Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4MuPairProductionModel.hh,v 1.9 2003/06/16 17:01:43 gunter Exp $ >> 24 // GEANT4 tag $Name: geant4-05-02-patch-01 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class header file 28 // GEANT4 Class header file 30 // 29 // 31 // 30 // 32 // File name: G4MuPairProductionModel 31 // File name: G4MuPairProductionModel 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 18.05.2002 35 // Creation date: 18.05.2002 37 // 36 // 38 // Modifications: 37 // Modifications: 39 // 38 // 40 // 23-12-02 Change interface in order to move 39 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 41 // 27-01-03 Make models region aware (V.Ivanch 40 // 27-01-03 Make models region aware (V.Ivanchenko) 42 // 13-02-03 Add name (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 43 // 10-02-04 Update parameterisation using R.Ko << 42 // 44 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) << 43 45 // 13-02-06 Add ComputeCrossSectionPerAtom (mm << 46 // 12-05-06 Add parameter to SelectRandomAtom << 47 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) << 48 // 28-02-08 Reorganized protected methods and << 49 // 44 // 50 // Class Description: 45 // Class Description: 51 // 46 // 52 // Implementation of e+e- pair production by m 47 // Implementation of e+e- pair production by muons 53 // A.G. Bogdanov et al., IEEE Trans. Nuc. Sci. << 54 // Base class for all pair production models f << 55 // 48 // >> 49 56 // ------------------------------------------- 50 // ------------------------------------------------------------------- 57 // 51 // 58 52 59 #ifndef G4MuPairProductionModel_h 53 #ifndef G4MuPairProductionModel_h 60 #define G4MuPairProductionModel_h 1 54 #define G4MuPairProductionModel_h 1 61 55 62 #include "G4VEmModel.hh" 56 #include "G4VEmModel.hh" 63 #include "G4NistManager.hh" << 64 #include "G4ElementData.hh" << 65 #include "G4Physics2DVector.hh" << 66 #include <vector> << 67 << 68 class G4Element; << 69 class G4ParticleChangeForLoss; << 70 class G4ParticleChangeForGamma; << 71 57 72 class G4MuPairProductionModel : public G4VEmMo 58 class G4MuPairProductionModel : public G4VEmModel 73 { 59 { >> 60 74 public: 61 public: 75 62 76 explicit G4MuPairProductionModel(const G4Par << 63 G4MuPairProductionModel(const G4ParticleDefinition* p = 0, const G4String& nam = "MuPairProd"); 77 const G4Str << 78 64 79 ~G4MuPairProductionModel() override = defaul << 65 ~G4MuPairProductionModel(); 80 66 81 void Initialise(const G4ParticleDefinition*, << 67 void Initialise(const G4ParticleDefinition*, const G4DataVector&); 82 68 83 void InitialiseLocal(const G4ParticleDefinit << 69 G4double HighEnergyLimit(const G4ParticleDefinition* p); 84 G4VEmModel* masterModel << 85 << 86 G4double ComputeCrossSectionPerAtom(const G4 << 87 G4double kineticEnergy, << 88 G4double Z, G4double A, << 89 G4double cutEnergy, << 90 G4double maxEnergy) override; << 91 << 92 G4double ComputeDEDXPerVolume(const G4Materi << 93 const G4Partic << 94 G4double kinet << 95 G4double cutEn << 96 << 97 void SampleSecondaries(std::vector<G4Dynamic << 98 const G4MaterialCutsCouple*, << 99 const G4DynamicParticle*, << 100 G4double tmin, << 101 G4double maxEnergy) override; << 102 << 103 G4double MinPrimaryEnergy(const G4Material*, << 104 const G4ParticleDe << 105 G4double) override << 106 << 107 virtual G4double << 108 ComputeDMicroscopicCrossSection(G4double tki << 109 G4double pairEnergy); << 110 << 111 inline void SetLowestKineticEnergy(G4double << 112 << 113 inline void SetParticle(const G4ParticleDefi << 114 << 115 // hide assignment operator and copy constru << 116 G4MuPairProductionModel & operator= << 117 (const G4MuPairProductionModel &right) = del << 118 G4MuPairProductionModel(const G4MuPairProdu << 119 70 120 protected: << 71 G4double LowEnergyLimit(const G4ParticleDefinition* p); 121 72 122 G4double ComputMuPairLoss(G4double Z, G4doub << 73 void SetHighEnergyLimit(G4double e) {highKinEnergy = e;}; 123 G4double tmax); << 124 74 125 G4double ComputeMicroscopicCrossSection(G4do << 75 void SetLowEnergyLimit(G4double e) {lowKinEnergy = e;}; 126 G4do << 127 G4do << 128 76 129 G4double FindScaledEnergy(G4int Z, G4double << 77 G4double MinEnergyCut(const G4ParticleDefinition*, 130 G4double yymin, G4double yymax); << 78 const G4MaterialCutsCouple*); 131 79 132 inline G4double MaxSecondaryEnergyForElement << 80 G4bool IsInCharge(const G4ParticleDefinition*); 133 G4double Z); << 134 81 135 void MakeSamplingTables(); << 82 G4double ComputeDEDX(const G4Material*, >> 83 const G4ParticleDefinition*, >> 84 G4double kineticEnergy, >> 85 G4double cutEnergy); 136 86 137 void StoreTables() const; << 87 G4double CrossSection(const G4Material*, >> 88 const G4ParticleDefinition*, >> 89 G4double kineticEnergy, >> 90 G4double cutEnergy, >> 91 G4double maxEnergy); 138 92 139 G4bool RetrieveTables(); << 93 G4DynamicParticle* SampleSecondary( >> 94 const G4MaterialCutsCouple*, >> 95 const G4DynamicParticle*, >> 96 G4double tmin, >> 97 G4double maxEnergy); 140 98 141 virtual void DataCorrupted(G4int Z, G4double << 99 std::vector<G4DynamicParticle*>* SampleSecondaries( >> 100 const G4MaterialCutsCouple*, >> 101 const G4DynamicParticle*, >> 102 G4double tmin, >> 103 G4double maxEnergy); 142 104 143 G4ParticleChangeForLoss* fParticleChange = n << 105 virtual G4double MaxSecondaryEnergy( 144 const G4ParticleDefinition* particle = nullp << 106 const G4DynamicParticle* dynParticle); 145 G4NistManager* nist = nullptr; << 146 << 147 G4double factorForCross; << 148 G4double sqrte; << 149 G4double particleMass = 0.0; << 150 G4double z13 = 0.0; << 151 G4double z23 = 0.0; << 152 G4double lnZ = 0.0; << 153 107 154 G4double minPairEnergy; << 108 protected: 155 G4double lowestKinEnergy; << 156 109 157 G4double emin; << 110 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 158 G4double emax; << 111 G4double kineticEnergy); 159 G4double ymin = -5.0; << 160 G4double dy = 0.005; << 161 << 162 G4int currentZ = 0; << 163 G4int nYBinPerDecade = 4; << 164 std::size_t nbiny = 1000; << 165 std::size_t nbine = 0; << 166 << 167 G4bool fTableToFile = false; << 168 << 169 // static members << 170 static const G4int NZDATPAIR = 5; << 171 static const G4int NINTPAIR = 8; << 172 static const G4int ZDATPAIR[NZDATPAIR]; << 173 static const G4double xgi[NINTPAIR]; << 174 static const G4double wgi[NINTPAIR]; << 175 112 176 private: 113 private: 177 114 178 G4ParticleDefinition* theElectron; << 115 G4double ComputMuPairLoss(G4double Z, G4double tkin, G4double cut); 179 G4ParticleDefinition* thePositron; << 116 180 G4String dataName{""}; << 117 G4double ComputeMicroscopicCrossSection(G4double tkin, 181 }; << 118 G4double Z, >> 119 G4double cut); 182 120 183 //....oooOO0OOooo........oooOO0OOooo........oo << 121 G4double ComputeDMicroscopicCrossSection(G4double tkin, >> 122 G4double Z, >> 123 G4double pairEnergy); >> 124 >> 125 G4double ComputeDDMicroscopicCrossSection(G4double tkin, >> 126 G4double Z, >> 127 G4double pairEnergy, >> 128 G4double asymmetry); 184 129 185 inline void G4MuPairProductionModel::SetLowest << 130 G4DataVector* ComputePartialSumSigma(const G4Material* material, 186 { << 131 G4double tkin, G4double cut); 187 lowestKinEnergy = e; << 132 188 } << 133 const G4Element* SelectRandomAtom(const G4MaterialCutsCouple* couple) const; >> 134 >> 135 void MakeSamplingTables(); 189 136 190 //....oooOO0OOooo........oooOO0OOooo........oo << 137 // hide assignment operator >> 138 G4MuPairProductionModel & operator=(const G4MuPairProductionModel &right); >> 139 G4MuPairProductionModel(const G4MuPairProductionModel&); 191 140 192 inline << 141 G4double minPairEnergy; 193 void G4MuPairProductionModel::SetParticle(cons << 142 G4double highKinEnergy; >> 143 G4double lowKinEnergy; >> 144 >> 145 // tables for sampling >> 146 G4int nzdat,ntdat,NBIN; >> 147 static G4double zdat[5],adat[5],tdat[8]; >> 148 G4double ya[1001],proba[5][8][1001]; >> 149 >> 150 std::vector<G4DataVector*> partialSumSigma; >> 151 G4bool samplingTablesAreFilled; >> 152 }; >> 153 >> 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 155 >> 156 inline >> 157 G4double G4MuPairProductionModel::MaxSecondaryEnergy( >> 158 const G4DynamicParticle* dynParticle) 194 { 159 { 195 if(nullptr == particle) { << 160 return dynParticle->GetKineticEnergy(); 196 particle = p; << 161 } 197 particleMass = particle->GetPDGMass(); << 198 } << 199 } << 200 162 201 //....oooOO0OOooo........oooOO0OOooo........oo << 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 202 164 203 inline G4double << 165 inline 204 G4MuPairProductionModel::MaxSecondaryEnergyFor << 166 G4double G4MuPairProductionModel::MaxSecondaryEnergy( 205 G4double ZZ) << 167 const G4ParticleDefinition*, >> 168 G4double kineticEnergy) 206 { 169 { 207 G4int Z = G4lrint(ZZ); << 170 return kineticEnergy; 208 if(Z != currentZ) { << 209 currentZ = Z; << 210 z13 = nist->GetZ13(Z); << 211 z23 = z13*z13; << 212 lnZ = nist->GetLOGZ(Z); << 213 } << 214 return kineticEnergy + particleMass*(1.0 - 0 << 215 } 171 } 216 172 217 //....oooOO0OOooo........oooOO0OOooo........oo << 173 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 218 174 219 #endif 175 #endif 220 176