Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class header file 29 // GEANT4 Class header file 30 // 30 // 31 // 31 // 32 // File name: G4MuBetheBlochModel 32 // File name: G4MuBetheBlochModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 35 // 36 // Creation date: 09.08.2002 36 // Creation date: 09.08.2002 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 39 // 40 // 04-12-02 Fix problem of G4DynamicParticle c 40 // 04-12-02 Fix problem of G4DynamicParticle constructor (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 27-01-03 Make models region aware (V.Ivanch 42 // 27-01-03 Make models region aware (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 44 // 10-02-04 Calculation of radiative correctio 44 // 10-02-04 Calculation of radiative corrections using R.Kokoulin model (V.I) 45 // 08-04-05 Major optimisation of internal int 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 12-04-05 Add usage of G4EmCorrections (V.Iv 46 // 12-04-05 Add usage of G4EmCorrections (V.Ivanchenko) 47 // 13-02-06 ComputeCrossSectionPerElectron, Co 47 // 13-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 48 // 48 // 49 49 50 // 50 // 51 // ------------------------------------------- 51 // ------------------------------------------------------------------- 52 // 52 // 53 53 54 //....oooOO0OOooo........oooOO0OOooo........oo 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 56 57 #include "G4MuBetheBlochModel.hh" 57 #include "G4MuBetheBlochModel.hh" 58 #include "G4PhysicalConstants.hh" 58 #include "G4PhysicalConstants.hh" 59 #include "G4SystemOfUnits.hh" 59 #include "G4SystemOfUnits.hh" 60 #include "Randomize.hh" 60 #include "Randomize.hh" 61 #include "G4Electron.hh" 61 #include "G4Electron.hh" 62 #include "G4LossTableManager.hh" 62 #include "G4LossTableManager.hh" 63 #include "G4EmCorrections.hh" 63 #include "G4EmCorrections.hh" 64 #include "G4ParticleChangeForLoss.hh" 64 #include "G4ParticleChangeForLoss.hh" 65 #include "G4Log.hh" 65 #include "G4Log.hh" 66 #include "G4Exp.hh" 66 #include "G4Exp.hh" 67 #include "G4DeltaAngle.hh" << 68 67 69 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 68 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083, 0.5917, 70 0.7628, 69 0.7628, 0.8983, 0.9801 }; 71 70 72 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 71 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813, 0.1813, 73 0.1569, 72 0.1569, 0.1112, 0.0506 }; 74 73 75 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 75 >> 76 using namespace std; >> 77 77 G4MuBetheBlochModel::G4MuBetheBlochModel(const 78 G4MuBetheBlochModel::G4MuBetheBlochModel(const G4ParticleDefinition* p, 78 const 79 const G4String& nam) 79 : G4VEmModel(nam), 80 : G4VEmModel(nam), 80 limitRadCorrection(250.*CLHEP::MeV), << 81 limitKinEnergy(100.*CLHEP::keV), 81 limitKinEnergy(100.*CLHEP::keV), 82 logLimitKinEnergy(G4Log(limitKinEnergy)), 82 logLimitKinEnergy(G4Log(limitKinEnergy)), 83 twoln10(2.0*G4Log(10.0)), 83 twoln10(2.0*G4Log(10.0)), 84 alphaprime(CLHEP::fine_structure_const/CLH 84 alphaprime(CLHEP::fine_structure_const/CLHEP::twopi) 85 { 85 { 86 theElectron = G4Electron::Electron(); 86 theElectron = G4Electron::Electron(); 87 corr = G4LossTableManager::Instance()->EmCor 87 corr = G4LossTableManager::Instance()->EmCorrections(); 88 if(nullptr != p) { SetParticle(p); } 88 if(nullptr != p) { SetParticle(p); } 89 } 89 } 90 90 91 //....oooOO0OOooo........oooOO0OOooo........oo 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 92 93 G4double G4MuBetheBlochModel::MinEnergyCut(con 93 G4double G4MuBetheBlochModel::MinEnergyCut(const G4ParticleDefinition*, 94 con 94 const G4MaterialCutsCouple* couple) 95 { 95 { 96 return couple->GetMaterial()->GetIonisation( 96 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); 97 } 97 } 98 98 99 //....oooOO0OOooo........oooOO0OOooo........oo 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 100 100 101 G4double G4MuBetheBlochModel::MaxSecondaryEner 101 G4double G4MuBetheBlochModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 102 102 G4double kinEnergy) 103 { 103 { 104 G4double tau = kinEnergy/mass; 104 G4double tau = kinEnergy/mass; 105 G4double tmax = 2.0*CLHEP::electron_mass_c2* << 105 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / 106 (1. + 2.0*(tau + 1.)*ratio + 106 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); 107 return tmax; 107 return tmax; 108 } 108 } 109 109 110 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 111 112 void G4MuBetheBlochModel::SetParticle(const G4 << 113 { << 114 if(nullptr == particle) { << 115 particle = p; << 116 mass = particle->GetPDGMass(); << 117 massSquare = mass*mass; << 118 ratio = CLHEP::electron_mass_c2/mass; << 119 } << 120 } << 121 << 122 //....oooOO0OOooo........oooOO0OOooo........oo << 123 << 124 void G4MuBetheBlochModel::Initialise(const G4P 112 void G4MuBetheBlochModel::Initialise(const G4ParticleDefinition* p, 125 const G4D 113 const G4DataVector&) 126 { 114 { 127 SetParticle(p); 115 SetParticle(p); 128 if(nullptr == fParticleChange) { 116 if(nullptr == fParticleChange) { 129 fParticleChange = GetParticleChangeForLoss 117 fParticleChange = GetParticleChangeForLoss(); 130 if(UseAngularGeneratorFlag() && nullptr == << 131 SetAngularDistribution(new G4DeltaAngle( << 132 } << 133 } 118 } 134 } 119 } 135 120 136 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 137 122 138 G4double G4MuBetheBlochModel::ComputeCrossSect 123 G4double G4MuBetheBlochModel::ComputeCrossSectionPerElectron( 139 con 124 const G4ParticleDefinition* p, 140 125 G4double kineticEnergy, 141 126 G4double cutEnergy, 142 127 G4double maxKinEnergy) 143 { 128 { 144 G4double cross = 0.0; 129 G4double cross = 0.0; 145 G4double tmax = MaxSecondaryEnergy(p, kineti 130 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 146 G4double maxEnergy = std::min(tmax, maxKinEn << 131 G4double maxEnergy = std::min(tmax,maxKinEnergy); 147 if(cutEnergy < maxEnergy) { 132 if(cutEnergy < maxEnergy) { 148 133 149 G4double totEnergy = kineticEnergy + mass; 134 G4double totEnergy = kineticEnergy + mass; 150 G4double energy2 = totEnergy*totEnergy; << 135 G4double energy2 = totEnergy*totEnergy; 151 G4double beta2 = kineticEnergy*(kineticEne << 136 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 152 137 153 cross = 1.0/cutEnergy - 1.0/maxEnergy - << 138 cross = 1.0/cutEnergy - 1.0/maxEnergy - beta2*G4Log(maxEnergy/cutEnergy)/tmax 154 beta2*G4Log(maxEnergy/cutEnergy)/tmax + << 139 + 0.5*(maxEnergy - cutEnergy)/energy2; 155 0.5*(maxEnergy - cutEnergy)/energy2; << 156 140 157 // radiative corrections of R. Kokoulin 141 // radiative corrections of R. Kokoulin 158 if (maxEnergy > limitKinEnergy && kineticE << 142 if (maxEnergy > limitKinEnergy) { 159 143 160 G4double logtmax = G4Log(maxEnergy); 144 G4double logtmax = G4Log(maxEnergy); 161 G4double logtmin = G4Log(std::max(cutEne << 145 G4double logtmin = G4Log(max(cutEnergy,limitKinEnergy)); 162 G4double logstep = logtmax - logtmin; 146 G4double logstep = logtmax - logtmin; 163 G4double dcross = 0.0; 147 G4double dcross = 0.0; 164 148 165 for (G4int ll=0; ll<8; ++ll) { << 149 for (G4int ll=0; ll<8; ++ll) >> 150 { 166 G4double ep = G4Exp(logtmin + xgi[ll]* 151 G4double ep = G4Exp(logtmin + xgi[ll]*logstep); 167 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP << 152 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 168 G4double a3 = G4Log(4.0*totEnergy*(tot 153 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 169 dcross += wgi[ll]*(1.0/ep - beta2/tmax 154 dcross += wgi[ll]*(1.0/ep - beta2/tmax + 0.5*ep/energy2)*a1*(a3 - a1); 170 } 155 } >> 156 171 cross += dcross*logstep*alphaprime; 157 cross += dcross*logstep*alphaprime; 172 } 158 } 173 cross *= CLHEP::twopi_mc2_rcl2/beta2; << 159 >> 160 cross *= twopi_mc2_rcl2/beta2; 174 } 161 } 175 // G4cout << "tmin= " << cutEnergy << " tma 162 // G4cout << "tmin= " << cutEnergy << " tmax= " << tmax 176 // << " cross= " << cross << G4endl; << 163 // << " cross= " << cross << G4endl; >> 164 177 return cross; 165 return cross; 178 } 166 } 179 167 180 //....oooOO0OOooo........oooOO0OOooo........oo 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 169 182 G4double G4MuBetheBlochModel::ComputeCrossSect 170 G4double G4MuBetheBlochModel::ComputeCrossSectionPerAtom( 183 con 171 const G4ParticleDefinition* p, 184 172 G4double kineticEnergy, 185 173 G4double Z, G4double, 186 174 G4double cutEnergy, 187 175 G4double maxEnergy) 188 { 176 { 189 G4double cross = Z*ComputeCrossSectionPerEle 177 G4double cross = Z*ComputeCrossSectionPerElectron 190 (p,ki 178 (p,kineticEnergy,cutEnergy,maxEnergy); 191 return cross; 179 return cross; 192 } 180 } 193 181 194 //....oooOO0OOooo........oooOO0OOooo........oo 182 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 195 183 196 G4double G4MuBetheBlochModel::CrossSectionPerV 184 G4double G4MuBetheBlochModel::CrossSectionPerVolume( 197 con 185 const G4Material* material, 198 con 186 const G4ParticleDefinition* p, 199 187 G4double kineticEnergy, 200 188 G4double cutEnergy, 201 189 G4double maxEnergy) 202 { 190 { 203 G4double eDensity = material->GetElectronDen 191 G4double eDensity = material->GetElectronDensity(); 204 G4double cross = eDensity*ComputeCrossSectio 192 G4double cross = eDensity*ComputeCrossSectionPerElectron 205 (p,ki 193 (p,kineticEnergy,cutEnergy,maxEnergy); 206 return cross; 194 return cross; 207 } 195 } 208 196 209 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 198 211 G4double G4MuBetheBlochModel::ComputeDEDXPerVo 199 G4double G4MuBetheBlochModel::ComputeDEDXPerVolume(const G4Material* material, 212 200 const G4ParticleDefinition* p, 213 201 G4double kineticEnergy, 214 202 G4double cut) 215 { 203 { 216 G4double tmax = MaxSecondaryEnergy(p, kinet 204 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 217 G4double tau = kineticEnergy/mass; 205 G4double tau = kineticEnergy/mass; 218 G4double cutEnergy = std::min(cut, tmax); << 206 G4double cutEnergy = std::min(cut,tmax); 219 G4double gam = tau + 1.0; 207 G4double gam = tau + 1.0; 220 G4double bg2 = tau * (tau+2.0); 208 G4double bg2 = tau * (tau+2.0); 221 G4double beta2 = bg2/(gam*gam); 209 G4double beta2 = bg2/(gam*gam); 222 210 223 G4double eexc = material->GetIonisation()-> 211 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 224 G4double eexc2 = eexc*eexc; 212 G4double eexc2 = eexc*eexc; 225 213 226 G4double eDensity = material->GetElectronDen 214 G4double eDensity = material->GetElectronDensity(); 227 215 228 G4double dedx = G4Log(2.0*CLHEP::electron_ma << 216 G4double dedx = G4Log(2.0*electron_mass_c2*bg2*cutEnergy/eexc2) 229 -(1.0 + cutEnergy/tmax)*beta2 217 -(1.0 + cutEnergy/tmax)*beta2; 230 218 231 G4double totEnergy = kineticEnergy + mass; 219 G4double totEnergy = kineticEnergy + mass; 232 G4double del = 0.5*cutEnergy/totEnergy; 220 G4double del = 0.5*cutEnergy/totEnergy; 233 dedx += del*del; 221 dedx += del*del; 234 222 235 // density correction 223 // density correction 236 G4double x = G4Log(bg2)/twoln10; 224 G4double x = G4Log(bg2)/twoln10; 237 dedx -= material->GetIonisation()->DensityCo 225 dedx -= material->GetIonisation()->DensityCorrection(x); 238 226 239 // shell and high order corrections << 227 // shell correction 240 dedx -= 2.0*corr->ShellCorrection(p,material 228 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy); >> 229 dedx = std::max(dedx, 0.0); 241 230 242 // radiative corrections of R. Kokoulin 231 // radiative corrections of R. Kokoulin 243 if (cutEnergy > limitKinEnergy && kineticEne << 232 if (cutEnergy > limitKinEnergy) { 244 233 245 G4double logtmax = G4Log(cutEnergy); 234 G4double logtmax = G4Log(cutEnergy); 246 G4double logstep = logtmax - logLimitKinEn 235 G4double logstep = logtmax - logLimitKinEnergy; 247 G4double dloss = 0.0; 236 G4double dloss = 0.0; 248 G4double ftot2= 0.5/(totEnergy*totEnergy); 237 G4double ftot2= 0.5/(totEnergy*totEnergy); 249 238 250 for (G4int ll=0; ll<8; ++ll) { << 239 for (G4int ll=0; ll<8; ll++) >> 240 { 251 G4double ep = G4Exp(logLimitKinEnergy + 241 G4double ep = G4Exp(logLimitKinEnergy + xgi[ll]*logstep); 252 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP:: << 242 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 253 G4double a3 = G4Log(4.0*totEnergy*(totEn 243 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 254 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + 244 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + ep*ep*ftot2)*a1*(a3 - a1); 255 } 245 } 256 dedx += dloss*logstep*alphaprime; 246 dedx += dloss*logstep*alphaprime; 257 } 247 } >> 248 258 dedx *= CLHEP::twopi_mc2_rcl2*eDensity/beta2 249 dedx *= CLHEP::twopi_mc2_rcl2*eDensity/beta2; 259 250 260 //High order corrections 251 //High order corrections 261 dedx += corr->HighOrderCorrections(p,materia 252 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy); 262 dedx = std::max(dedx, 0.); << 253 263 return dedx; 254 return dedx; 264 } 255 } 265 256 266 //....oooOO0OOooo........oooOO0OOooo........oo 257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 258 268 void G4MuBetheBlochModel::SampleSecondaries( << 259 void G4MuBetheBlochModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp, 269 std::vector<G4Dynami << 260 const G4MaterialCutsCouple*, 270 const G4MaterialCutsCouple* couple, << 261 const G4DynamicParticle* dp, 271 const G4DynamicParticle* dp, << 262 G4double minKinEnergy, 272 G4double minKinEnergy, << 263 G4double maxEnergy) 273 G4double maxEnergy) << 274 { 264 { 275 G4double kineticEnergy = dp->GetKineticEnerg << 265 G4double tmax = MaxSecondaryKinEnergy(dp); 276 G4double tmax = MaxSecondaryEnergy(dp->GetDe << 266 G4double maxKinEnergy = min(maxEnergy,tmax); 277 G4double maxKinEnergy = std::min(maxEnergy, << 278 if(minKinEnergy >= maxKinEnergy) { return; } 267 if(minKinEnergy >= maxKinEnergy) { return; } 279 268 280 G4double totEnergy = kineticEnergy + mass; << 269 G4double kineticEnergy = dp->GetKineticEnergy(); 281 G4double etot2 = totEnergy*totEnergy; << 270 G4double totEnergy = kineticEnergy + mass; 282 G4double beta2 = kineticEnergy*(kineticEnerg << 271 G4double etot2 = totEnergy*totEnergy; >> 272 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2; 283 273 284 G4double grej = 1.; 274 G4double grej = 1.; 285 G4bool radC = (tmax > limitKinEnergy && kine << 275 if(tmax > limitKinEnergy) { 286 if(radC) { << 276 G4double a0 = G4Log(2.*totEnergy/mass); 287 G4double a0 = G4Log(2.*totEnergy/mass); << 277 grej += alphaprime*a0*a0; 288 grej += alphaprime*a0*a0; << 289 } 278 } 290 279 291 G4double tkin, f; << 280 G4double deltaKinEnergy, f; 292 281 293 // sampling follows ... 282 // sampling follows ... 294 do { 283 do { 295 G4double q = G4UniformRand(); 284 G4double q = G4UniformRand(); 296 tkin = minKinEnergy*maxKinEnergy/(minKinEn << 285 deltaKinEnergy = minKinEnergy*maxKinEnergy 297 f = 1.0 - beta2*tkin/tmax + 0.5*tkin*tkin/ << 286 /(minKinEnergy*(1.0 - q) + maxKinEnergy*q); 298 287 299 if(radC && tkin > limitKinEnergy) { << 288 f = 1.0 - beta2*deltaKinEnergy/tmax 300 G4double a1 = G4Log(1.0 + 2.0*tkin/CLHEP << 289 + 0.5*deltaKinEnergy*deltaKinEnergy/etot2; 301 G4double a3 = G4Log(4.0*totEnergy*(totEn << 290 >> 291 if(deltaKinEnergy > limitKinEnergy) { >> 292 G4double a1 = G4Log(1.0 + 2.0*deltaKinEnergy/electron_mass_c2); >> 293 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - deltaKinEnergy)/massSquare); 302 f *= (1. + alphaprime*a1*(a3 - a1)); 294 f *= (1. + alphaprime*a1*(a3 - a1)); 303 } 295 } 304 296 305 if(f > grej) { 297 if(f > grej) { 306 G4cout << "G4MuBetheBlochModel::Sample 298 G4cout << "G4MuBetheBlochModel::SampleSecondary Warning! " 307 << "Majorant " << grej << " < " 299 << "Majorant " << grej << " < " 308 << f << " for edelta= " << tkin << 300 << f << " for edelta= " << deltaKinEnergy 309 << " tmin= " << minKinEnergy << 301 << " tmin= " << minKinEnergy << " max= " << maxKinEnergy 310 << G4endl; 302 << G4endl; 311 } 303 } 312 // Loop checking, 03-Aug-2015, Vladimir Iv 304 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 313 } while( grej*G4UniformRand() > f ); 305 } while( grej*G4UniformRand() > f ); 314 306 315 G4ThreeVector deltaDirection; << 307 G4double deltaMomentum = >> 308 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); >> 309 G4double totalMomentum = totEnergy*sqrt(beta2); >> 310 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / >> 311 (deltaMomentum * totalMomentum); >> 312 >> 313 G4double sint = std::sqrt(1.0 - cost*cost); >> 314 >> 315 G4double phi = CLHEP::twopi * G4UniformRand() ; >> 316 >> 317 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ; >> 318 G4ThreeVector direction = dp->GetMomentumDirection(); >> 319 deltaDirection.rotateUz(direction); 316 320 317 if(UseAngularGeneratorFlag()) { << 321 // primary change 318 const G4Material* mat = couple->GetMateria << 322 kineticEnergy -= deltaKinEnergy; 319 deltaDirection = GetAngularDistribution()- << 323 G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection; 320 SelectRandomAtomNumber(ma << 324 direction = dir.unit(); 321 } else { << 325 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 322 << 326 fParticleChange->SetProposedMomentumDirection(direction); 323 G4double deltaMom = std::sqrt(tkin * (tkin << 324 G4double totalMom = totEnergy*std::sqrt(be << 325 G4double cost = tkin * (totEnergy + CLHEP: << 326 (deltaMom * totalMom); << 327 cost = std::min(cost, 1.0); << 328 const G4double sint = std::sqrt((1.0 - cos << 329 const G4double phi = twopi*G4UniformRand() << 330 327 331 deltaDirection.set(sint*std::cos(phi),sint << 332 deltaDirection.rotateUz(dp->GetMomentumDir << 333 } << 334 // create G4DynamicParticle object for delta 328 // create G4DynamicParticle object for delta ray 335 auto delta = new G4DynamicParticle(theElectr << 329 G4DynamicParticle* delta = new G4DynamicParticle(theElectron, >> 330 deltaDirection,deltaKinEnergy); 336 vdp->push_back(delta); 331 vdp->push_back(delta); 337 << 338 // primary change << 339 kineticEnergy -= tkin; << 340 G4ThreeVector dir = dp->GetMomentum() - delt << 341 dir = dir.unit(); << 342 fParticleChange->SetProposedKineticEnergy(ki << 343 fParticleChange->SetProposedMomentumDirectio << 344 } 332 } 345 333 346 //....oooOO0OOooo........oooOO0OOooo........oo 334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 347 335