Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4eIonisationSpectrum.cc,v 1.25 2006/06/29 19:42:04 gunter Exp $ >> 27 // GEANT4 tag $Name: geant4-09-01 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4eIonisationSpectrum 34 // File name: G4eIonisationSpectrum 33 // 35 // 34 // Author: V.Ivanchenko (Vladimir.Ivanc 36 // Author: V.Ivanchenko (Vladimir.Ivanchenko@cern.ch) 35 // << 37 // 36 // Creation date: 29 September 2001 38 // Creation date: 29 September 2001 37 // 39 // 38 // Modifications: << 40 // Modifications: 39 // 10.10.2001 MGP Revision to improv << 41 // 10.10.2001 MGP Revision to improve code quality and 40 // consistency with d 42 // consistency with design 41 // 02.11.2001 VI Optimize sampling << 43 // 02.11.2001 VI Optimize sampling of energy 42 // 29.11.2001 VI New parametrisatio << 44 // 29.11.2001 VI New parametrisation 43 // 19.04.2002 VI Add protection in << 45 // 19.04.2002 VI Add protection in case of energy below binding 44 // 30.05.2002 VI Update to 24-param 46 // 30.05.2002 VI Update to 24-parameters data 45 // 11.07.2002 VI Fix in integration 47 // 11.07.2002 VI Fix in integration over spectrum 46 // 23.03.2009 LP Added protection a << 47 // faulty database fi << 48 // 48 // 49 // ------------------------------------------- 49 // ------------------------------------------------------------------- 50 // 50 // 51 51 52 #include "G4eIonisationSpectrum.hh" 52 #include "G4eIonisationSpectrum.hh" 53 #include "G4AtomicTransitionManager.hh" 53 #include "G4AtomicTransitionManager.hh" 54 #include "G4AtomicShell.hh" 54 #include "G4AtomicShell.hh" 55 #include "G4DataVector.hh" 55 #include "G4DataVector.hh" 56 #include "Randomize.hh" 56 #include "Randomize.hh" 57 #include "G4PhysicalConstants.hh" << 57 58 #include "G4SystemOfUnits.hh" << 59 #include "G4Exp.hh" << 60 58 61 G4eIonisationSpectrum::G4eIonisationSpectrum() 59 G4eIonisationSpectrum::G4eIonisationSpectrum():G4VEnergySpectrum(), 62 lowestE(0.1*eV), 60 lowestE(0.1*eV), 63 factor(1.3), 61 factor(1.3), 64 iMax(24), 62 iMax(24), 65 verbose(0) 63 verbose(0) 66 { 64 { 67 theParam = new G4eIonisationParameters(); 65 theParam = new G4eIonisationParameters(); 68 } 66 } 69 67 70 68 71 G4eIonisationSpectrum::~G4eIonisationSpectrum( << 69 G4eIonisationSpectrum::~G4eIonisationSpectrum() 72 { 70 { 73 delete theParam; 71 delete theParam; 74 } 72 } 75 73 76 74 77 G4double G4eIonisationSpectrum::Probability(G4 << 75 G4double G4eIonisationSpectrum::Probability(G4int Z, 78 G4double tMin, << 76 G4double tMin, 79 G4double tMax, << 77 G4double tMax, 80 G4double e, 78 G4double e, 81 G4int shell, 79 G4int shell, 82 const G4ParticleDefinition* ) co 80 const G4ParticleDefinition* ) const 83 { 81 { 84 // Please comment what Probability does and << 82 // Please comment what Probability does and what are the three 85 // functions mentioned below 83 // functions mentioned below 86 // Describe the algorithms used 84 // Describe the algorithms used 87 85 88 G4double eMax = MaxEnergyOfSecondaries(e); 86 G4double eMax = MaxEnergyOfSecondaries(e); 89 G4double t0 = std::max(tMin, lowestE); 87 G4double t0 = std::max(tMin, lowestE); 90 G4double tm = std::min(tMax, eMax); 88 G4double tm = std::min(tMax, eMax); 91 if(t0 >= tm) return 0.0; 89 if(t0 >= tm) return 0.0; 92 90 93 G4double bindingEnergy = (G4AtomicTransition 91 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 94 Shell(Z, shell)->Bi 92 Shell(Z, shell)->BindingEnergy(); 95 93 96 if(e <= bindingEnergy) return 0.0; 94 if(e <= bindingEnergy) return 0.0; 97 95 98 G4double energy = e + bindingEnergy; 96 G4double energy = e + bindingEnergy; 99 97 100 G4double x1 = std::min(0.5,(t0 + bindingEner 98 G4double x1 = std::min(0.5,(t0 + bindingEnergy)/energy); 101 G4double x2 = std::min(0.5,(tm + bindingEner 99 G4double x2 = std::min(0.5,(tm + bindingEnergy)/energy); 102 100 103 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0. 101 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0.0)) { 104 G4cout << "G4eIonisationSpectrum::Probabil 102 G4cout << "G4eIonisationSpectrum::Probability: Z= " << Z 105 << "; shell= " << shell 103 << "; shell= " << shell 106 << "; E(keV)= " << e/keV 104 << "; E(keV)= " << e/keV 107 << "; Eb(keV)= " << bindingEnergy/k 105 << "; Eb(keV)= " << bindingEnergy/keV 108 << "; x1= " << x1 << 106 << "; x1= " << x1 109 << "; x2= " << x2 << 107 << "; x2= " << x2 110 << G4endl; 108 << G4endl; 111 << 109 112 } 110 } 113 111 114 G4DataVector p; 112 G4DataVector p; 115 113 116 // Access parameters 114 // Access parameters 117 for (G4int i=0; i<iMax; i++) << 115 for (G4int i=0; i<iMax; i++) 118 { 116 { 119 G4double x = theParam->Parameter(Z, shell, 117 G4double x = theParam->Parameter(Z, shell, i, e); 120 if(i<4) x /= energy; << 118 if(i<4) x /= energy; 121 p.push_back(x); << 119 p.push_back(x); 122 } 120 } 123 121 124 if(p[3] > 0.5) p[3] = 0.5; 122 if(p[3] > 0.5) p[3] = 0.5; 125 << 123 126 G4double gLocal = energy/electron_mass_c2 + << 124 G4double g = energy/electron_mass_c2 + 1.; 127 p.push_back((2.0*gLocal - 1.0)/(gLocal*gLoca << 125 p.push_back((2.0*g - 1.0)/(g*g)); 128 << 126 129 //Add protection against division by zero: a << 127 p[iMax-1] = Function(p[3], p); 130 //parameter p[3] appears in the denominator. << 131 if (p[3] > 0) << 132 p[iMax-1] = Function(p[3], p); << 133 else << 134 { << 135 G4cout << "WARNING: G4eIonisationSpectru << 136 << "parameter p[3] <= 0. G4LEDATA dabat << 137 << Z << ". Please check and/or update i << 138 } << 139 128 140 if(e >= 1. && e <= 0. && Z == 4) p.push_back 129 if(e >= 1. && e <= 0. && Z == 4) p.push_back(0.0); 141 130 142 << 131 143 G4double val = IntSpectrum(x1, x2, p); 132 G4double val = IntSpectrum(x1, x2, p); 144 G4double x0 = (lowestE + bindingEnergy)/ene 133 G4double x0 = (lowestE + bindingEnergy)/energy; 145 G4double nor = IntSpectrum(x0, 0.5, p); 134 G4double nor = IntSpectrum(x0, 0.5, p); 146 << 135 147 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0. 136 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0.0)) { 148 G4cout << "tcut= " << tMin << 137 G4cout << "tcut= " << tMin 149 << "; tMax= " << tMax << 138 << "; tMax= " << tMax 150 << "; x0= " << x0 << 139 << "; x0= " << x0 151 << "; x1= " << x1 << 140 << "; x1= " << x1 152 << "; x2= " << x2 << 141 << "; x2= " << x2 153 << "; val= " << val << 142 << "; val= " << val 154 << "; nor= " << nor << 143 << "; nor= " << nor 155 << "; sum= " << p[0] << 144 << "; sum= " << p[0] 156 << "; a= " << p[1] << 145 << "; a= " << p[1] 157 << "; b= " << p[2] << 146 << "; b= " << p[2] 158 << "; c= " << p[3] << 147 << "; c= " << p[3] 159 << G4endl; 148 << G4endl; 160 if(shell == 1) G4cout << "============" << << 149 if(shell == 1) G4cout << "============" << G4endl; 161 } 150 } 162 151 163 p.clear(); 152 p.clear(); 164 153 165 if(nor > 0.0) val /= nor; 154 if(nor > 0.0) val /= nor; 166 else val = 0.0; 155 else val = 0.0; 167 156 168 return val; << 157 return val; 169 } 158 } 170 159 171 160 172 G4double G4eIonisationSpectrum::AverageEnergy( 161 G4double G4eIonisationSpectrum::AverageEnergy(G4int Z, 173 G4double tMin, << 162 G4double tMin, 174 G4double tMax, << 163 G4double tMax, 175 G4double e, 164 G4double e, 176 G4int shell, 165 G4int shell, 177 const G4ParticleDefinition* ) 166 const G4ParticleDefinition* ) const 178 { 167 { 179 // Please comment what AverageEnergy does an << 168 // Please comment what AverageEnergy does and what are the three 180 // functions mentioned below 169 // functions mentioned below 181 // Describe the algorithms used 170 // Describe the algorithms used 182 171 183 G4double eMax = MaxEnergyOfSecondaries(e); 172 G4double eMax = MaxEnergyOfSecondaries(e); 184 G4double t0 = std::max(tMin, lowestE); 173 G4double t0 = std::max(tMin, lowestE); 185 G4double tm = std::min(tMax, eMax); 174 G4double tm = std::min(tMax, eMax); 186 if(t0 >= tm) return 0.0; 175 if(t0 >= tm) return 0.0; 187 176 188 G4double bindingEnergy = (G4AtomicTransition 177 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 189 Shell(Z, shell)->Bi 178 Shell(Z, shell)->BindingEnergy(); 190 179 191 if(e <= bindingEnergy) return 0.0; 180 if(e <= bindingEnergy) return 0.0; 192 181 193 G4double energy = e + bindingEnergy; 182 G4double energy = e + bindingEnergy; 194 183 195 G4double x1 = std::min(0.5,(t0 + bindingEner 184 G4double x1 = std::min(0.5,(t0 + bindingEnergy)/energy); 196 G4double x2 = std::min(0.5,(tm + bindingEner 185 G4double x2 = std::min(0.5,(tm + bindingEnergy)/energy); 197 186 198 if(verbose > 1) { 187 if(verbose > 1) { 199 G4cout << "G4eIonisationSpectrum::AverageE 188 G4cout << "G4eIonisationSpectrum::AverageEnergy: Z= " << Z 200 << "; shell= " << shell 189 << "; shell= " << shell 201 << "; E(keV)= " << e/keV 190 << "; E(keV)= " << e/keV 202 << "; bindingE(keV)= " << bindingEn 191 << "; bindingE(keV)= " << bindingEnergy/keV 203 << "; x1= " << x1 << 192 << "; x1= " << x1 204 << "; x2= " << x2 << 193 << "; x2= " << x2 205 << G4endl; 194 << G4endl; 206 } 195 } 207 196 208 G4DataVector p; 197 G4DataVector p; 209 198 210 // Access parameters 199 // Access parameters 211 for (G4int i=0; i<iMax; i++) << 200 for (G4int i=0; i<iMax; i++) 212 { 201 { 213 G4double x = theParam->Parameter(Z, shell, 202 G4double x = theParam->Parameter(Z, shell, i, e); 214 if(i<4) x /= energy; << 203 if(i<4) x /= energy; 215 p.push_back(x); 204 p.push_back(x); 216 } 205 } 217 206 218 if(p[3] > 0.5) p[3] = 0.5; 207 if(p[3] > 0.5) p[3] = 0.5; 219 208 220 G4double gLocal2 = energy/electron_mass_c2 + << 209 G4double g = energy/electron_mass_c2 + 1.; 221 p.push_back((2.0*gLocal2 - 1.0)/(gLocal2*gLo << 210 p.push_back((2.0*g - 1.0)/(g*g)); 222 << 223 << 224 //Add protection against division by zero: a << 225 //parameter p[3] appears in the denominator. << 226 if (p[3] > 0) << 227 p[iMax-1] = Function(p[3], p); << 228 else << 229 { << 230 G4cout << "WARNING: G4eIonisationSpectru << 231 << "parameter p[3] <= 0. G4LEDATA dabat << 232 << Z << ". Please check and/or update i << 233 } << 234 211 >> 212 p[iMax-1] = Function(p[3], p); >> 213 235 G4double val = AverageValue(x1, x2, p); 214 G4double val = AverageValue(x1, x2, p); 236 G4double x0 = (lowestE + bindingEnergy)/ene 215 G4double x0 = (lowestE + bindingEnergy)/energy; 237 G4double nor = IntSpectrum(x0, 0.5, p); 216 G4double nor = IntSpectrum(x0, 0.5, p); 238 val *= energy; 217 val *= energy; 239 218 240 if(verbose > 1) { 219 if(verbose > 1) { 241 G4cout << "tcut(MeV)= " << tMin/MeV << 220 G4cout << "tcut(MeV)= " << tMin/MeV 242 << "; tMax(MeV)= " << tMax/MeV << 221 << "; tMax(MeV)= " << tMax/MeV 243 << "; x0= " << x0 << 222 << "; x0= " << x0 244 << "; x1= " << x1 << 223 << "; x1= " << x1 245 << "; x2= " << x2 << 224 << "; x2= " << x2 246 << "; val= " << val << 225 << "; val= " << val 247 << "; nor= " << nor << 226 << "; nor= " << nor 248 << "; sum= " << p[0] << 227 << "; sum= " << p[0] 249 << "; a= " << p[1] << 228 << "; a= " << p[1] 250 << "; b= " << p[2] << 229 << "; b= " << p[2] 251 << "; c= " << p[3] << 230 << "; c= " << p[3] 252 << G4endl; 231 << G4endl; 253 } 232 } 254 233 255 p.clear(); 234 p.clear(); 256 235 257 if(nor > 0.0) val /= nor; 236 if(nor > 0.0) val /= nor; 258 else val = 0.0; 237 else val = 0.0; 259 238 260 return val; << 239 return val; 261 } 240 } 262 241 263 242 264 G4double G4eIonisationSpectrum::SampleEnergy(G 243 G4double G4eIonisationSpectrum::SampleEnergy(G4int Z, 265 G4double tMin, << 244 G4double tMin, 266 G4double tMax, << 245 G4double tMax, 267 G4double e, 246 G4double e, 268 G4int shell, 247 G4int shell, 269 const G4ParticleDefinition* ) c 248 const G4ParticleDefinition* ) const 270 { 249 { 271 // Please comment what SampleEnergy does 250 // Please comment what SampleEnergy does 272 G4double tDelta = 0.0; 251 G4double tDelta = 0.0; 273 G4double t0 = std::max(tMin, lowestE); 252 G4double t0 = std::max(tMin, lowestE); 274 G4double tm = std::min(tMax, MaxEnergyOfSeco 253 G4double tm = std::min(tMax, MaxEnergyOfSecondaries(e)); 275 if(t0 > tm) return tDelta; 254 if(t0 > tm) return tDelta; 276 255 277 G4double bindingEnergy = (G4AtomicTransition 256 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 278 Shell(Z, shell)->Bi 257 Shell(Z, shell)->BindingEnergy(); 279 258 280 if(e <= bindingEnergy) return 0.0; 259 if(e <= bindingEnergy) return 0.0; 281 260 282 G4double energy = e + bindingEnergy; 261 G4double energy = e + bindingEnergy; 283 262 284 G4double x1 = std::min(0.5,(t0 + bindingEner 263 G4double x1 = std::min(0.5,(t0 + bindingEnergy)/energy); 285 G4double x2 = std::min(0.5,(tm + bindingEner 264 G4double x2 = std::min(0.5,(tm + bindingEnergy)/energy); 286 if(x1 >= x2) return tDelta; 265 if(x1 >= x2) return tDelta; 287 266 288 if(verbose > 1) { 267 if(verbose > 1) { 289 G4cout << "G4eIonisationSpectrum::SampleEn 268 G4cout << "G4eIonisationSpectrum::SampleEnergy: Z= " << Z 290 << "; shell= " << shell 269 << "; shell= " << shell 291 << "; E(keV)= " << e/keV 270 << "; E(keV)= " << e/keV 292 << G4endl; 271 << G4endl; 293 } 272 } 294 273 295 // Access parameters 274 // Access parameters 296 G4DataVector p; 275 G4DataVector p; 297 276 298 // Access parameters 277 // Access parameters 299 for (G4int i=0; i<iMax; i++) << 278 for (G4int i=0; i<iMax; i++) 300 { 279 { 301 G4double x = theParam->Parameter(Z, shell, 280 G4double x = theParam->Parameter(Z, shell, i, e); 302 if(i<4) x /= energy; << 281 if(i<4) x /= energy; 303 p.push_back(x); 282 p.push_back(x); 304 } 283 } 305 284 306 if(p[3] > 0.5) p[3] = 0.5; 285 if(p[3] > 0.5) p[3] = 0.5; 307 286 308 G4double gLocal3 = energy/electron_mass_c2 + << 287 G4double g = energy/electron_mass_c2 + 1.; 309 p.push_back((2.0*gLocal3 - 1.0)/(gLocal3*gLo << 288 p.push_back((2.0*g - 1.0)/(g*g)); 310 289 311 << 290 p[iMax-1] = Function(p[3], p); 312 //Add protection against division by zero: a << 313 //parameter p[3] appears in the denominator. << 314 if (p[3] > 0) << 315 p[iMax-1] = Function(p[3], p); << 316 else << 317 { << 318 G4cout << "WARNING: G4eIonisationSpectru << 319 << "parameter p[3] <= 0. G4LEDATA dabat << 320 << Z << ". Please check and/or update i << 321 } << 322 291 323 G4double aria1 = 0.0; 292 G4double aria1 = 0.0; 324 G4double a1 = std::max(x1,p[1]); 293 G4double a1 = std::max(x1,p[1]); 325 G4double a2 = std::min(x2,p[3]); 294 G4double a2 = std::min(x2,p[3]); 326 if(a1 < a2) aria1 = IntSpectrum(a1, a2, p); 295 if(a1 < a2) aria1 = IntSpectrum(a1, a2, p); 327 G4double aria2 = 0.0; 296 G4double aria2 = 0.0; 328 G4double a3 = std::max(x1,p[3]); 297 G4double a3 = std::max(x1,p[3]); 329 G4double a4 = x2; 298 G4double a4 = x2; 330 if(a3 < a4) aria2 = IntSpectrum(a3, a4, p); 299 if(a3 < a4) aria2 = IntSpectrum(a3, a4, p); 331 300 332 G4double aria = (aria1 + aria2)*G4UniformRan 301 G4double aria = (aria1 + aria2)*G4UniformRand(); 333 G4double amaj, fun, q, x, z1, z2, dx, dx1; 302 G4double amaj, fun, q, x, z1, z2, dx, dx1; 334 303 335 //======= First aria to sample ===== 304 //======= First aria to sample ===== 336 305 337 if(aria <= aria1) { << 306 if(aria <= aria1) { 338 307 339 amaj = p[4]; 308 amaj = p[4]; 340 for (G4int j=5; j<iMax; j++) { 309 for (G4int j=5; j<iMax; j++) { 341 if(p[j] > amaj) amaj = p[j]; 310 if(p[j] > amaj) amaj = p[j]; 342 } 311 } 343 312 344 a1 = 1./a1; 313 a1 = 1./a1; 345 a2 = 1./a2; 314 a2 = 1./a2; 346 315 347 G4int i; 316 G4int i; 348 do { 317 do { 349 318 350 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 319 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 351 z1 = p[1]; 320 z1 = p[1]; 352 z2 = p[3]; 321 z2 = p[3]; 353 dx = (p[2] - p[1]) / 3.0; 322 dx = (p[2] - p[1]) / 3.0; 354 dx1= G4Exp(std::log(p[3]/p[2]) / 16.0); << 323 dx1= std::exp(std::log(p[3]/p[2]) / 16.0); 355 for (i=4; i<iMax-1; i++) { 324 for (i=4; i<iMax-1; i++) { 356 325 357 if (i < 7) { 326 if (i < 7) { 358 z2 = z1 + dx; 327 z2 = z1 + dx; 359 } else if(iMax-2 == i) { 328 } else if(iMax-2 == i) { 360 z2 = p[3]; 329 z2 = p[3]; 361 break; 330 break; 362 } else { 331 } else { 363 z2 = z1*dx1; 332 z2 = z1*dx1; 364 } 333 } 365 if(x >= z1 && x <= z2) break; 334 if(x >= z1 && x <= z2) break; 366 z1 = z2; 335 z1 = z2; 367 } 336 } 368 fun = p[i] + (x - z1) * (p[i+1] - p[i])/ 337 fun = p[i] + (x - z1) * (p[i+1] - p[i])/(z2 - z1); 369 338 370 if(fun > amaj) { 339 if(fun > amaj) { 371 G4cout << "WARNING in G4eIonisationS << 340 G4cout << "WARNING in G4eIonisationSpectrum::SampleEnergy:" 372 << " Majoranta " << amaj << 341 << " Majoranta " << amaj 373 << " < " << fun 342 << " < " << fun 374 << " in the first aria at x= 343 << " in the first aria at x= " << x 375 << G4endl; 344 << G4endl; 376 } 345 } 377 346 378 q = amaj*G4UniformRand(); 347 q = amaj*G4UniformRand(); 379 348 380 } while (q >= fun); 349 } while (q >= fun); 381 350 382 //======= Second aria to sample ===== 351 //======= Second aria to sample ===== 383 352 384 } else { 353 } else { 385 354 386 amaj = std::max(p[iMax-1], Function(0.5, p 355 amaj = std::max(p[iMax-1], Function(0.5, p)) * factor; 387 a1 = 1./a3; 356 a1 = 1./a3; 388 a2 = 1./a4; 357 a2 = 1./a4; 389 358 390 do { 359 do { 391 360 392 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 361 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 393 fun = Function(x, p); 362 fun = Function(x, p); 394 363 395 if(fun > amaj) { 364 if(fun > amaj) { 396 G4cout << "WARNING in G4eIonisationS << 365 G4cout << "WARNING in G4eIonisationSpectrum::SampleEnergy:" 397 << " Majoranta " << amaj << 366 << " Majoranta " << amaj 398 << " < " << fun 367 << " < " << fun 399 << " in the second aria at x= 368 << " in the second aria at x= " << x 400 << G4endl; 369 << G4endl; 401 } 370 } 402 371 403 q = amaj*G4UniformRand(); 372 q = amaj*G4UniformRand(); 404 373 405 } while (q >= fun); 374 } while (q >= fun); 406 375 407 } 376 } 408 377 409 p.clear(); 378 p.clear(); 410 379 411 tDelta = x*energy - bindingEnergy; 380 tDelta = x*energy - bindingEnergy; 412 381 413 if(verbose > 1) { 382 if(verbose > 1) { 414 G4cout << "tcut(MeV)= " << tMin/MeV << 383 G4cout << "tcut(MeV)= " << tMin/MeV 415 << "; tMax(MeV)= " << tMax/MeV << 384 << "; tMax(MeV)= " << tMax/MeV 416 << "; x1= " << x1 << 385 << "; x1= " << x1 417 << "; x2= " << x2 << 386 << "; x2= " << x2 418 << "; a1= " << a1 << 387 << "; a1= " << a1 419 << "; a2= " << a2 << 388 << "; a2= " << a2 420 << "; x= " << x << 389 << "; x= " << x 421 << "; be= " << bindingEnergy << 390 << "; be= " << bindingEnergy 422 << "; e= " << e << 391 << "; e= " << e 423 << "; tDelta= " << tDelta << 392 << "; tDelta= " << tDelta 424 << G4endl; 393 << G4endl; 425 } 394 } 426 395 427 396 428 return tDelta; << 397 return tDelta; 429 } 398 } 430 399 431 400 432 G4double G4eIonisationSpectrum::IntSpectrum(G4 << 401 G4double G4eIonisationSpectrum::IntSpectrum(G4double xMin, 433 G4double xMax, 402 G4double xMax, 434 const G4DataVector& p) const 403 const G4DataVector& p) const 435 { 404 { 436 // Please comment what IntSpectrum does 405 // Please comment what IntSpectrum does 437 G4double sum = 0.0; 406 G4double sum = 0.0; 438 if(xMin >= xMax) return sum; 407 if(xMin >= xMax) return sum; 439 408 440 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2, 409 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2, q; 441 410 442 // Integral over interpolation aria 411 // Integral over interpolation aria 443 if(xMin < p[3]) { 412 if(xMin < p[3]) { 444 413 445 x1 = p[1]; 414 x1 = p[1]; 446 y1 = p[4]; 415 y1 = p[4]; 447 416 448 G4double dx = (p[2] - p[1]) / 3.0; 417 G4double dx = (p[2] - p[1]) / 3.0; 449 G4double dx1= G4Exp(std::log(p[3]/p[2]) / << 418 G4double dx1= std::exp(std::log(p[3]/p[2]) / 16.0); 450 419 451 for (size_t i=0; i<19; i++) { 420 for (size_t i=0; i<19; i++) { 452 421 453 q = 0.0; 422 q = 0.0; 454 if (i < 3) { 423 if (i < 3) { 455 x2 = x1 + dx; 424 x2 = x1 + dx; 456 } else if(18 == i) { 425 } else if(18 == i) { 457 x2 = p[3]; 426 x2 = p[3]; 458 } else { 427 } else { 459 x2 = x1*dx1; 428 x2 = x1*dx1; 460 } 429 } 461 430 462 y2 = p[5 + i]; 431 y2 = p[5 + i]; 463 432 464 if (xMax <= x1) { 433 if (xMax <= x1) { 465 break; 434 break; 466 } else if (xMin < x2) { 435 } else if (xMin < x2) { 467 436 468 xs1 = x1; 437 xs1 = x1; 469 xs2 = x2; 438 xs2 = x2; 470 ys1 = y1; 439 ys1 = y1; 471 ys2 = y2; 440 ys2 = y2; 472 441 473 if (x2 > x1) { 442 if (x2 > x1) { 474 if (xMin > x1) { 443 if (xMin > x1) { 475 xs1 = xMin; 444 xs1 = xMin; 476 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - 445 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - x1); 477 } << 446 } 478 if (xMax < x2) { 447 if (xMax < x2) { 479 xs2 = xMax; 448 xs2 = xMax; 480 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - 449 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - x2); 481 } << 450 } 482 if (xs2 > xs1) { 451 if (xs2 > xs1) { 483 q = (ys1*xs2 - ys2*xs1)/(xs1*xs2) << 452 q = (ys1*xs2 - ys2*xs1)/(xs1*xs2) 484 + std::log(xs2/xs1)*(ys2 - ys1) 453 + std::log(xs2/xs1)*(ys2 - ys1)/(xs2 - xs1); 485 sum += q; 454 sum += q; 486 if(p.size() == 26) G4cout << "i= " 455 if(p.size() == 26) G4cout << "i= " << i << " q= " << q << " sum= " << sum << G4endl; 487 } 456 } 488 } << 457 } 489 } 458 } 490 x1 = x2; 459 x1 = x2; 491 y1 = y2; 460 y1 = y2; 492 } 461 } 493 } 462 } 494 463 495 // Integral over aria with parametrised form << 464 // Integral over aria with parametrised formula 496 465 497 x1 = std::max(xMin, p[3]); 466 x1 = std::max(xMin, p[3]); 498 if(x1 >= xMax) return sum; 467 if(x1 >= xMax) return sum; 499 x2 = xMax; 468 x2 = xMax; 500 469 501 xs1 = 1./x1; 470 xs1 = 1./x1; 502 xs2 = 1./x2; 471 xs2 = 1./x2; 503 q = (xs1 - xs2)*(1.0 - p[0]) << 472 q = (xs1 - xs2)*(1.0 - p[0]) 504 - p[iMax]*std::log(x2/x1) << 473 - p[iMax]*std::log(x2/x1) 505 + (1. - p[iMax])*(x2 - x1) 474 + (1. - p[iMax])*(x2 - x1) 506 + 1./(1. - x2) - 1./(1. - x1) << 475 + 1./(1. - x2) - 1./(1. - x1) 507 + p[iMax]*std::log((1. - x2)/(1. - x1)) 476 + p[iMax]*std::log((1. - x2)/(1. - x1)) 508 + 0.25*p[0]*(xs1*xs1 - xs2*xs2); 477 + 0.25*p[0]*(xs1*xs1 - xs2*xs2); 509 sum += q; 478 sum += q; 510 if(p.size() == 26) G4cout << "param... q= " 479 if(p.size() == 26) G4cout << "param... q= " << q << " sum= " << sum << G4endl; 511 480 512 return sum; 481 return sum; 513 } << 482 } 514 483 515 484 516 G4double G4eIonisationSpectrum::AverageValue(G << 485 G4double G4eIonisationSpectrum::AverageValue(G4double xMin, 517 G4double xMax, 486 G4double xMax, 518 const G4DataVector& p) const 487 const G4DataVector& p) const 519 { 488 { 520 G4double sum = 0.0; 489 G4double sum = 0.0; 521 if(xMin >= xMax) return sum; 490 if(xMin >= xMax) return sum; 522 491 523 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2; 492 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2; 524 493 525 // Integral over interpolation aria 494 // Integral over interpolation aria 526 if(xMin < p[3]) { 495 if(xMin < p[3]) { 527 496 528 x1 = p[1]; 497 x1 = p[1]; 529 y1 = p[4]; 498 y1 = p[4]; 530 499 531 G4double dx = (p[2] - p[1]) / 3.0; 500 G4double dx = (p[2] - p[1]) / 3.0; 532 G4double dx1= G4Exp(std::log(p[3]/p[2]) / << 501 G4double dx1= std::exp(std::log(p[3]/p[2]) / 16.0); 533 502 534 for (size_t i=0; i<19; i++) { 503 for (size_t i=0; i<19; i++) { 535 504 536 if (i < 3) { 505 if (i < 3) { 537 x2 = x1 + dx; 506 x2 = x1 + dx; 538 } else if(18 == i) { 507 } else if(18 == i) { 539 x2 = p[3]; 508 x2 = p[3]; 540 } else { 509 } else { 541 x2 = x1*dx1; 510 x2 = x1*dx1; 542 } 511 } 543 512 544 y2 = p[5 + i]; 513 y2 = p[5 + i]; 545 514 546 if (xMax <= x1) { 515 if (xMax <= x1) { 547 break; 516 break; 548 } else if (xMin < x2) { 517 } else if (xMin < x2) { 549 518 550 xs1 = x1; 519 xs1 = x1; 551 xs2 = x2; 520 xs2 = x2; 552 ys1 = y1; 521 ys1 = y1; 553 ys2 = y2; 522 ys2 = y2; 554 523 555 if (x2 > x1) { 524 if (x2 > x1) { 556 if (xMin > x1) { 525 if (xMin > x1) { 557 xs1 = xMin; 526 xs1 = xMin; 558 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - 527 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - x1); 559 } << 528 } 560 if (xMax < x2) { 529 if (xMax < x2) { 561 xs2 = xMax; 530 xs2 = xMax; 562 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - 531 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - x2); 563 } << 532 } 564 if (xs2 > xs1) { 533 if (xs2 > xs1) { 565 sum += std::log(xs2/xs1)*(ys1*xs2 << 534 sum += std::log(xs2/xs1)*(ys1*xs2 - ys2*xs1)/(xs2 - xs1) 566 + ys2 - ys1; 535 + ys2 - ys1; 567 } 536 } 568 } << 537 } 569 } 538 } 570 x1 = x2; 539 x1 = x2; 571 y1 = y2; 540 y1 = y2; 572 541 573 } 542 } 574 } 543 } 575 544 576 // Integral over aria with parametrised form << 545 // Integral over aria with parametrised formula 577 546 578 x1 = std::max(xMin, p[3]); 547 x1 = std::max(xMin, p[3]); 579 if(x1 >= xMax) return sum; 548 if(x1 >= xMax) return sum; 580 x2 = xMax; 549 x2 = xMax; 581 550 582 xs1 = 1./x1; 551 xs1 = 1./x1; 583 xs2 = 1./x2; 552 xs2 = 1./x2; 584 553 585 sum += std::log(x2/x1)*(1.0 - p[0]) << 554 sum += std::log(x2/x1)*(1.0 - p[0]) 586 + 0.5*(1. - p[iMax])*(x2*x2 - x1*x1) 555 + 0.5*(1. - p[iMax])*(x2*x2 - x1*x1) 587 + 1./(1. - x2) - 1./(1. - x1) << 556 + 1./(1. - x2) - 1./(1. - x1) 588 + (1. + p[iMax])*std::log((1. - x2)/(1 557 + (1. + p[iMax])*std::log((1. - x2)/(1. - x1)) 589 + 0.5*p[0]*(xs1 - xs2); 558 + 0.5*p[0]*(xs1 - xs2); 590 559 591 return sum; 560 return sum; 592 } << 561 } 593 562 594 563 595 void G4eIonisationSpectrum::PrintData() const << 564 void G4eIonisationSpectrum::PrintData() const 596 { 565 { 597 theParam->PrintData(); 566 theParam->PrintData(); 598 } 567 } 599 568 600 G4double G4eIonisationSpectrum::MaxEnergyOfSec 569 G4double G4eIonisationSpectrum::MaxEnergyOfSecondaries(G4double kineticEnergy, 601 G4int, // Z = 0, 570 G4int, // Z = 0, 602 const G4ParticleDefinition* 571 const G4ParticleDefinition* ) const 603 { 572 { 604 return 0.5 * kineticEnergy; 573 return 0.5 * kineticEnergy; 605 } 574 } 606 575