4int l=0; l<kkk; l++) 245 for(G4int i=0; i<6; ++i) { << 268 { >> 269 for(G4int i=0; i<6; i++) >> 270 { 246 G4double ep = G4Exp(aa + xgi[i]*hhh)*tot 271 G4double ep = G4Exp(aa + xgi[i]*hhh)*totalEnergy; 247 cross += ep*wgi[i]*ComputeDMicroscopicCr 272 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 248 } 273 } 249 aa += hhh; 274 aa += hhh; 250 } 275 } 251 276 252 cross *= hhh; << 277 cross *=hhh; >> 278 253 //G4cout << "BR e= " << tkin<< " cross= " < 279 //G4cout << "BR e= " << tkin<< " cross= " << cross/barn << G4endl; >> 280 254 return cross; 281 return cross; 255 } 282 } 256 283 257 //....oooOO0OOooo........oooOO0OOooo........oo 284 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 258 285 259 G4double G4MuBremsstrahlungModel::ComputeDMicr 286 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection( 260 G4d 287 G4double tkin, 261 G4d 288 G4double Z, 262 G4d 289 G4double gammaEnergy) 263 // differential cross section 290 // differential cross section 264 { 291 { 265 G4double dxsection = 0.; 292 G4double dxsection = 0.; >> 293 266 if(gammaEnergy > tkin) { return dxsection; } 294 if(gammaEnergy > tkin) { return dxsection; } 267 295 268 G4double E = tkin + mass ; 296 G4double E = tkin + mass ; 269 G4double v = gammaEnergy/E ; 297 G4double v = gammaEnergy/E ; 270 G4double delta = 0.5*mass*mass*v/(E-gammaEne 298 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ; 271 G4double rab0 = delta*sqrte ; 299 G4double rab0 = delta*sqrte ; 272 300 273 G4int iz = G4lrint(Z); 301 G4int iz = G4lrint(Z); 274 if(iz < 1) { iz = 1; } 302 if(iz < 1) { iz = 1; } 275 else if(iz > 92) { iz = 92; } 303 else if(iz > 92) { iz = 92; } 276 304 277 G4double z13 = 1.0/nist->GetZ13(iz); 305 G4double z13 = 1.0/nist->GetZ13(iz); 278 G4double dnstar = fDN[iz]; 306 G4double dnstar = fDN[iz]; 279 307 280 G4double b,b1; 308 G4double b,b1; >> 309 281 if(1 == iz) { 310 if(1 == iz) { 282 b = bh; 311 b = bh; 283 b1 = bh1; 312 b1 = bh1; 284 } else { 313 } else { 285 b = btf; 314 b = btf; 286 b1 = btf1; 315 b1 = btf1; 287 } 316 } 288 317 289 // nucleus contribution logarithm 318 // nucleus contribution logarithm 290 G4double rab1 = b*z13; << 319 G4double rab1=b*z13; 291 G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 320 G4double fn=G4Log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))* 292 (mass + delta*(dnstar*sqrte-2.))); << 321 (mass+delta*(dnstar*sqrte-2.))) ; 293 fn = std::max(fn, 0.); << 322 if(fn <0.) { fn = 0.; } 294 // electron contribution logarithm 323 // electron contribution logarithm 295 G4double epmax1 = E/(1.+0.5*mass*rmass/E); << 324 G4double epmax1=E/(1.+0.5*mass*rmass/E) ; 296 G4double fe = 0.; << 325 G4double fe=0.; 297 if(gammaEnergy < epmax1) { << 326 if(gammaEnergy<epmax1) 298 G4double rab2 = b1*z13*z13; << 327 { 299 fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 328 G4double rab2=b1*z13*z13 ; 300 (CLHEP::electron_mass_c2+rab0*rab2))); << 329 fe=G4Log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))* 301 fe = std::max(fe, 0.); << 330 (electron_mass_c2+rab0*rab2))) ; >> 331 if(fe<0.) { fe=0.; } 302 } 332 } 303 333 304 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn 334 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy; 305 dxsection = std::max(dxsection, 0.0); << 335 306 return dxsection; 336 return dxsection; 307 } 337 } 308 338 309 //....oooOO0OOooo........oooOO0OOooo........oo 339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 340 311 G4double G4MuBremsstrahlungModel::ComputeCross 341 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom( 312 con 342 const G4ParticleDefinition*, 313 343 G4double kineticEnergy, 314 << 344 G4double Z, G4double, 315 345 G4double cutEnergy, 316 346 G4double maxEnergy) 317 { 347 { 318 G4double cross = 0.0; 348 G4double cross = 0.0; 319 if (kineticEnergy <= lowestKinEnergy) return 349 if (kineticEnergy <= lowestKinEnergy) return cross; 320 G4double tmax = std::min(maxEnergy, kineticE 350 G4double tmax = std::min(maxEnergy, kineticEnergy); 321 G4double cut = std::min(cutEnergy, kineticE 351 G4double cut = std::min(cutEnergy, kineticEnergy); 322 if (cut < minThreshold) cut = minThreshold; << 352 if(cut < minThreshold) cut = minThreshold; 323 if (cut >= tmax) return cross; 353 if (cut >= tmax) return cross; 324 354 325 cross = ComputeMicroscopicCrossSection (kine 355 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut); 326 if(tmax < kineticEnergy) { 356 if(tmax < kineticEnergy) { 327 cross -= ComputeMicroscopicCrossSection(ki 357 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 328 } 358 } 329 return cross; 359 return cross; 330 } 360 } 331 361 332 //....oooOO0OOooo........oooOO0OOooo........oo 362 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 333 363 334 void G4MuBremsstrahlungModel::SampleSecondarie 364 void G4MuBremsstrahlungModel::SampleSecondaries( 335 std::vector<G4Dy 365 std::vector<G4DynamicParticle*>* vdp, 336 const G4Material << 366 const G4MaterialCutsCouple* couple, 337 const G4DynamicP << 367 const G4DynamicParticle* dp, 338 G4double minEner << 368 G4double minEnergy, 339 G4double maxEner << 369 G4double maxEnergy) 340 { 370 { 341 G4double kineticEnergy = dp->GetKineticEnerg 371 G4double kineticEnergy = dp->GetKineticEnergy(); 342 // check against insufficient energy 372 // check against insufficient energy 343 G4double tmax = std::min(kineticEnergy, maxE 373 G4double tmax = std::min(kineticEnergy, maxEnergy); 344 G4double tmin = std::min(kineticEnergy, minE 374 G4double tmin = std::min(kineticEnergy, minEnergy); 345 tmin = std::max(tmin, minThreshold); << 375 if(tmin < minThreshold) tmin = minThreshold; 346 if(tmin >= tmax) return; 376 if(tmin >= tmax) return; 347 377 348 // ===== sampling of energy transfer ====== 378 // ===== sampling of energy transfer ====== 349 379 350 G4ParticleMomentum partDirection = dp->GetMo 380 G4ParticleMomentum partDirection = dp->GetMomentumDirection(); 351 381 352 // select randomly one element constituing t 382 // select randomly one element constituing the material 353 const G4Element* anElement = SelectRandomAto 383 const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy); 354 G4double Z = anElement->GetZ(); 384 G4double Z = anElement->GetZ(); >> 385 >> 386 G4double totalEnergy = kineticEnergy + mass; >> 387 G4double totalMomentum = sqrt(kineticEnergy*(kineticEnergy + 2.0*mass)); >> 388 355 G4double func1 = tmin* 389 G4double func1 = tmin* 356 ComputeDMicroscopicCrossSection(kineticEne << 390 ComputeDMicroscopicCrossSection(kineticEnergy,Z,tmin); 357 391 358 G4double gEnergy; << 392 G4double lnepksi, epksi; 359 G4double func2; 393 G4double func2; 360 394 361 G4double xmin = G4Log(tmin/minThreshold); << 395 G4double xmin = G4Log(tmin/MeV); 362 G4double xmax = G4Log(tmax/tmin); << 396 G4double xmax = G4Log(kineticEnergy/tmin); 363 397 364 do { 398 do { 365 gEnergy = minThreshold*G4Exp(xmin + G4Unif << 399 lnepksi = xmin + G4UniformRand()*xmax; 366 func2 = gEnergy*ComputeDMicroscopicCrossSe << 400 epksi = MeV*G4Exp(lnepksi); 367 << 401 func2 = epksi*ComputeDMicroscopicCrossSection(kineticEnergy,Z,epksi); 368 // Loop checking, 03-Aug-2015, Vladimir Iv << 402 369 } while(func2 < func1*G4UniformRand()); 403 } while(func2 < func1*G4UniformRand()); 370 404 371 // angles of the emitted gamma using general << 405 G4double gEnergy = epksi; 372 G4ThreeVector gamDir = << 406 373 GetAngularDistribution()->SampleDirection( << 407 // ===== sample angle ===== 374 << 408 375 // create G4DynamicParticle object for the G << 409 G4double gam = totalEnergy/mass; 376 G4DynamicParticle* gamma = new G4DynamicPart << 410 G4double rmax = gam*std::min(1.0, totalEnergy/gEnergy - 1.0); 377 vdp->push_back(gamma); << 411 G4double rmax2= rmax*rmax; 378 << 412 G4double x = G4UniformRand()*rmax2/(1.0 + rmax2); 379 // compute post-interaction kinematics of pr << 413 380 // energy-momentum conservation << 414 G4double theta = sqrt(x/(1.0 - x))/gam; 381 const G4double totMomentum = << 415 G4double sint = sin(theta); 382 std::sqrt(kineticEnergy*(kineticEnergy + 2 << 416 G4double phi = twopi * G4UniformRand() ; 383 G4ThreeVector dir = << 417 G4double dirx = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ; 384 (totMomentum*dp->GetMomentumDirection() - << 418 385 const G4double finalE = kineticEnergy - gEne << 419 G4ThreeVector gDirection(dirx, diry, dirz); 386 << 420 gDirection.rotateUz(partDirection); 387 // if secondary gamma energy is higher than << 421 388 // then stop tracking the primary particle a << 422 partDirection *= totalMomentum; 389 // instead of the primary one << 423 partDirection -= gEnergy*gDirection; 390 if (gEnergy > SecondaryThreshold()) { << 424 partDirection = partDirection.unit(); 391 fParticleChange->ProposeTrackStatus(fStopA << 425 392 fParticleChange->SetProposedKineticEnergy( << 426 // primary change 393 G4DynamicParticle* newdp = new G4DynamicPa << 427 kineticEnergy -= gEnergy; 394 vdp->push_back(newdp); << 428 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 395 } else { << 429 fParticleChange->SetProposedMomentumDirection(partDirection); 396 // continue tracking the primary e-/e+ oth << 430 397 fParticleChange->SetProposedMomentumDirect << 431 // save secondary 398 fParticleChange->SetProposedKineticEnergy( << 432 G4DynamicParticle* aGamma = 399 } << 433 new G4DynamicParticle(theGamma,gDirection,gEnergy); >> 434 vdp->push_back(aGamma); 400 } 435 } 401 436 402 //....oooOO0OOooo........oooOO0OOooo........oo 437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 403 438