Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4eIonisationSpectrum.cc,v 1.20 2002/07/19 17:32:50 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-05-00 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class file 28 // GEANT4 Class file 30 // 29 // 31 // 30 // 32 // File name: G4eIonisationSpectrum 31 // File name: G4eIonisationSpectrum 33 // 32 // 34 // Author: V.Ivanchenko (Vladimir.Ivanc 33 // Author: V.Ivanchenko (Vladimir.Ivanchenko@cern.ch) 35 // << 34 // 36 // Creation date: 29 September 2001 35 // Creation date: 29 September 2001 37 // 36 // 38 // Modifications: << 37 // Modifications: 39 // 10.10.2001 MGP Revision to improv << 38 // 10.10.2001 MGP Revision to improve code quality and 40 // consistency with d 39 // consistency with design 41 // 02.11.2001 VI Optimize sampling << 40 // 02.11.2001 VI Optimize sampling of energy 42 // 29.11.2001 VI New parametrisatio << 41 // 29.11.2001 VI New parametrisation 43 // 19.04.2002 VI Add protection in << 42 // 19.04.2002 VI Add protection in case of energy below binding 44 // 30.05.2002 VI Update to 24-param 43 // 30.05.2002 VI Update to 24-parameters data 45 // 11.07.2002 VI Fix in integration 44 // 11.07.2002 VI Fix in integration over spectrum 46 // 23.03.2009 LP Added protection a << 47 // faulty database fi << 48 // 45 // 49 // ------------------------------------------- 46 // ------------------------------------------------------------------- 50 // 47 // 51 48 52 #include "G4eIonisationSpectrum.hh" 49 #include "G4eIonisationSpectrum.hh" 53 #include "G4AtomicTransitionManager.hh" 50 #include "G4AtomicTransitionManager.hh" 54 #include "G4AtomicShell.hh" 51 #include "G4AtomicShell.hh" 55 #include "G4DataVector.hh" 52 #include "G4DataVector.hh" 56 #include "Randomize.hh" 53 #include "Randomize.hh" 57 #include "G4PhysicalConstants.hh" << 54 58 #include "G4SystemOfUnits.hh" << 59 #include "G4Exp.hh" << 60 55 61 G4eIonisationSpectrum::G4eIonisationSpectrum() 56 G4eIonisationSpectrum::G4eIonisationSpectrum():G4VEnergySpectrum(), 62 lowestE(0.1*eV), 57 lowestE(0.1*eV), 63 factor(1.3), 58 factor(1.3), 64 iMax(24), 59 iMax(24), 65 verbose(0) 60 verbose(0) 66 { 61 { 67 theParam = new G4eIonisationParameters(); 62 theParam = new G4eIonisationParameters(); 68 } 63 } 69 64 70 65 71 G4eIonisationSpectrum::~G4eIonisationSpectrum( << 66 G4eIonisationSpectrum::~G4eIonisationSpectrum() 72 { 67 { 73 delete theParam; 68 delete theParam; 74 } 69 } 75 70 76 71 77 G4double G4eIonisationSpectrum::Probability(G4 << 72 G4double G4eIonisationSpectrum::Probability(G4int Z, 78 G4double tMin, << 73 G4double tMin, 79 G4double tMax, << 74 G4double tMax, 80 G4double e, 75 G4double e, 81 G4int shell, 76 G4int shell, 82 const G4ParticleDefinition* ) co << 77 const G4ParticleDefinition* part) const 83 { 78 { 84 // Please comment what Probability does and << 79 // Please comment what Probability does and what are the three 85 // functions mentioned below 80 // functions mentioned below 86 // Describe the algorithms used 81 // Describe the algorithms used 87 82 88 G4double eMax = MaxEnergyOfSecondaries(e); 83 G4double eMax = MaxEnergyOfSecondaries(e); 89 G4double t0 = std::max(tMin, lowestE); << 84 G4double t0 = G4std::max(tMin, lowestE); 90 G4double tm = std::min(tMax, eMax); << 85 G4double tm = G4std::min(tMax, eMax); 91 if(t0 >= tm) return 0.0; 86 if(t0 >= tm) return 0.0; 92 87 93 G4double bindingEnergy = (G4AtomicTransition 88 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 94 Shell(Z, shell)->Bi 89 Shell(Z, shell)->BindingEnergy(); 95 90 96 if(e <= bindingEnergy) return 0.0; 91 if(e <= bindingEnergy) return 0.0; 97 92 98 G4double energy = e + bindingEnergy; 93 G4double energy = e + bindingEnergy; 99 94 100 G4double x1 = std::min(0.5,(t0 + bindingEner << 95 G4double x1 = G4std::min(0.5,(t0 + bindingEnergy)/energy); 101 G4double x2 = std::min(0.5,(tm + bindingEner << 96 G4double x2 = G4std::min(0.5,(tm + bindingEnergy)/energy); 102 97 103 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0. 98 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0.0)) { 104 G4cout << "G4eIonisationSpectrum::Probabil 99 G4cout << "G4eIonisationSpectrum::Probability: Z= " << Z 105 << "; shell= " << shell 100 << "; shell= " << shell 106 << "; E(keV)= " << e/keV 101 << "; E(keV)= " << e/keV 107 << "; Eb(keV)= " << bindingEnergy/k 102 << "; Eb(keV)= " << bindingEnergy/keV 108 << "; x1= " << x1 << 103 << "; x1= " << x1 109 << "; x2= " << x2 << 104 << "; x2= " << x2 110 << G4endl; 105 << G4endl; 111 << 106 112 } 107 } 113 108 114 G4DataVector p; 109 G4DataVector p; 115 110 116 // Access parameters 111 // Access parameters 117 for (G4int i=0; i<iMax; i++) << 112 for (G4int i=0; i<iMax; i++) 118 { 113 { 119 G4double x = theParam->Parameter(Z, shell, 114 G4double x = theParam->Parameter(Z, shell, i, e); 120 if(i<4) x /= energy; << 115 if(i<4) x /= energy; 121 p.push_back(x); << 116 p.push_back(x); 122 } 117 } 123 118 124 if(p[3] > 0.5) p[3] = 0.5; 119 if(p[3] > 0.5) p[3] = 0.5; 125 << 120 126 G4double gLocal = energy/electron_mass_c2 + << 121 G4double g = energy/electron_mass_c2 + 1.; 127 p.push_back((2.0*gLocal - 1.0)/(gLocal*gLoca << 122 p.push_back((2.0*g - 1.0)/(g*g)); 128 << 123 129 //Add protection against division by zero: a << 124 p[iMax-1] = Function(p[3], p); 130 //parameter p[3] appears in the denominator. << 131 if (p[3] > 0) << 132 p[iMax-1] = Function(p[3], p); << 133 else << 134 { << 135 G4cout << "WARNING: G4eIonisationSpectru << 136 << "parameter p[3] <= 0. G4LEDATA dabat << 137 << Z << ". Please check and/or update i << 138 } << 139 125 140 if(e >= 1. && e <= 0. && Z == 4) p.push_back 126 if(e >= 1. && e <= 0. && Z == 4) p.push_back(0.0); 141 127 142 << 128 143 G4double val = IntSpectrum(x1, x2, p); 129 G4double val = IntSpectrum(x1, x2, p); 144 G4double x0 = (lowestE + bindingEnergy)/ene 130 G4double x0 = (lowestE + bindingEnergy)/energy; 145 G4double nor = IntSpectrum(x0, 0.5, p); 131 G4double nor = IntSpectrum(x0, 0.5, p); 146 << 132 147 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0. 133 if(verbose > 1 || (Z==4 && e>= 1.0 && e<= 0.0)) { 148 G4cout << "tcut= " << tMin << 134 G4cout << "tcut= " << tMin 149 << "; tMax= " << tMax << 135 << "; tMax= " << tMax 150 << "; x0= " << x0 << 136 << "; x0= " << x0 151 << "; x1= " << x1 << 137 << "; x1= " << x1 152 << "; x2= " << x2 << 138 << "; x2= " << x2 153 << "; val= " << val << 139 << "; val= " << val 154 << "; nor= " << nor << 140 << "; nor= " << nor 155 << "; sum= " << p[0] << 141 << "; sum= " << p[0] 156 << "; a= " << p[1] << 142 << "; a= " << p[1] 157 << "; b= " << p[2] << 143 << "; b= " << p[2] 158 << "; c= " << p[3] << 144 << "; c= " << p[3] 159 << G4endl; 145 << G4endl; 160 if(shell == 1) G4cout << "============" << << 146 if(shell == 1) G4cout << "============" << G4endl; 161 } 147 } 162 148 163 p.clear(); 149 p.clear(); 164 150 165 if(nor > 0.0) val /= nor; 151 if(nor > 0.0) val /= nor; 166 else val = 0.0; 152 else val = 0.0; 167 153 168 return val; << 154 return val; 169 } 155 } 170 156 171 157 172 G4double G4eIonisationSpectrum::AverageEnergy( 158 G4double G4eIonisationSpectrum::AverageEnergy(G4int Z, 173 G4double tMin, << 159 G4double tMin, 174 G4double tMax, << 160 G4double tMax, 175 G4double e, 161 G4double e, 176 G4int shell, 162 G4int shell, 177 const G4ParticleDefinition* ) << 163 const G4ParticleDefinition* part) const 178 { 164 { 179 // Please comment what AverageEnergy does an << 165 // Please comment what AverageEnergy does and what are the three 180 // functions mentioned below 166 // functions mentioned below 181 // Describe the algorithms used 167 // Describe the algorithms used 182 168 183 G4double eMax = MaxEnergyOfSecondaries(e); 169 G4double eMax = MaxEnergyOfSecondaries(e); 184 G4double t0 = std::max(tMin, lowestE); << 170 G4double t0 = G4std::max(tMin, lowestE); 185 G4double tm = std::min(tMax, eMax); << 171 G4double tm = G4std::min(tMax, eMax); 186 if(t0 >= tm) return 0.0; 172 if(t0 >= tm) return 0.0; 187 173 188 G4double bindingEnergy = (G4AtomicTransition 174 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 189 Shell(Z, shell)->Bi 175 Shell(Z, shell)->BindingEnergy(); 190 176 191 if(e <= bindingEnergy) return 0.0; 177 if(e <= bindingEnergy) return 0.0; 192 178 193 G4double energy = e + bindingEnergy; 179 G4double energy = e + bindingEnergy; 194 180 195 G4double x1 = std::min(0.5,(t0 + bindingEner << 181 G4double x1 = G4std::min(0.5,(t0 + bindingEnergy)/energy); 196 G4double x2 = std::min(0.5,(tm + bindingEner << 182 G4double x2 = G4std::min(0.5,(tm + bindingEnergy)/energy); 197 183 198 if(verbose > 1) { 184 if(verbose > 1) { 199 G4cout << "G4eIonisationSpectrum::AverageE 185 G4cout << "G4eIonisationSpectrum::AverageEnergy: Z= " << Z 200 << "; shell= " << shell 186 << "; shell= " << shell 201 << "; E(keV)= " << e/keV 187 << "; E(keV)= " << e/keV 202 << "; bindingE(keV)= " << bindingEn 188 << "; bindingE(keV)= " << bindingEnergy/keV 203 << "; x1= " << x1 << 189 << "; x1= " << x1 204 << "; x2= " << x2 << 190 << "; x2= " << x2 205 << G4endl; 191 << G4endl; 206 } 192 } 207 193 208 G4DataVector p; 194 G4DataVector p; 209 195 210 // Access parameters 196 // Access parameters 211 for (G4int i=0; i<iMax; i++) << 197 for (G4int i=0; i<iMax; i++) 212 { 198 { 213 G4double x = theParam->Parameter(Z, shell, 199 G4double x = theParam->Parameter(Z, shell, i, e); 214 if(i<4) x /= energy; << 200 if(i<4) x /= energy; 215 p.push_back(x); 201 p.push_back(x); 216 } 202 } 217 203 218 if(p[3] > 0.5) p[3] = 0.5; 204 if(p[3] > 0.5) p[3] = 0.5; 219 205 220 G4double gLocal2 = energy/electron_mass_c2 + << 206 G4double g = energy/electron_mass_c2 + 1.; 221 p.push_back((2.0*gLocal2 - 1.0)/(gLocal2*gLo << 207 p.push_back((2.0*g - 1.0)/(g*g)); 222 << 223 << 224 //Add protection against division by zero: a << 225 //parameter p[3] appears in the denominator. << 226 if (p[3] > 0) << 227 p[iMax-1] = Function(p[3], p); << 228 else << 229 { << 230 G4cout << "WARNING: G4eIonisationSpectru << 231 << "parameter p[3] <= 0. G4LEDATA dabat << 232 << Z << ". Please check and/or update i << 233 } << 234 208 >> 209 p[iMax-1] = Function(p[3], p); >> 210 235 G4double val = AverageValue(x1, x2, p); 211 G4double val = AverageValue(x1, x2, p); 236 G4double x0 = (lowestE + bindingEnergy)/ene 212 G4double x0 = (lowestE + bindingEnergy)/energy; 237 G4double nor = IntSpectrum(x0, 0.5, p); 213 G4double nor = IntSpectrum(x0, 0.5, p); 238 val *= energy; 214 val *= energy; 239 215 240 if(verbose > 1) { 216 if(verbose > 1) { 241 G4cout << "tcut(MeV)= " << tMin/MeV << 217 G4cout << "tcut(MeV)= " << tMin/MeV 242 << "; tMax(MeV)= " << tMax/MeV << 218 << "; tMax(MeV)= " << tMax/MeV 243 << "; x0= " << x0 << 219 << "; x0= " << x0 244 << "; x1= " << x1 << 220 << "; x1= " << x1 245 << "; x2= " << x2 << 221 << "; x2= " << x2 246 << "; val= " << val << 222 << "; val= " << val 247 << "; nor= " << nor << 223 << "; nor= " << nor 248 << "; sum= " << p[0] << 224 << "; sum= " << p[0] 249 << "; a= " << p[1] << 225 << "; a= " << p[1] 250 << "; b= " << p[2] << 226 << "; b= " << p[2] 251 << "; c= " << p[3] << 227 << "; c= " << p[3] 252 << G4endl; 228 << G4endl; 253 } 229 } 254 230 255 p.clear(); 231 p.clear(); 256 232 257 if(nor > 0.0) val /= nor; 233 if(nor > 0.0) val /= nor; 258 else val = 0.0; 234 else val = 0.0; 259 235 260 return val; << 236 return val; 261 } 237 } 262 238 263 239 264 G4double G4eIonisationSpectrum::SampleEnergy(G 240 G4double G4eIonisationSpectrum::SampleEnergy(G4int Z, 265 G4double tMin, << 241 G4double tMin, 266 G4double tMax, << 242 G4double tMax, 267 G4double e, 243 G4double e, 268 G4int shell, 244 G4int shell, 269 const G4ParticleDefinition* ) c << 245 const G4ParticleDefinition* part) const 270 { 246 { 271 // Please comment what SampleEnergy does 247 // Please comment what SampleEnergy does 272 G4double tDelta = 0.0; 248 G4double tDelta = 0.0; 273 G4double t0 = std::max(tMin, lowestE); << 249 G4double t0 = G4std::max(tMin, lowestE); 274 G4double tm = std::min(tMax, MaxEnergyOfSeco << 250 G4double tm = G4std::min(tMax, MaxEnergyOfSecondaries(e)); 275 if(t0 > tm) return tDelta; 251 if(t0 > tm) return tDelta; 276 252 277 G4double bindingEnergy = (G4AtomicTransition 253 G4double bindingEnergy = (G4AtomicTransitionManager::Instance())-> 278 Shell(Z, shell)->Bi 254 Shell(Z, shell)->BindingEnergy(); 279 255 280 if(e <= bindingEnergy) return 0.0; 256 if(e <= bindingEnergy) return 0.0; 281 257 282 G4double energy = e + bindingEnergy; 258 G4double energy = e + bindingEnergy; 283 259 284 G4double x1 = std::min(0.5,(t0 + bindingEner << 260 G4double x1 = G4std::min(0.5,(t0 + bindingEnergy)/energy); 285 G4double x2 = std::min(0.5,(tm + bindingEner << 261 G4double x2 = G4std::min(0.5,(tm + bindingEnergy)/energy); 286 if(x1 >= x2) return tDelta; 262 if(x1 >= x2) return tDelta; 287 263 288 if(verbose > 1) { 264 if(verbose > 1) { 289 G4cout << "G4eIonisationSpectrum::SampleEn 265 G4cout << "G4eIonisationSpectrum::SampleEnergy: Z= " << Z 290 << "; shell= " << shell 266 << "; shell= " << shell 291 << "; E(keV)= " << e/keV 267 << "; E(keV)= " << e/keV 292 << G4endl; 268 << G4endl; 293 } 269 } 294 270 295 // Access parameters 271 // Access parameters 296 G4DataVector p; 272 G4DataVector p; 297 273 298 // Access parameters 274 // Access parameters 299 for (G4int i=0; i<iMax; i++) << 275 for (G4int i=0; i<iMax; i++) 300 { 276 { 301 G4double x = theParam->Parameter(Z, shell, 277 G4double x = theParam->Parameter(Z, shell, i, e); 302 if(i<4) x /= energy; << 278 if(i<4) x /= energy; 303 p.push_back(x); 279 p.push_back(x); 304 } 280 } 305 281 306 if(p[3] > 0.5) p[3] = 0.5; 282 if(p[3] > 0.5) p[3] = 0.5; 307 283 308 G4double gLocal3 = energy/electron_mass_c2 + << 284 G4double g = energy/electron_mass_c2 + 1.; 309 p.push_back((2.0*gLocal3 - 1.0)/(gLocal3*gLo << 285 p.push_back((2.0*g - 1.0)/(g*g)); 310 << 311 286 312 //Add protection against division by zero: a << 287 p[iMax-1] = Function(p[3], p); 313 //parameter p[3] appears in the denominator. << 314 if (p[3] > 0) << 315 p[iMax-1] = Function(p[3], p); << 316 else << 317 { << 318 G4cout << "WARNING: G4eIonisationSpectru << 319 << "parameter p[3] <= 0. G4LEDATA dabat << 320 << Z << ". Please check and/or update i << 321 } << 322 288 323 G4double aria1 = 0.0; 289 G4double aria1 = 0.0; 324 G4double a1 = std::max(x1,p[1]); << 290 G4double a1 = G4std::max(x1,p[1]); 325 G4double a2 = std::min(x2,p[3]); << 291 G4double a2 = G4std::min(x2,p[3]); 326 if(a1 < a2) aria1 = IntSpectrum(a1, a2, p); 292 if(a1 < a2) aria1 = IntSpectrum(a1, a2, p); 327 G4double aria2 = 0.0; 293 G4double aria2 = 0.0; 328 G4double a3 = std::max(x1,p[3]); << 294 G4double a3 = G4std::max(x1,p[3]); 329 G4double a4 = x2; 295 G4double a4 = x2; 330 if(a3 < a4) aria2 = IntSpectrum(a3, a4, p); 296 if(a3 < a4) aria2 = IntSpectrum(a3, a4, p); 331 297 332 G4double aria = (aria1 + aria2)*G4UniformRan 298 G4double aria = (aria1 + aria2)*G4UniformRand(); 333 G4double amaj, fun, q, x, z1, z2, dx, dx1; 299 G4double amaj, fun, q, x, z1, z2, dx, dx1; 334 300 335 //======= First aria to sample ===== 301 //======= First aria to sample ===== 336 302 337 if(aria <= aria1) { << 303 if(aria <= aria1) { 338 304 339 amaj = p[4]; 305 amaj = p[4]; 340 for (G4int j=5; j<iMax; j++) { 306 for (G4int j=5; j<iMax; j++) { 341 if(p[j] > amaj) amaj = p[j]; 307 if(p[j] > amaj) amaj = p[j]; 342 } 308 } 343 309 344 a1 = 1./a1; 310 a1 = 1./a1; 345 a2 = 1./a2; 311 a2 = 1./a2; 346 312 347 G4int i; 313 G4int i; 348 do { 314 do { 349 315 350 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 316 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 351 z1 = p[1]; 317 z1 = p[1]; 352 z2 = p[3]; 318 z2 = p[3]; 353 dx = (p[2] - p[1]) / 3.0; 319 dx = (p[2] - p[1]) / 3.0; 354 dx1= G4Exp(std::log(p[3]/p[2]) / 16.0); << 320 dx1= exp(log(p[3]/p[2]) / 16.0); 355 for (i=4; i<iMax-1; i++) { 321 for (i=4; i<iMax-1; i++) { 356 322 357 if (i < 7) { 323 if (i < 7) { 358 z2 = z1 + dx; 324 z2 = z1 + dx; 359 } else if(iMax-2 == i) { 325 } else if(iMax-2 == i) { 360 z2 = p[3]; 326 z2 = p[3]; 361 break; 327 break; 362 } else { 328 } else { 363 z2 = z1*dx1; 329 z2 = z1*dx1; 364 } 330 } 365 if(x >= z1 && x <= z2) break; 331 if(x >= z1 && x <= z2) break; 366 z1 = z2; 332 z1 = z2; 367 } 333 } 368 fun = p[i] + (x - z1) * (p[i+1] - p[i])/ 334 fun = p[i] + (x - z1) * (p[i+1] - p[i])/(z2 - z1); 369 335 370 if(fun > amaj) { 336 if(fun > amaj) { 371 G4cout << "WARNING in G4eIonisationS << 337 G4cout << "WARNING in G4eIonisationSpectrum::SampleEnergy:" 372 << " Majoranta " << amaj << 338 << " Majoranta " << amaj 373 << " < " << fun 339 << " < " << fun 374 << " in the first aria at x= 340 << " in the first aria at x= " << x 375 << G4endl; 341 << G4endl; 376 } 342 } 377 343 378 q = amaj*G4UniformRand(); 344 q = amaj*G4UniformRand(); 379 345 380 } while (q >= fun); 346 } while (q >= fun); 381 347 382 //======= Second aria to sample ===== 348 //======= Second aria to sample ===== 383 349 384 } else { 350 } else { 385 351 386 amaj = std::max(p[iMax-1], Function(0.5, p << 352 amaj = G4std::max(p[iMax-1], Function(0.5, p)) * factor; 387 a1 = 1./a3; 353 a1 = 1./a3; 388 a2 = 1./a4; 354 a2 = 1./a4; 389 355 390 do { 356 do { 391 357 392 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 358 x = 1./(a2 + G4UniformRand()*(a1 - a2)); 393 fun = Function(x, p); 359 fun = Function(x, p); 394 360 395 if(fun > amaj) { 361 if(fun > amaj) { 396 G4cout << "WARNING in G4eIonisationS << 362 G4cout << "WARNING in G4eIonisationSpectrum::SampleEnergy:" 397 << " Majoranta " << amaj << 363 << " Majoranta " << amaj 398 << " < " << fun 364 << " < " << fun 399 << " in the second aria at x= 365 << " in the second aria at x= " << x 400 << G4endl; 366 << G4endl; 401 } 367 } 402 368 403 q = amaj*G4UniformRand(); 369 q = amaj*G4UniformRand(); 404 370 405 } while (q >= fun); 371 } while (q >= fun); 406 372 407 } 373 } 408 374 409 p.clear(); 375 p.clear(); 410 376 411 tDelta = x*energy - bindingEnergy; 377 tDelta = x*energy - bindingEnergy; 412 378 413 if(verbose > 1) { 379 if(verbose > 1) { 414 G4cout << "tcut(MeV)= " << tMin/MeV << 380 G4cout << "tcut(MeV)= " << tMin/MeV 415 << "; tMax(MeV)= " << tMax/MeV << 381 << "; tMax(MeV)= " << tMax/MeV 416 << "; x1= " << x1 << 382 << "; x1= " << x1 417 << "; x2= " << x2 << 383 << "; x2= " << x2 418 << "; a1= " << a1 << 384 << "; a1= " << a1 419 << "; a2= " << a2 << 385 << "; a2= " << a2 420 << "; x= " << x << 386 << "; x= " << x 421 << "; be= " << bindingEnergy << 387 << "; be= " << bindingEnergy 422 << "; e= " << e << 388 << "; e= " << e 423 << "; tDelta= " << tDelta << 389 << "; tDelta= " << tDelta 424 << G4endl; 390 << G4endl; 425 } 391 } 426 392 427 393 428 return tDelta; << 394 return tDelta; 429 } 395 } 430 396 431 397 432 G4double G4eIonisationSpectrum::IntSpectrum(G4 << 398 G4double G4eIonisationSpectrum::IntSpectrum(G4double xMin, 433 G4double xMax, 399 G4double xMax, 434 const G4DataVector& p) const 400 const G4DataVector& p) const 435 { 401 { 436 // Please comment what IntSpectrum does 402 // Please comment what IntSpectrum does 437 G4double sum = 0.0; 403 G4double sum = 0.0; 438 if(xMin >= xMax) return sum; 404 if(xMin >= xMax) return sum; 439 405 440 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2, 406 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2, q; 441 407 442 // Integral over interpolation aria 408 // Integral over interpolation aria 443 if(xMin < p[3]) { 409 if(xMin < p[3]) { 444 410 445 x1 = p[1]; 411 x1 = p[1]; 446 y1 = p[4]; 412 y1 = p[4]; 447 413 448 G4double dx = (p[2] - p[1]) / 3.0; 414 G4double dx = (p[2] - p[1]) / 3.0; 449 G4double dx1= G4Exp(std::log(p[3]/p[2]) / << 415 G4double dx1= exp(log(p[3]/p[2]) / 16.0); 450 416 451 for (size_t i=0; i<19; i++) { 417 for (size_t i=0; i<19; i++) { 452 418 453 q = 0.0; 419 q = 0.0; 454 if (i < 3) { 420 if (i < 3) { 455 x2 = x1 + dx; 421 x2 = x1 + dx; 456 } else if(18 == i) { 422 } else if(18 == i) { 457 x2 = p[3]; 423 x2 = p[3]; 458 } else { 424 } else { 459 x2 = x1*dx1; 425 x2 = x1*dx1; 460 } 426 } 461 427 462 y2 = p[5 + i]; 428 y2 = p[5 + i]; 463 429 464 if (xMax <= x1) { 430 if (xMax <= x1) { 465 break; 431 break; 466 } else if (xMin < x2) { 432 } else if (xMin < x2) { 467 433 468 xs1 = x1; 434 xs1 = x1; 469 xs2 = x2; 435 xs2 = x2; 470 ys1 = y1; 436 ys1 = y1; 471 ys2 = y2; 437 ys2 = y2; 472 438 473 if (x2 > x1) { 439 if (x2 > x1) { 474 if (xMin > x1) { 440 if (xMin > x1) { 475 xs1 = xMin; 441 xs1 = xMin; 476 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - 442 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - x1); 477 } << 443 } 478 if (xMax < x2) { 444 if (xMax < x2) { 479 xs2 = xMax; 445 xs2 = xMax; 480 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - 446 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - x2); 481 } << 447 } 482 if (xs2 > xs1) { 448 if (xs2 > xs1) { 483 q = (ys1*xs2 - ys2*xs1)/(xs1*xs2) << 449 q = (ys1*xs2 - ys2*xs1)/(xs1*xs2) 484 + std::log(xs2/xs1)*(ys2 - ys1) << 450 + log(xs2/xs1)*(ys2 - ys1)/(xs2 - xs1); 485 sum += q; 451 sum += q; 486 if(p.size() == 26) G4cout << "i= " 452 if(p.size() == 26) G4cout << "i= " << i << " q= " << q << " sum= " << sum << G4endl; 487 } 453 } 488 } << 454 } 489 } 455 } 490 x1 = x2; 456 x1 = x2; 491 y1 = y2; 457 y1 = y2; 492 } 458 } 493 } 459 } 494 460 495 // Integral over aria with parametrised form << 461 // Integral over aria with parametrised formula 496 462 497 x1 = std::max(xMin, p[3]); << 463 x1 = G4std::max(xMin, p[3]); 498 if(x1 >= xMax) return sum; 464 if(x1 >= xMax) return sum; 499 x2 = xMax; 465 x2 = xMax; 500 466 501 xs1 = 1./x1; 467 xs1 = 1./x1; 502 xs2 = 1./x2; 468 xs2 = 1./x2; 503 q = (xs1 - xs2)*(1.0 - p[0]) << 469 q = (xs1 - xs2)*(1.0 - p[0]) 504 - p[iMax]*std::log(x2/x1) << 470 - p[iMax]*log(x2/x1) 505 + (1. - p[iMax])*(x2 - x1) 471 + (1. - p[iMax])*(x2 - x1) 506 + 1./(1. - x2) - 1./(1. - x1) << 472 + 1./(1. - x2) - 1./(1. - x1) 507 + p[iMax]*std::log((1. - x2)/(1. - x1)) << 473 + p[iMax]*log((1. - x2)/(1. - x1)) 508 + 0.25*p[0]*(xs1*xs1 - xs2*xs2); 474 + 0.25*p[0]*(xs1*xs1 - xs2*xs2); 509 sum += q; 475 sum += q; 510 if(p.size() == 26) G4cout << "param... q= " 476 if(p.size() == 26) G4cout << "param... q= " << q << " sum= " << sum << G4endl; 511 477 512 return sum; 478 return sum; 513 } << 479 } 514 480 515 481 516 G4double G4eIonisationSpectrum::AverageValue(G << 482 G4double G4eIonisationSpectrum::AverageValue(G4double xMin, 517 G4double xMax, 483 G4double xMax, 518 const G4DataVector& p) const 484 const G4DataVector& p) const 519 { 485 { 520 G4double sum = 0.0; 486 G4double sum = 0.0; 521 if(xMin >= xMax) return sum; 487 if(xMin >= xMax) return sum; 522 488 523 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2; 489 G4double x1, x2, xs1, xs2, y1, y2, ys1, ys2; 524 490 525 // Integral over interpolation aria 491 // Integral over interpolation aria 526 if(xMin < p[3]) { 492 if(xMin < p[3]) { 527 493 528 x1 = p[1]; 494 x1 = p[1]; 529 y1 = p[4]; 495 y1 = p[4]; 530 496 531 G4double dx = (p[2] - p[1]) / 3.0; 497 G4double dx = (p[2] - p[1]) / 3.0; 532 G4double dx1= G4Exp(std::log(p[3]/p[2]) / << 498 G4double dx1= exp(log(p[3]/p[2]) / 16.0); 533 499 534 for (size_t i=0; i<19; i++) { 500 for (size_t i=0; i<19; i++) { 535 501 536 if (i < 3) { 502 if (i < 3) { 537 x2 = x1 + dx; 503 x2 = x1 + dx; 538 } else if(18 == i) { 504 } else if(18 == i) { 539 x2 = p[3]; 505 x2 = p[3]; 540 } else { 506 } else { 541 x2 = x1*dx1; 507 x2 = x1*dx1; 542 } 508 } 543 509 544 y2 = p[5 + i]; 510 y2 = p[5 + i]; 545 511 546 if (xMax <= x1) { 512 if (xMax <= x1) { 547 break; 513 break; 548 } else if (xMin < x2) { 514 } else if (xMin < x2) { 549 515 550 xs1 = x1; 516 xs1 = x1; 551 xs2 = x2; 517 xs2 = x2; 552 ys1 = y1; 518 ys1 = y1; 553 ys2 = y2; 519 ys2 = y2; 554 520 555 if (x2 > x1) { 521 if (x2 > x1) { 556 if (xMin > x1) { 522 if (xMin > x1) { 557 xs1 = xMin; 523 xs1 = xMin; 558 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - 524 ys1 += (xs1 - x1)*(y2 - y1)/(x2 - x1); 559 } << 525 } 560 if (xMax < x2) { 526 if (xMax < x2) { 561 xs2 = xMax; 527 xs2 = xMax; 562 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - 528 ys2 += (xs2 - x2)*(y1 - y2)/(x1 - x2); 563 } << 529 } 564 if (xs2 > xs1) { 530 if (xs2 > xs1) { 565 sum += std::log(xs2/xs1)*(ys1*xs2 << 531 sum += log(xs2/xs1)*(ys1*xs2 - ys2*xs1)/(xs2 - xs1) 566 + ys2 - ys1; 532 + ys2 - ys1; 567 } 533 } 568 } << 534 } 569 } 535 } 570 x1 = x2; 536 x1 = x2; 571 y1 = y2; 537 y1 = y2; 572 538 573 } 539 } 574 } 540 } 575 541 576 // Integral over aria with parametrised form << 542 // Integral over aria with parametrised formula 577 543 578 x1 = std::max(xMin, p[3]); << 544 x1 = G4std::max(xMin, p[3]); 579 if(x1 >= xMax) return sum; 545 if(x1 >= xMax) return sum; 580 x2 = xMax; 546 x2 = xMax; 581 547 582 xs1 = 1./x1; 548 xs1 = 1./x1; 583 xs2 = 1./x2; 549 xs2 = 1./x2; 584 550 585 sum += std::log(x2/x1)*(1.0 - p[0]) << 551 sum += log(x2/x1)*(1.0 - p[0]) 586 + 0.5*(1. - p[iMax])*(x2*x2 - x1*x1) 552 + 0.5*(1. - p[iMax])*(x2*x2 - x1*x1) 587 + 1./(1. - x2) - 1./(1. - x1) << 553 + 1./(1. - x2) - 1./(1. - x1) 588 + (1. + p[iMax])*std::log((1. - x2)/(1 << 554 + (1. + p[iMax])*log((1. - x2)/(1. - x1)) 589 + 0.5*p[0]*(xs1 - xs2); 555 + 0.5*p[0]*(xs1 - xs2); 590 556 591 return sum; 557 return sum; 592 } << 558 } 593 559 594 560 595 void G4eIonisationSpectrum::PrintData() const << 561 void G4eIonisationSpectrum::PrintData() const 596 { 562 { 597 theParam->PrintData(); 563 theParam->PrintData(); 598 } 564 } 599 565 600 G4double G4eIonisationSpectrum::MaxEnergyOfSec << 566 601 G4int, // Z = 0, << 567 602 const G4ParticleDefinition* << 568 603 { << 569 604 return 0.5 * kineticEnergy; << 605 } << 606 570