Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class header file 29 // GEANT4 Class header file 30 // 30 // 31 // 31 // 32 // File name: G4MuBetheBlochModel 32 // File name: G4MuBetheBlochModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 35 // 36 // Creation date: 09.08.2002 36 // Creation date: 09.08.2002 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 39 // 40 // 04-12-02 Fix problem of G4DynamicParticle c 40 // 04-12-02 Fix problem of G4DynamicParticle constructor (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 41 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 27-01-03 Make models region aware (V.Ivanch 42 // 27-01-03 Make models region aware (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 44 // 10-02-04 Calculation of radiative correctio 44 // 10-02-04 Calculation of radiative corrections using R.Kokoulin model (V.I) 45 // 08-04-05 Major optimisation of internal int 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 12-04-05 Add usage of G4EmCorrections (V.Iv 46 // 12-04-05 Add usage of G4EmCorrections (V.Ivanchenko) 47 // 13-02-06 ComputeCrossSectionPerElectron, Co 47 // 13-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 48 // 48 // 49 49 50 // 50 // 51 // ------------------------------------------- 51 // ------------------------------------------------------------------- 52 // 52 // 53 53 54 //....oooOO0OOooo........oooOO0OOooo........oo 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 56 57 #include "G4MuBetheBlochModel.hh" 57 #include "G4MuBetheBlochModel.hh" 58 #include "G4PhysicalConstants.hh" 58 #include "G4PhysicalConstants.hh" 59 #include "G4SystemOfUnits.hh" 59 #include "G4SystemOfUnits.hh" 60 #include "Randomize.hh" 60 #include "Randomize.hh" 61 #include "G4Electron.hh" 61 #include "G4Electron.hh" 62 #include "G4LossTableManager.hh" 62 #include "G4LossTableManager.hh" 63 #include "G4EmCorrections.hh" 63 #include "G4EmCorrections.hh" 64 #include "G4ParticleChangeForLoss.hh" 64 #include "G4ParticleChangeForLoss.hh" 65 #include "G4Log.hh" 65 #include "G4Log.hh" 66 #include "G4Exp.hh" 66 #include "G4Exp.hh" 67 #include "G4DeltaAngle.hh" << 68 67 69 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 68 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083, 0.5917, 70 0.7628, 69 0.7628, 0.8983, 0.9801 }; 71 70 72 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 71 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813, 0.1813, 73 0.1569, 72 0.1569, 0.1112, 0.0506 }; 74 73 75 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 75 >> 76 using namespace std; >> 77 77 G4MuBetheBlochModel::G4MuBetheBlochModel(const 78 G4MuBetheBlochModel::G4MuBetheBlochModel(const G4ParticleDefinition* p, 78 const 79 const G4String& nam) 79 : G4VEmModel(nam), 80 : G4VEmModel(nam), 80 limitRadCorrection(250.*CLHEP::MeV), << 81 particle(nullptr), 81 limitKinEnergy(100.*CLHEP::keV), << 82 limitKinEnergy(100.*keV), 82 logLimitKinEnergy(G4Log(limitKinEnergy)), << 83 logLimitKinEnergy(G4Log(limitKinEnergy)), 83 twoln10(2.0*G4Log(10.0)), << 84 twoln10(2.0*G4Log(10.0)), 84 alphaprime(CLHEP::fine_structure_const/CLH << 85 //bg2lim(0.0169), >> 86 //taulim(8.4146e-3), >> 87 alphaprime(fine_structure_const/twopi) 85 { 88 { 86 theElectron = G4Electron::Electron(); 89 theElectron = G4Electron::Electron(); 87 corr = G4LossTableManager::Instance()->EmCor 90 corr = G4LossTableManager::Instance()->EmCorrections(); 88 if(nullptr != p) { SetParticle(p); } << 91 fParticleChange = nullptr; >> 92 >> 93 // initial initialisation of memeber should be overwritten >> 94 // by SetParticle >> 95 mass = massSquare = ratio = 1.0; >> 96 >> 97 if(p) { SetParticle(p); } 89 } 98 } 90 99 91 //....oooOO0OOooo........oooOO0OOooo........oo 100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 101 93 G4double G4MuBetheBlochModel::MinEnergyCut(con 102 G4double G4MuBetheBlochModel::MinEnergyCut(const G4ParticleDefinition*, 94 con 103 const G4MaterialCutsCouple* couple) 95 { 104 { 96 return couple->GetMaterial()->GetIonisation( 105 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); 97 } 106 } 98 107 99 //....oooOO0OOooo........oooOO0OOooo........oo 108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 100 109 101 G4double G4MuBetheBlochModel::MaxSecondaryEner 110 G4double G4MuBetheBlochModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 102 111 G4double kinEnergy) 103 { 112 { 104 G4double tau = kinEnergy/mass; 113 G4double tau = kinEnergy/mass; 105 G4double tmax = 2.0*CLHEP::electron_mass_c2* << 114 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / 106 (1. + 2.0*(tau + 1.)*ratio + 115 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); 107 return tmax; 116 return tmax; 108 } 117 } 109 118 110 //....oooOO0OOooo........oooOO0OOooo........oo 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 120 112 void G4MuBetheBlochModel::SetParticle(const G4 << 113 { << 114 if(nullptr == particle) { << 115 particle = p; << 116 mass = particle->GetPDGMass(); << 117 massSquare = mass*mass; << 118 ratio = CLHEP::electron_mass_c2/mass; << 119 } << 120 } << 121 << 122 //....oooOO0OOooo........oooOO0OOooo........oo << 123 << 124 void G4MuBetheBlochModel::Initialise(const G4P 121 void G4MuBetheBlochModel::Initialise(const G4ParticleDefinition* p, 125 const G4D 122 const G4DataVector&) 126 { 123 { 127 SetParticle(p); << 124 if(p) { SetParticle(p); } 128 if(nullptr == fParticleChange) { << 125 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } 129 fParticleChange = GetParticleChangeForLoss << 130 if(UseAngularGeneratorFlag() && nullptr == << 131 SetAngularDistribution(new G4DeltaAngle( << 132 } << 133 } << 134 } 126 } 135 127 136 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 137 129 138 G4double G4MuBetheBlochModel::ComputeCrossSect 130 G4double G4MuBetheBlochModel::ComputeCrossSectionPerElectron( 139 con 131 const G4ParticleDefinition* p, 140 132 G4double kineticEnergy, 141 133 G4double cutEnergy, 142 134 G4double maxKinEnergy) 143 { 135 { 144 G4double cross = 0.0; 136 G4double cross = 0.0; 145 G4double tmax = MaxSecondaryEnergy(p, kineti 137 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 146 G4double maxEnergy = std::min(tmax, maxKinEn << 138 G4double maxEnergy = min(tmax,maxKinEnergy); 147 if(cutEnergy < maxEnergy) { 139 if(cutEnergy < maxEnergy) { 148 140 149 G4double totEnergy = kineticEnergy + mass; 141 G4double totEnergy = kineticEnergy + mass; 150 G4double energy2 = totEnergy*totEnergy; << 142 G4double energy2 = totEnergy*totEnergy; 151 G4double beta2 = kineticEnergy*(kineticEne << 143 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 152 144 153 cross = 1.0/cutEnergy - 1.0/maxEnergy - << 145 cross = 1.0/cutEnergy - 1.0/maxEnergy - beta2*G4Log(maxEnergy/cutEnergy)/tmax 154 beta2*G4Log(maxEnergy/cutEnergy)/tmax + << 146 + 0.5*(maxEnergy - cutEnergy)/energy2; 155 0.5*(maxEnergy - cutEnergy)/energy2; << 156 147 157 // radiative corrections of R. Kokoulin 148 // radiative corrections of R. Kokoulin 158 if (maxEnergy > limitKinEnergy && kineticE << 149 if (maxEnergy > limitKinEnergy) { 159 150 160 G4double logtmax = G4Log(maxEnergy); 151 G4double logtmax = G4Log(maxEnergy); 161 G4double logtmin = G4Log(std::max(cutEne << 152 G4double logtmin = G4Log(max(cutEnergy,limitKinEnergy)); 162 G4double logstep = logtmax - logtmin; 153 G4double logstep = logtmax - logtmin; 163 G4double dcross = 0.0; 154 G4double dcross = 0.0; 164 155 165 for (G4int ll=0; ll<8; ++ll) { << 156 for (G4int ll=0; ll<8; ll++) >> 157 { 166 G4double ep = G4Exp(logtmin + xgi[ll]* 158 G4double ep = G4Exp(logtmin + xgi[ll]*logstep); 167 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP << 159 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 168 G4double a3 = G4Log(4.0*totEnergy*(tot 160 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 169 dcross += wgi[ll]*(1.0/ep - beta2/tmax 161 dcross += wgi[ll]*(1.0/ep - beta2/tmax + 0.5*ep/energy2)*a1*(a3 - a1); 170 } 162 } >> 163 171 cross += dcross*logstep*alphaprime; 164 cross += dcross*logstep*alphaprime; 172 } 165 } 173 cross *= CLHEP::twopi_mc2_rcl2/beta2; << 166 >> 167 cross *= twopi_mc2_rcl2/beta2; >> 168 174 } 169 } >> 170 175 // G4cout << "tmin= " << cutEnergy << " tma 171 // G4cout << "tmin= " << cutEnergy << " tmax= " << tmax 176 // << " cross= " << cross << G4endl; << 172 // << " cross= " << cross << G4endl; >> 173 177 return cross; 174 return cross; 178 } 175 } 179 176 180 //....oooOO0OOooo........oooOO0OOooo........oo 177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 178 182 G4double G4MuBetheBlochModel::ComputeCrossSect 179 G4double G4MuBetheBlochModel::ComputeCrossSectionPerAtom( 183 con 180 const G4ParticleDefinition* p, 184 181 G4double kineticEnergy, 185 182 G4double Z, G4double, 186 183 G4double cutEnergy, 187 184 G4double maxEnergy) 188 { 185 { 189 G4double cross = Z*ComputeCrossSectionPerEle 186 G4double cross = Z*ComputeCrossSectionPerElectron 190 (p,ki 187 (p,kineticEnergy,cutEnergy,maxEnergy); 191 return cross; 188 return cross; 192 } 189 } 193 190 194 //....oooOO0OOooo........oooOO0OOooo........oo 191 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 195 192 196 G4double G4MuBetheBlochModel::CrossSectionPerV 193 G4double G4MuBetheBlochModel::CrossSectionPerVolume( 197 con 194 const G4Material* material, 198 con 195 const G4ParticleDefinition* p, 199 196 G4double kineticEnergy, 200 197 G4double cutEnergy, 201 198 G4double maxEnergy) 202 { 199 { 203 G4double eDensity = material->GetElectronDen 200 G4double eDensity = material->GetElectronDensity(); 204 G4double cross = eDensity*ComputeCrossSectio 201 G4double cross = eDensity*ComputeCrossSectionPerElectron 205 (p,ki 202 (p,kineticEnergy,cutEnergy,maxEnergy); 206 return cross; 203 return cross; 207 } 204 } 208 205 209 //....oooOO0OOooo........oooOO0OOooo........oo 206 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 207 211 G4double G4MuBetheBlochModel::ComputeDEDXPerVo 208 G4double G4MuBetheBlochModel::ComputeDEDXPerVolume(const G4Material* material, 212 209 const G4ParticleDefinition* p, 213 210 G4double kineticEnergy, 214 211 G4double cut) 215 { 212 { 216 G4double tmax = MaxSecondaryEnergy(p, kinet 213 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 217 G4double tau = kineticEnergy/mass; 214 G4double tau = kineticEnergy/mass; 218 G4double cutEnergy = std::min(cut, tmax); << 215 G4double cutEnergy = min(cut,tmax); 219 G4double gam = tau + 1.0; 216 G4double gam = tau + 1.0; 220 G4double bg2 = tau * (tau+2.0); 217 G4double bg2 = tau * (tau+2.0); 221 G4double beta2 = bg2/(gam*gam); 218 G4double beta2 = bg2/(gam*gam); 222 219 223 G4double eexc = material->GetIonisation()-> 220 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 224 G4double eexc2 = eexc*eexc; 221 G4double eexc2 = eexc*eexc; 225 222 226 G4double eDensity = material->GetElectronDen 223 G4double eDensity = material->GetElectronDensity(); 227 224 228 G4double dedx = G4Log(2.0*CLHEP::electron_ma << 225 G4double dedx = G4Log(2.0*electron_mass_c2*bg2*cutEnergy/eexc2) 229 -(1.0 + cutEnergy/tmax)*beta2 226 -(1.0 + cutEnergy/tmax)*beta2; 230 227 231 G4double totEnergy = kineticEnergy + mass; 228 G4double totEnergy = kineticEnergy + mass; 232 G4double del = 0.5*cutEnergy/totEnergy; 229 G4double del = 0.5*cutEnergy/totEnergy; 233 dedx += del*del; 230 dedx += del*del; 234 231 235 // density correction 232 // density correction 236 G4double x = G4Log(bg2)/twoln10; 233 G4double x = G4Log(bg2)/twoln10; 237 dedx -= material->GetIonisation()->DensityCo 234 dedx -= material->GetIonisation()->DensityCorrection(x); 238 235 239 // shell and high order corrections << 236 // shell correction 240 dedx -= 2.0*corr->ShellCorrection(p,material 237 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy); 241 238 >> 239 // now compute the total ionization loss >> 240 >> 241 if (dedx < 0.0) dedx = 0.0 ; >> 242 242 // radiative corrections of R. Kokoulin 243 // radiative corrections of R. Kokoulin 243 if (cutEnergy > limitKinEnergy && kineticEne << 244 if (cutEnergy > limitKinEnergy) { 244 245 245 G4double logtmax = G4Log(cutEnergy); 246 G4double logtmax = G4Log(cutEnergy); 246 G4double logstep = logtmax - logLimitKinEn 247 G4double logstep = logtmax - logLimitKinEnergy; 247 G4double dloss = 0.0; 248 G4double dloss = 0.0; 248 G4double ftot2= 0.5/(totEnergy*totEnergy); 249 G4double ftot2= 0.5/(totEnergy*totEnergy); 249 250 250 for (G4int ll=0; ll<8; ++ll) { << 251 for (G4int ll=0; ll<8; ll++) >> 252 { 251 G4double ep = G4Exp(logLimitKinEnergy + 253 G4double ep = G4Exp(logLimitKinEnergy + xgi[ll]*logstep); 252 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP:: << 254 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 253 G4double a3 = G4Log(4.0*totEnergy*(totEn 255 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 254 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + 256 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + ep*ep*ftot2)*a1*(a3 - a1); 255 } 257 } 256 dedx += dloss*logstep*alphaprime; 258 dedx += dloss*logstep*alphaprime; 257 } 259 } 258 dedx *= CLHEP::twopi_mc2_rcl2*eDensity/beta2 << 260 >> 261 dedx *= twopi_mc2_rcl2*eDensity/beta2; 259 262 260 //High order corrections 263 //High order corrections 261 dedx += corr->HighOrderCorrections(p,materia 264 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy); 262 dedx = std::max(dedx, 0.); << 265 263 return dedx; 266 return dedx; 264 } 267 } 265 268 266 //....oooOO0OOooo........oooOO0OOooo........oo 269 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 270 268 void G4MuBetheBlochModel::SampleSecondaries( << 271 void G4MuBetheBlochModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp, 269 std::vector<G4Dynami << 272 const G4MaterialCutsCouple*, 270 const G4MaterialCutsCouple* couple, << 273 const G4DynamicParticle* dp, 271 const G4DynamicParticle* dp, << 274 G4double minKinEnergy, 272 G4double minKinEnergy, << 275 G4double maxEnergy) 273 G4double maxEnergy) << 274 { 276 { 275 G4double kineticEnergy = dp->GetKineticEnerg << 277 G4double tmax = MaxSecondaryKinEnergy(dp); 276 G4double tmax = MaxSecondaryEnergy(dp->GetDe << 278 G4double maxKinEnergy = min(maxEnergy,tmax); 277 G4double maxKinEnergy = std::min(maxEnergy, << 278 if(minKinEnergy >= maxKinEnergy) { return; } 279 if(minKinEnergy >= maxKinEnergy) { return; } 279 280 280 G4double totEnergy = kineticEnergy + mass; << 281 G4double kineticEnergy = dp->GetKineticEnergy(); 281 G4double etot2 = totEnergy*totEnergy; << 282 G4double totEnergy = kineticEnergy + mass; 282 G4double beta2 = kineticEnergy*(kineticEnerg << 283 G4double etot2 = totEnergy*totEnergy; >> 284 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2; 283 285 284 G4double grej = 1.; 286 G4double grej = 1.; 285 G4bool radC = (tmax > limitKinEnergy && kine << 287 if(tmax > limitKinEnergy) { 286 if(radC) { << 288 G4double a0 = G4Log(2.*totEnergy/mass); 287 G4double a0 = G4Log(2.*totEnergy/mass); << 289 grej += alphaprime*a0*a0; 288 grej += alphaprime*a0*a0; << 289 } 290 } 290 291 291 G4double tkin, f; << 292 G4double deltaKinEnergy, f; 292 293 293 // sampling follows ... 294 // sampling follows ... 294 do { 295 do { 295 G4double q = G4UniformRand(); 296 G4double q = G4UniformRand(); 296 tkin = minKinEnergy*maxKinEnergy/(minKinEn << 297 deltaKinEnergy = minKinEnergy*maxKinEnergy 297 f = 1.0 - beta2*tkin/tmax + 0.5*tkin*tkin/ << 298 /(minKinEnergy*(1.0 - q) + maxKinEnergy*q); >> 299 >> 300 >> 301 f = 1.0 - beta2*deltaKinEnergy/tmax >> 302 + 0.5*deltaKinEnergy*deltaKinEnergy/etot2; 298 303 299 if(radC && tkin > limitKinEnergy) { << 304 if(deltaKinEnergy > limitKinEnergy) { 300 G4double a1 = G4Log(1.0 + 2.0*tkin/CLHEP << 305 G4double a1 = G4Log(1.0 + 2.0*deltaKinEnergy/electron_mass_c2); 301 G4double a3 = G4Log(4.0*totEnergy*(totEn << 306 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - deltaKinEnergy)/massSquare); 302 f *= (1. + alphaprime*a1*(a3 - a1)); 307 f *= (1. + alphaprime*a1*(a3 - a1)); 303 } 308 } 304 309 305 if(f > grej) { 310 if(f > grej) { 306 G4cout << "G4MuBetheBlochModel::Sample 311 G4cout << "G4MuBetheBlochModel::SampleSecondary Warning! " 307 << "Majorant " << grej << " < " 312 << "Majorant " << grej << " < " 308 << f << " for edelta= " << tkin << 313 << f << " for edelta= " << deltaKinEnergy 309 << " tmin= " << minKinEnergy << 314 << " tmin= " << minKinEnergy << " max= " << maxKinEnergy 310 << G4endl; 315 << G4endl; 311 } 316 } 312 // Loop checking, 03-Aug-2015, Vladimir Iv 317 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 313 } while( grej*G4UniformRand() > f ); 318 } while( grej*G4UniformRand() > f ); 314 319 315 G4ThreeVector deltaDirection; << 320 G4double deltaMomentum = >> 321 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); >> 322 G4double totalMomentum = totEnergy*sqrt(beta2); >> 323 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / >> 324 (deltaMomentum * totalMomentum); >> 325 >> 326 G4double sint = sqrt(1.0 - cost*cost); >> 327 >> 328 G4double phi = twopi * G4UniformRand() ; >> 329 >> 330 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ; >> 331 G4ThreeVector direction = dp->GetMomentumDirection(); >> 332 deltaDirection.rotateUz(direction); 316 333 317 if(UseAngularGeneratorFlag()) { << 334 // primary change 318 const G4Material* mat = couple->GetMateria << 335 kineticEnergy -= deltaKinEnergy; 319 deltaDirection = GetAngularDistribution()- << 336 G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection; 320 SelectRandomAtomNumber(ma << 337 direction = dir.unit(); 321 } else { << 338 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 322 << 339 fParticleChange->SetProposedMomentumDirection(direction); 323 G4double deltaMom = std::sqrt(tkin * (tkin << 324 G4double totalMom = totEnergy*std::sqrt(be << 325 G4double cost = tkin * (totEnergy + CLHEP: << 326 (deltaMom * totalMom); << 327 cost = std::min(cost, 1.0); << 328 const G4double sint = std::sqrt((1.0 - cos << 329 const G4double phi = twopi*G4UniformRand() << 330 340 331 deltaDirection.set(sint*std::cos(phi),sint << 332 deltaDirection.rotateUz(dp->GetMomentumDir << 333 } << 334 // create G4DynamicParticle object for delta 341 // create G4DynamicParticle object for delta ray 335 auto delta = new G4DynamicParticle(theElectr << 342 G4DynamicParticle* delta = new G4DynamicParticle(theElectron, >> 343 deltaDirection,deltaKinEnergy); 336 vdp->push_back(delta); 344 vdp->push_back(delta); 337 << 338 // primary change << 339 kineticEnergy -= tkin; << 340 G4ThreeVector dir = dp->GetMomentum() - delt << 341 dir = dir.unit(); << 342 fParticleChange->SetProposedKineticEnergy(ki << 343 fParticleChange->SetProposedMomentumDirectio << 344 } 345 } 345 346 346 //....oooOO0OOooo........oooOO0OOooo........oo 347 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 347 348