Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MuBetheBlochModel.cc 85023 2014-10-23 09:56:39Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class header file 30 // GEANT4 Class header file 30 // 31 // 31 // 32 // 32 // File name: G4MuBetheBlochModel 33 // File name: G4MuBetheBlochModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 09.08.2002 37 // Creation date: 09.08.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 04-12-02 Fix problem of G4DynamicParticle c 41 // 04-12-02 Fix problem of G4DynamicParticle constructor (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 42 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 27-01-03 Make models region aware (V.Ivanch 43 // 27-01-03 Make models region aware (V.Ivanchenko) 43 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 44 // 10-02-04 Calculation of radiative correctio 45 // 10-02-04 Calculation of radiative corrections using R.Kokoulin model (V.I) 45 // 08-04-05 Major optimisation of internal int 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 12-04-05 Add usage of G4EmCorrections (V.Iv 47 // 12-04-05 Add usage of G4EmCorrections (V.Ivanchenko) 47 // 13-02-06 ComputeCrossSectionPerElectron, Co 48 // 13-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 48 // 49 // 49 50 50 // 51 // 51 // ------------------------------------------- 52 // ------------------------------------------------------------------- 52 // 53 // 53 54 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 57 57 #include "G4MuBetheBlochModel.hh" 58 #include "G4MuBetheBlochModel.hh" 58 #include "G4PhysicalConstants.hh" 59 #include "G4PhysicalConstants.hh" 59 #include "G4SystemOfUnits.hh" 60 #include "G4SystemOfUnits.hh" 60 #include "Randomize.hh" 61 #include "Randomize.hh" 61 #include "G4Electron.hh" 62 #include "G4Electron.hh" 62 #include "G4LossTableManager.hh" 63 #include "G4LossTableManager.hh" 63 #include "G4EmCorrections.hh" 64 #include "G4EmCorrections.hh" 64 #include "G4ParticleChangeForLoss.hh" 65 #include "G4ParticleChangeForLoss.hh" 65 #include "G4Log.hh" 66 #include "G4Log.hh" 66 #include "G4Exp.hh" 67 #include "G4Exp.hh" 67 #include "G4DeltaAngle.hh" << 68 68 69 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 69 G4double G4MuBetheBlochModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083, 0.5917, 70 0.7628, 70 0.7628, 0.8983, 0.9801 }; 71 << 71 72 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 72 G4double G4MuBetheBlochModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813, 0.1813, 73 0.1569, 73 0.1569, 0.1112, 0.0506 }; 74 74 75 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 76 >> 77 using namespace std; >> 78 77 G4MuBetheBlochModel::G4MuBetheBlochModel(const 79 G4MuBetheBlochModel::G4MuBetheBlochModel(const G4ParticleDefinition* p, 78 const 80 const G4String& nam) 79 : G4VEmModel(nam), 81 : G4VEmModel(nam), 80 limitRadCorrection(250.*CLHEP::MeV), << 82 particle(0), 81 limitKinEnergy(100.*CLHEP::keV), << 83 limitKinEnergy(100.*keV), 82 logLimitKinEnergy(G4Log(limitKinEnergy)), << 84 logLimitKinEnergy(G4Log(limitKinEnergy)), 83 twoln10(2.0*G4Log(10.0)), << 85 twoln10(2.0*G4Log(10.0)), 84 alphaprime(CLHEP::fine_structure_const/CLH << 86 bg2lim(0.0169), >> 87 taulim(8.4146e-3), >> 88 alphaprime(fine_structure_const/twopi) 85 { 89 { 86 theElectron = G4Electron::Electron(); 90 theElectron = G4Electron::Electron(); 87 corr = G4LossTableManager::Instance()->EmCor 91 corr = G4LossTableManager::Instance()->EmCorrections(); 88 if(nullptr != p) { SetParticle(p); } << 92 fParticleChange = 0; >> 93 >> 94 // initial initialisation of memeber should be overwritten >> 95 // by SetParticle >> 96 mass = massSquare = ratio = 1.0; >> 97 >> 98 if(p) { SetParticle(p); } 89 } 99 } 90 100 91 //....oooOO0OOooo........oooOO0OOooo........oo 101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 102 >> 103 G4MuBetheBlochModel::~G4MuBetheBlochModel() >> 104 {} >> 105 >> 106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 107 93 G4double G4MuBetheBlochModel::MinEnergyCut(con 108 G4double G4MuBetheBlochModel::MinEnergyCut(const G4ParticleDefinition*, 94 con 109 const G4MaterialCutsCouple* couple) 95 { 110 { 96 return couple->GetMaterial()->GetIonisation( 111 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); 97 } 112 } 98 113 99 //....oooOO0OOooo........oooOO0OOooo........oo 114 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 100 115 101 G4double G4MuBetheBlochModel::MaxSecondaryEner 116 G4double G4MuBetheBlochModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 102 << 117 G4double kinEnergy) 103 { 118 { 104 G4double tau = kinEnergy/mass; 119 G4double tau = kinEnergy/mass; 105 G4double tmax = 2.0*CLHEP::electron_mass_c2* << 120 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / 106 (1. + 2.0*(tau + 1.)*ratio + 121 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); 107 return tmax; 122 return tmax; 108 } 123 } 109 124 110 //....oooOO0OOooo........oooOO0OOooo........oo 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 126 112 void G4MuBetheBlochModel::SetParticle(const G4 << 113 { << 114 if(nullptr == particle) { << 115 particle = p; << 116 mass = particle->GetPDGMass(); << 117 massSquare = mass*mass; << 118 ratio = CLHEP::electron_mass_c2/mass; << 119 } << 120 } << 121 << 122 //....oooOO0OOooo........oooOO0OOooo........oo << 123 << 124 void G4MuBetheBlochModel::Initialise(const G4P 127 void G4MuBetheBlochModel::Initialise(const G4ParticleDefinition* p, 125 const G4D 128 const G4DataVector&) 126 { 129 { 127 SetParticle(p); << 130 if(p) { SetParticle(p); } 128 if(nullptr == fParticleChange) { << 131 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } 129 fParticleChange = GetParticleChangeForLoss << 130 if(UseAngularGeneratorFlag() && nullptr == << 131 SetAngularDistribution(new G4DeltaAngle( << 132 } << 133 } << 134 } 132 } 135 133 136 //....oooOO0OOooo........oooOO0OOooo........oo 134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 137 135 138 G4double G4MuBetheBlochModel::ComputeCrossSect 136 G4double G4MuBetheBlochModel::ComputeCrossSectionPerElectron( 139 con 137 const G4ParticleDefinition* p, 140 138 G4double kineticEnergy, 141 139 G4double cutEnergy, 142 140 G4double maxKinEnergy) 143 { 141 { 144 G4double cross = 0.0; 142 G4double cross = 0.0; 145 G4double tmax = MaxSecondaryEnergy(p, kineti 143 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 146 G4double maxEnergy = std::min(tmax, maxKinEn << 144 G4double maxEnergy = min(tmax,maxKinEnergy); 147 if(cutEnergy < maxEnergy) { 145 if(cutEnergy < maxEnergy) { 148 146 149 G4double totEnergy = kineticEnergy + mass; 147 G4double totEnergy = kineticEnergy + mass; 150 G4double energy2 = totEnergy*totEnergy; << 148 G4double energy2 = totEnergy*totEnergy; 151 G4double beta2 = kineticEnergy*(kineticEne << 149 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 152 150 153 cross = 1.0/cutEnergy - 1.0/maxEnergy - << 151 cross = 1.0/cutEnergy - 1.0/maxEnergy - beta2*G4Log(maxEnergy/cutEnergy)/tmax 154 beta2*G4Log(maxEnergy/cutEnergy)/tmax + << 152 + 0.5*(maxEnergy - cutEnergy)/energy2; 155 0.5*(maxEnergy - cutEnergy)/energy2; << 156 153 157 // radiative corrections of R. Kokoulin 154 // radiative corrections of R. Kokoulin 158 if (maxEnergy > limitKinEnergy && kineticE << 155 if (maxEnergy > limitKinEnergy) { 159 156 160 G4double logtmax = G4Log(maxEnergy); 157 G4double logtmax = G4Log(maxEnergy); 161 G4double logtmin = G4Log(std::max(cutEne << 158 G4double logtmin = G4Log(max(cutEnergy,limitKinEnergy)); 162 G4double logstep = logtmax - logtmin; 159 G4double logstep = logtmax - logtmin; 163 G4double dcross = 0.0; 160 G4double dcross = 0.0; 164 161 165 for (G4int ll=0; ll<8; ++ll) { << 162 for (G4int ll=0; ll<8; ll++) >> 163 { 166 G4double ep = G4Exp(logtmin + xgi[ll]* 164 G4double ep = G4Exp(logtmin + xgi[ll]*logstep); 167 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP << 165 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 168 G4double a3 = G4Log(4.0*totEnergy*(tot 166 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 169 dcross += wgi[ll]*(1.0/ep - beta2/tmax 167 dcross += wgi[ll]*(1.0/ep - beta2/tmax + 0.5*ep/energy2)*a1*(a3 - a1); 170 } 168 } >> 169 171 cross += dcross*logstep*alphaprime; 170 cross += dcross*logstep*alphaprime; 172 } 171 } 173 cross *= CLHEP::twopi_mc2_rcl2/beta2; << 172 >> 173 cross *= twopi_mc2_rcl2/beta2; >> 174 174 } 175 } >> 176 175 // G4cout << "tmin= " << cutEnergy << " tma 177 // G4cout << "tmin= " << cutEnergy << " tmax= " << tmax 176 // << " cross= " << cross << G4endl; << 178 // << " cross= " << cross << G4endl; >> 179 177 return cross; 180 return cross; 178 } 181 } 179 182 180 //....oooOO0OOooo........oooOO0OOooo........oo 183 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 184 182 G4double G4MuBetheBlochModel::ComputeCrossSect 185 G4double G4MuBetheBlochModel::ComputeCrossSectionPerAtom( 183 con 186 const G4ParticleDefinition* p, 184 187 G4double kineticEnergy, 185 << 188 G4double Z, G4double, 186 189 G4double cutEnergy, 187 190 G4double maxEnergy) 188 { 191 { 189 G4double cross = Z*ComputeCrossSectionPerEle 192 G4double cross = Z*ComputeCrossSectionPerElectron 190 (p,ki 193 (p,kineticEnergy,cutEnergy,maxEnergy); 191 return cross; 194 return cross; 192 } 195 } 193 196 194 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 195 198 196 G4double G4MuBetheBlochModel::CrossSectionPerV 199 G4double G4MuBetheBlochModel::CrossSectionPerVolume( 197 con << 200 const G4Material* material, 198 con 201 const G4ParticleDefinition* p, 199 202 G4double kineticEnergy, 200 203 G4double cutEnergy, 201 204 G4double maxEnergy) 202 { 205 { 203 G4double eDensity = material->GetElectronDen 206 G4double eDensity = material->GetElectronDensity(); 204 G4double cross = eDensity*ComputeCrossSectio 207 G4double cross = eDensity*ComputeCrossSectionPerElectron 205 (p,ki 208 (p,kineticEnergy,cutEnergy,maxEnergy); 206 return cross; 209 return cross; 207 } 210 } 208 211 209 //....oooOO0OOooo........oooOO0OOooo........oo 212 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 213 211 G4double G4MuBetheBlochModel::ComputeDEDXPerVo 214 G4double G4MuBetheBlochModel::ComputeDEDXPerVolume(const G4Material* material, 212 << 215 const G4ParticleDefinition* p, 213 << 216 G4double kineticEnergy, 214 << 217 G4double cut) 215 { 218 { 216 G4double tmax = MaxSecondaryEnergy(p, kinet 219 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 217 G4double tau = kineticEnergy/mass; 220 G4double tau = kineticEnergy/mass; 218 G4double cutEnergy = std::min(cut, tmax); << 221 G4double cutEnergy = min(cut,tmax); 219 G4double gam = tau + 1.0; 222 G4double gam = tau + 1.0; 220 G4double bg2 = tau * (tau+2.0); 223 G4double bg2 = tau * (tau+2.0); 221 G4double beta2 = bg2/(gam*gam); 224 G4double beta2 = bg2/(gam*gam); 222 225 223 G4double eexc = material->GetIonisation()-> 226 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 224 G4double eexc2 = eexc*eexc; 227 G4double eexc2 = eexc*eexc; 225 228 226 G4double eDensity = material->GetElectronDen 229 G4double eDensity = material->GetElectronDensity(); 227 230 228 G4double dedx = G4Log(2.0*CLHEP::electron_ma << 231 G4double dedx = G4Log(2.0*electron_mass_c2*bg2*cutEnergy/eexc2) 229 -(1.0 + cutEnergy/tmax)*beta2 232 -(1.0 + cutEnergy/tmax)*beta2; 230 233 231 G4double totEnergy = kineticEnergy + mass; 234 G4double totEnergy = kineticEnergy + mass; 232 G4double del = 0.5*cutEnergy/totEnergy; 235 G4double del = 0.5*cutEnergy/totEnergy; 233 dedx += del*del; 236 dedx += del*del; 234 237 235 // density correction 238 // density correction 236 G4double x = G4Log(bg2)/twoln10; 239 G4double x = G4Log(bg2)/twoln10; 237 dedx -= material->GetIonisation()->DensityCo 240 dedx -= material->GetIonisation()->DensityCorrection(x); 238 241 239 // shell and high order corrections << 242 // shell correction 240 dedx -= 2.0*corr->ShellCorrection(p,material 243 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy); 241 244 >> 245 // now compute the total ionization loss >> 246 >> 247 if (dedx < 0.0) dedx = 0.0 ; >> 248 242 // radiative corrections of R. Kokoulin 249 // radiative corrections of R. Kokoulin 243 if (cutEnergy > limitKinEnergy && kineticEne << 250 if (cutEnergy > limitKinEnergy) { 244 251 245 G4double logtmax = G4Log(cutEnergy); 252 G4double logtmax = G4Log(cutEnergy); 246 G4double logstep = logtmax - logLimitKinEn 253 G4double logstep = logtmax - logLimitKinEnergy; 247 G4double dloss = 0.0; 254 G4double dloss = 0.0; 248 G4double ftot2= 0.5/(totEnergy*totEnergy); 255 G4double ftot2= 0.5/(totEnergy*totEnergy); 249 256 250 for (G4int ll=0; ll<8; ++ll) { << 257 for (G4int ll=0; ll<8; ll++) >> 258 { 251 G4double ep = G4Exp(logLimitKinEnergy + 259 G4double ep = G4Exp(logLimitKinEnergy + xgi[ll]*logstep); 252 G4double a1 = G4Log(1.0 + 2.0*ep/CLHEP:: << 260 G4double a1 = G4Log(1.0 + 2.0*ep/electron_mass_c2); 253 G4double a3 = G4Log(4.0*totEnergy*(totEn 261 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - ep)/massSquare); 254 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + 262 dloss += wgi[ll]*(1.0 - beta2*ep/tmax + ep*ep*ftot2)*a1*(a3 - a1); 255 } 263 } 256 dedx += dloss*logstep*alphaprime; 264 dedx += dloss*logstep*alphaprime; 257 } 265 } 258 dedx *= CLHEP::twopi_mc2_rcl2*eDensity/beta2 << 266 >> 267 dedx *= twopi_mc2_rcl2*eDensity/beta2; 259 268 260 //High order corrections 269 //High order corrections 261 dedx += corr->HighOrderCorrections(p,materia 270 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy); 262 dedx = std::max(dedx, 0.); << 271 263 return dedx; 272 return dedx; 264 } 273 } 265 274 266 //....oooOO0OOooo........oooOO0OOooo........oo 275 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 276 268 void G4MuBetheBlochModel::SampleSecondaries( << 277 void G4MuBetheBlochModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp, 269 std::vector<G4Dynami << 278 const G4MaterialCutsCouple*, 270 const G4MaterialCutsCouple* couple, << 279 const G4DynamicParticle* dp, 271 const G4DynamicParticle* dp, << 280 G4double minKinEnergy, 272 G4double minKinEnergy, << 281 G4double maxEnergy) 273 G4double maxEnergy) << 274 { 282 { 275 G4double kineticEnergy = dp->GetKineticEnerg << 283 G4double tmax = MaxSecondaryKinEnergy(dp); 276 G4double tmax = MaxSecondaryEnergy(dp->GetDe << 284 G4double maxKinEnergy = min(maxEnergy,tmax); 277 G4double maxKinEnergy = std::min(maxEnergy, << 278 if(minKinEnergy >= maxKinEnergy) { return; } 285 if(minKinEnergy >= maxKinEnergy) { return; } 279 286 280 G4double totEnergy = kineticEnergy + mass; << 287 G4double kineticEnergy = dp->GetKineticEnergy(); 281 G4double etot2 = totEnergy*totEnergy; << 288 G4double totEnergy = kineticEnergy + mass; 282 G4double beta2 = kineticEnergy*(kineticEnerg << 289 G4double etot2 = totEnergy*totEnergy; >> 290 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2; 283 291 284 G4double grej = 1.; 292 G4double grej = 1.; 285 G4bool radC = (tmax > limitKinEnergy && kine << 293 if(tmax > limitKinEnergy) { 286 if(radC) { << 294 G4double a0 = G4Log(2.*totEnergy/mass); 287 G4double a0 = G4Log(2.*totEnergy/mass); << 295 grej += alphaprime*a0*a0; 288 grej += alphaprime*a0*a0; << 289 } 296 } 290 297 291 G4double tkin, f; << 298 G4double deltaKinEnergy, f; 292 299 293 // sampling follows ... 300 // sampling follows ... 294 do { 301 do { 295 G4double q = G4UniformRand(); 302 G4double q = G4UniformRand(); 296 tkin = minKinEnergy*maxKinEnergy/(minKinEn << 303 deltaKinEnergy = minKinEnergy*maxKinEnergy 297 f = 1.0 - beta2*tkin/tmax + 0.5*tkin*tkin/ << 304 /(minKinEnergy*(1.0 - q) + maxKinEnergy*q); >> 305 >> 306 >> 307 f = 1.0 - beta2*deltaKinEnergy/tmax >> 308 + 0.5*deltaKinEnergy*deltaKinEnergy/etot2; 298 309 299 if(radC && tkin > limitKinEnergy) { << 310 if(deltaKinEnergy > limitKinEnergy) { 300 G4double a1 = G4Log(1.0 + 2.0*tkin/CLHEP << 311 G4double a1 = G4Log(1.0 + 2.0*deltaKinEnergy/electron_mass_c2); 301 G4double a3 = G4Log(4.0*totEnergy*(totEn << 312 G4double a3 = G4Log(4.0*totEnergy*(totEnergy - deltaKinEnergy)/massSquare); 302 f *= (1. + alphaprime*a1*(a3 - a1)); 313 f *= (1. + alphaprime*a1*(a3 - a1)); 303 } 314 } 304 315 305 if(f > grej) { 316 if(f > grej) { 306 G4cout << "G4MuBetheBlochModel::Sample 317 G4cout << "G4MuBetheBlochModel::SampleSecondary Warning! " 307 << "Majorant " << grej << " < " 318 << "Majorant " << grej << " < " 308 << f << " for edelta= " << tkin << 319 << f << " for edelta= " << deltaKinEnergy 309 << " tmin= " << minKinEnergy << 320 << " tmin= " << minKinEnergy << " max= " << maxKinEnergy 310 << G4endl; 321 << G4endl; 311 } 322 } 312 // Loop checking, 03-Aug-2015, Vladimir Iv << 313 } while( grej*G4UniformRand() > f ); << 314 323 315 G4ThreeVector deltaDirection; << 316 324 317 if(UseAngularGeneratorFlag()) { << 325 } while( grej*G4UniformRand() > f ); 318 const G4Material* mat = couple->GetMateria << 319 deltaDirection = GetAngularDistribution()- << 320 SelectRandomAtomNumber(ma << 321 } else { << 322 << 323 G4double deltaMom = std::sqrt(tkin * (tkin << 324 G4double totalMom = totEnergy*std::sqrt(be << 325 G4double cost = tkin * (totEnergy + CLHEP: << 326 (deltaMom * totalMom); << 327 cost = std::min(cost, 1.0); << 328 const G4double sint = std::sqrt((1.0 - cos << 329 const G4double phi = twopi*G4UniformRand() << 330 326 331 deltaDirection.set(sint*std::cos(phi),sint << 327 G4double deltaMomentum = 332 deltaDirection.rotateUz(dp->GetMomentumDir << 328 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 333 } << 329 G4double totalMomentum = totEnergy*sqrt(beta2); 334 // create G4DynamicParticle object for delta << 330 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / 335 auto delta = new G4DynamicParticle(theElectr << 331 (deltaMomentum * totalMomentum); 336 vdp->push_back(delta); << 332 >> 333 G4double sint = sqrt(1.0 - cost*cost); >> 334 >> 335 G4double phi = twopi * G4UniformRand() ; >> 336 >> 337 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ; >> 338 G4ThreeVector direction = dp->GetMomentumDirection(); >> 339 deltaDirection.rotateUz(direction); 337 340 338 // primary change 341 // primary change 339 kineticEnergy -= tkin; << 342 kineticEnergy -= deltaKinEnergy; 340 G4ThreeVector dir = dp->GetMomentum() - delt << 343 G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection; 341 dir = dir.unit(); << 344 direction = dir.unit(); 342 fParticleChange->SetProposedKineticEnergy(ki 345 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 343 fParticleChange->SetProposedMomentumDirectio << 346 fParticleChange->SetProposedMomentumDirection(direction); >> 347 >> 348 // create G4DynamicParticle object for delta ray >> 349 G4DynamicParticle* delta = new G4DynamicParticle(theElectron, >> 350 deltaDirection,deltaKinEnergy); >> 351 vdp->push_back(delta); 344 } 352 } 345 353 346 //....oooOO0OOooo........oooOO0OOooo........oo 354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 347 355