Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4MuPairProductionModel.hh,v 1.14 2004/12/02 08:20:37 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-07-00-cand-03 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class header file 28 // GEANT4 Class header file 30 // 29 // 31 // 30 // 32 // File name: G4MuPairProductionModel 31 // File name: G4MuPairProductionModel 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 18.05.2002 35 // Creation date: 18.05.2002 37 // 36 // 38 // Modifications: 37 // Modifications: 39 // 38 // 40 // 23-12-02 Change interface in order to move 39 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 41 // 27-01-03 Make models region aware (V.Ivanch 40 // 27-01-03 Make models region aware (V.Ivanchenko) 42 // 13-02-03 Add name (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 43 // 10-02-04 Update parameterisation using R.Ko 42 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko) 44 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 43 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 45 // 13-02-06 Add ComputeCrossSectionPerAtom (mm << 44 // 46 // 12-05-06 Add parameter to SelectRandomAtom << 45 47 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) << 48 // 28-02-08 Reorganized protected methods and << 49 // 46 // 50 // Class Description: 47 // Class Description: 51 // 48 // 52 // Implementation of e+e- pair production by m 49 // Implementation of e+e- pair production by muons 53 // A.G. Bogdanov et al., IEEE Trans. Nuc. Sci. << 54 // Base class for all pair production models f << 55 // 50 // >> 51 56 // ------------------------------------------- 52 // ------------------------------------------------------------------- 57 // 53 // 58 54 59 #ifndef G4MuPairProductionModel_h 55 #ifndef G4MuPairProductionModel_h 60 #define G4MuPairProductionModel_h 1 56 #define G4MuPairProductionModel_h 1 61 57 62 #include "G4VEmModel.hh" 58 #include "G4VEmModel.hh" 63 #include "G4NistManager.hh" << 64 #include "G4ElementData.hh" << 65 #include "G4Physics2DVector.hh" << 66 #include <vector> 59 #include <vector> 67 60 68 class G4Element; 61 class G4Element; 69 class G4ParticleChangeForLoss; << 70 class G4ParticleChangeForGamma; << 71 62 72 class G4MuPairProductionModel : public G4VEmMo 63 class G4MuPairProductionModel : public G4VEmModel 73 { 64 { >> 65 74 public: 66 public: 75 67 76 explicit G4MuPairProductionModel(const G4Par << 68 G4MuPairProductionModel(const G4ParticleDefinition* p = 0, const G4String& nam = "MuPairProd"); 77 const G4Str << 69 >> 70 virtual ~G4MuPairProductionModel(); >> 71 >> 72 void Initialise(const G4ParticleDefinition*, const G4DataVector&); >> 73 >> 74 G4double HighEnergyLimit(const G4ParticleDefinition* p); >> 75 >> 76 G4double LowEnergyLimit(const G4ParticleDefinition* p); >> 77 >> 78 void SetHighEnergyLimit(G4double e) {highKinEnergy = e;}; >> 79 >> 80 void SetLowEnergyLimit(G4double e) {lowKinEnergy = e;}; 78 81 79 ~G4MuPairProductionModel() override = defaul << 82 void SetLowestKineticEnergy(G4double e) {lowestKinEnergy = e;}; 80 83 81 void Initialise(const G4ParticleDefinition*, << 84 G4double MinEnergyCut(const G4ParticleDefinition*, >> 85 const G4MaterialCutsCouple*); 82 86 83 void InitialiseLocal(const G4ParticleDefinit << 87 G4bool IsInCharge(const G4ParticleDefinition*); 84 G4VEmModel* masterModel << 88 85 << 89 G4double ComputeDEDX(const G4MaterialCutsCouple*, 86 G4double ComputeCrossSectionPerAtom(const G4 << 90 const G4ParticleDefinition*, 87 G4double kineticEnergy, << 91 G4double kineticEnergy, 88 G4double Z, G4double A, << 92 G4double cutEnergy); 89 G4double cutEnergy, << 93 90 G4double maxEnergy) override; << 94 G4double CrossSection(const G4MaterialCutsCouple*, 91 << 95 const G4ParticleDefinition*, 92 G4double ComputeDEDXPerVolume(const G4Materi << 96 G4double kineticEnergy, 93 const G4Partic << 97 G4double cutEnergy, 94 G4double kinet << 98 G4double maxEnergy); 95 G4double cutEn << 99 96 << 100 G4DynamicParticle* SampleSecondary( 97 void SampleSecondaries(std::vector<G4Dynamic << 101 const G4MaterialCutsCouple*, 98 const G4MaterialCutsCouple*, << 102 const G4DynamicParticle*, 99 const G4DynamicParticle*, << 103 G4double tmin, 100 G4double tmin, << 104 G4double maxEnergy); 101 G4double maxEnergy) override; << 105 102 << 106 std::vector<G4DynamicParticle*>* SampleSecondaries( 103 G4double MinPrimaryEnergy(const G4Material*, << 107 const G4MaterialCutsCouple*, 104 const G4ParticleDe << 108 const G4DynamicParticle*, 105 G4double) override << 109 G4double tmin, 106 << 110 G4double maxEnergy); 107 virtual G4double << 111 108 ComputeDMicroscopicCrossSection(G4double tki << 112 virtual G4double MaxSecondaryEnergy( 109 G4double pairEnergy); << 113 const G4DynamicParticle* dynParticle); 110 << 111 inline void SetLowestKineticEnergy(G4double << 112 << 113 inline void SetParticle(const G4ParticleDefi << 114 << 115 // hide assignment operator and copy constru << 116 G4MuPairProductionModel & operator= << 117 (const G4MuPairProductionModel &right) = del << 118 G4MuPairProductionModel(const G4MuPairProdu << 119 114 120 protected: 115 protected: 121 116 122 G4double ComputMuPairLoss(G4double Z, G4doub << 117 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 123 G4double tmax); << 118 G4double kineticEnergy); >> 119 >> 120 //private: >> 121 public: >> 122 >> 123 G4double ComputMuPairLoss(G4double Z, G4double tkin, G4double cut, G4double tmax); 124 124 125 G4double ComputeMicroscopicCrossSection(G4do 125 G4double ComputeMicroscopicCrossSection(G4double tkin, 126 G4do 126 G4double Z, 127 G4do 127 G4double cut); 128 128 129 G4double FindScaledEnergy(G4int Z, G4double << 129 G4double ComputeDMicroscopicCrossSection(G4double tkin, 130 G4double yymin, G4double yymax); << 130 G4double Z, >> 131 G4double pairEnergy); >> 132 private: 131 133 132 inline G4double MaxSecondaryEnergyForElement << 134 const G4Element* SelectRandomAtom(G4double kinEnergy, G4double dt, G4int it, 133 G4double Z); << 135 const G4MaterialCutsCouple* couple); 134 136 135 void MakeSamplingTables(); 137 void MakeSamplingTables(); 136 138 137 void StoreTables() const; << 139 void SetCurrentElement(G4double Z); 138 140 139 G4bool RetrieveTables(); << 141 G4double InterpolatedIntegralCrossSection(G4double dt, G4double dz, >> 142 G4int iz, G4int it, G4int iy, G4double z); 140 143 141 virtual void DataCorrupted(G4int Z, G4double << 144 // hide assignment operator 142 << 145 G4MuPairProductionModel & operator=(const G4MuPairProductionModel &right); 143 G4ParticleChangeForLoss* fParticleChange = n << 146 G4MuPairProductionModel(const G4MuPairProductionModel&); 144 const G4ParticleDefinition* particle = nullp << 145 G4NistManager* nist = nullptr; << 146 << 147 G4double factorForCross; << 148 G4double sqrte; << 149 G4double particleMass = 0.0; << 150 G4double z13 = 0.0; << 151 G4double z23 = 0.0; << 152 G4double lnZ = 0.0; << 153 147 154 G4double minPairEnergy; 148 G4double minPairEnergy; >> 149 G4double highKinEnergy; >> 150 G4double lowKinEnergy; 155 G4double lowestKinEnergy; 151 G4double lowestKinEnergy; 156 152 157 G4double emin; << 153 G4double factorForCross; 158 G4double emax; << 154 G4double sqrte; 159 G4double ymin = -5.0; << 155 G4double particleMass; 160 G4double dy = 0.005; << 156 G4double currentZ; 161 << 157 G4double z13; 162 G4int currentZ = 0; << 158 G4double z23; 163 G4int nYBinPerDecade = 4; << 159 G4double lnZ; 164 std::size_t nbiny = 1000; << 160 165 std::size_t nbine = 0; << 161 166 << 162 const G4ParticleDefinition* particle; 167 G4bool fTableToFile = false; << 163 168 << 164 // tables for sampling 169 // static members << 165 G4int nzdat; 170 static const G4int NZDATPAIR = 5; << 166 G4int ntdat; 171 static const G4int NINTPAIR = 8; << 167 G4int nbiny; 172 static const G4int ZDATPAIR[NZDATPAIR]; << 168 size_t nmaxElements; 173 static const G4double xgi[NINTPAIR]; << 169 static G4double zdat[5],adat[5],tdat[8],xgi[8],wgi[8]; 174 static const G4double wgi[NINTPAIR]; << 170 G4double ya[1001],proba[5][8][1001]; 175 << 171 176 private: << 172 G4double ymin; >> 173 G4double ymax; >> 174 G4double dy; 177 175 178 G4ParticleDefinition* theElectron; << 176 G4bool samplingTablesAreFilled; 179 G4ParticleDefinition* thePositron; << 177 std::vector<G4double> partialSum; 180 G4String dataName{""}; << 181 }; 178 }; 182 179 183 //....oooOO0OOooo........oooOO0OOooo........oo << 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 184 181 185 inline void G4MuPairProductionModel::SetLowest << 182 inline >> 183 G4double G4MuPairProductionModel::MaxSecondaryEnergy( >> 184 const G4DynamicParticle* dynParticle) 186 { 185 { 187 lowestKinEnergy = e; << 186 G4double e = dynParticle->GetKineticEnergy(); >> 187 G4double maxPairEnergy = e + particleMass*(1.0 - 0.75*sqrte*z13); >> 188 return maxPairEnergy; 188 } 189 } 189 190 190 //....oooOO0OOooo........oooOO0OOooo........oo << 191 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 191 192 192 inline 193 inline 193 void G4MuPairProductionModel::SetParticle(cons << 194 G4double G4MuPairProductionModel::MaxSecondaryEnergy( >> 195 const G4ParticleDefinition*, >> 196 G4double kineticEnergy) 194 { 197 { 195 if(nullptr == particle) { << 198 G4double maxPairEnergy = kineticEnergy + particleMass*(1.0 - 0.75*sqrte*z13); 196 particle = p; << 199 return maxPairEnergy; 197 particleMass = particle->GetPDGMass(); << 198 } << 199 } 200 } >> 201 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 200 202 201 //....oooOO0OOooo........oooOO0OOooo........oo << 203 inline 202 << 204 void G4MuPairProductionModel::SetCurrentElement(G4double Z) 203 inline G4double << 204 G4MuPairProductionModel::MaxSecondaryEnergyFor << 205 G4double ZZ) << 206 { 205 { 207 G4int Z = G4lrint(ZZ); << 208 if(Z != currentZ) { 206 if(Z != currentZ) { 209 currentZ = Z; 207 currentZ = Z; 210 z13 = nist->GetZ13(Z); << 208 z13 = std::pow(Z,0.333333333); 211 z23 = z13*z13; 209 z23 = z13*z13; 212 lnZ = nist->GetLOGZ(Z); << 210 lnZ = std::log(Z); 213 } 211 } 214 return kineticEnergy + particleMass*(1.0 - 0 << 215 } 212 } 216 213 217 //....oooOO0OOooo........oooOO0OOooo........oo << 214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 215 >> 216 inline >> 217 G4double G4MuPairProductionModel::InterpolatedIntegralCrossSection(G4double dt, G4double dz, >> 218 G4int iz, G4int it, G4int iy, G4double z) >> 219 { >> 220 G4double fac = 1./(zdat[iz] *(zdat[iz] +1.)); >> 221 G4double fac1 = 1./(zdat[iz-1]*(zdat[iz-1]+1.)); >> 222 G4double f0 = fac1*proba[iz-1][it-1][iy] + >> 223 (fac*proba[iz][it-1][iy]-fac1*proba[iz-1][it-1][iy])*dz; >> 224 G4double f1 = fac1*proba[iz-1][it ][iy] + >> 225 (fac*proba[iz][it ][iy]-fac1*proba[iz-1][it ][iy])*dz; >> 226 return (f0 + (f1-f0)*dt)*z*(z+1.); >> 227 } >> 228 >> 229 >> 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 218 231 219 #endif 232 #endif 220 233