Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // Geant4 Class file 29 // Geant4 Class file 30 // 30 // 31 // Authors: Alfonso Mantero (Alfonso.Mantero@g 31 // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 32 // 32 // 33 // Created 22 April 2010 from old G4UAtomicDee 33 // Created 22 April 2010 from old G4UAtomicDeexcitation class 34 // 34 // 35 // Modified: 35 // Modified: 36 // --------- 36 // --------- 37 // 20 Oct 2011 Alf modified to take into acc 37 // 20 Oct 2011 Alf modified to take into account ECPSSR form Form Factor 38 // 03 Nov 2011 Alf Extended Empirical and Fo 38 // 03 Nov 2011 Alf Extended Empirical and Form Factor ionisation XS models 39 // out thei ranges with Anal 39 // out thei ranges with Analytical one. 40 // 07 Nov 2011 Alf Restored original ioniati 40 // 07 Nov 2011 Alf Restored original ioniation XS for alphas, 41 // letting scaled ones for o 41 // letting scaled ones for other ions. 42 // 20 Mar 2012 LP Register G4PenelopeIonisa 42 // 20 Mar 2012 LP Register G4PenelopeIonisationCrossSection 43 // 43 // 44 // ------------------------------------------- 44 // ------------------------------------------------------------------- 45 // 45 // 46 // Class description: 46 // Class description: 47 // Implementation of atomic deexcitation 47 // Implementation of atomic deexcitation 48 // 48 // 49 // ------------------------------------------- 49 // ------------------------------------------------------------------- 50 50 51 #include "G4UAtomicDeexcitation.hh" 51 #include "G4UAtomicDeexcitation.hh" 52 #include "G4PhysicalConstants.hh" 52 #include "G4PhysicalConstants.hh" 53 #include "G4SystemOfUnits.hh" 53 #include "G4SystemOfUnits.hh" 54 #include "Randomize.hh" 54 #include "Randomize.hh" 55 #include "G4Gamma.hh" 55 #include "G4Gamma.hh" 56 #include "G4AtomicTransitionManager.hh" 56 #include "G4AtomicTransitionManager.hh" 57 #include "G4FluoTransition.hh" 57 #include "G4FluoTransition.hh" 58 #include "G4Electron.hh" 58 #include "G4Electron.hh" 59 #include "G4Positron.hh" 59 #include "G4Positron.hh" 60 #include "G4Proton.hh" 60 #include "G4Proton.hh" 61 #include "G4Alpha.hh" 61 #include "G4Alpha.hh" 62 62 63 #include "G4teoCrossSection.hh" 63 #include "G4teoCrossSection.hh" 64 #include "G4empCrossSection.hh" 64 #include "G4empCrossSection.hh" 65 #include "G4PenelopeIonisationCrossSection.hh" 65 #include "G4PenelopeIonisationCrossSection.hh" 66 #include "G4LivermoreIonisationCrossSection.hh 66 #include "G4LivermoreIonisationCrossSection.hh" 67 #include "G4EmCorrections.hh" 67 #include "G4EmCorrections.hh" 68 #include "G4LossTableManager.hh" 68 #include "G4LossTableManager.hh" 69 #include "G4EmParameters.hh" 69 #include "G4EmParameters.hh" 70 #include "G4Material.hh" 70 #include "G4Material.hh" 71 #include "G4AtomicShells.hh" 71 #include "G4AtomicShells.hh" 72 72 73 using namespace std; 73 using namespace std; 74 74 75 //....oooOO0OOooo........oooOO0OOooo........oo << 76 << 77 G4UAtomicDeexcitation::G4UAtomicDeexcitation() 75 G4UAtomicDeexcitation::G4UAtomicDeexcitation(): 78 G4VAtomDeexcitation("UAtomDeexcitation"), 76 G4VAtomDeexcitation("UAtomDeexcitation"), 79 minGammaEnergy(DBL_MAX), 77 minGammaEnergy(DBL_MAX), 80 minElectronEnergy(DBL_MAX), << 78 minElectronEnergy(DBL_MAX) 81 newShellId(-1) << 82 { 79 { 83 anaPIXEshellCS = nullptr; 80 anaPIXEshellCS = nullptr; 84 PIXEshellCS = nullptr; 81 PIXEshellCS = nullptr; 85 ePIXEshellCS = nullptr; 82 ePIXEshellCS = nullptr; 86 emcorr = G4LossTableManager::Instance()->EmC 83 emcorr = G4LossTableManager::Instance()->EmCorrections(); 87 theElectron = G4Electron::Electron(); 84 theElectron = G4Electron::Electron(); 88 thePositron = G4Positron::Positron(); 85 thePositron = G4Positron::Positron(); 89 transitionManager = G4AtomicTransitionManage 86 transitionManager = G4AtomicTransitionManager::Instance(); 90 } 87 } 91 88 92 //....oooOO0OOooo........oooOO0OOooo........oo << 93 << 94 G4UAtomicDeexcitation::~G4UAtomicDeexcitation( 89 G4UAtomicDeexcitation::~G4UAtomicDeexcitation() 95 { 90 { 96 delete anaPIXEshellCS; 91 delete anaPIXEshellCS; 97 delete PIXEshellCS; 92 delete PIXEshellCS; 98 delete ePIXEshellCS; 93 delete ePIXEshellCS; 99 } 94 } 100 95 101 //....oooOO0OOooo........oooOO0OOooo........oo << 102 << 103 void G4UAtomicDeexcitation::InitialiseForNewRu 96 void G4UAtomicDeexcitation::InitialiseForNewRun() 104 { 97 { 105 if(!IsFluoActive()) { return; } 98 if(!IsFluoActive()) { return; } >> 99 106 transitionManager->Initialise(); 100 transitionManager->Initialise(); >> 101 107 if(!IsPIXEActive()) { return; } 102 if(!IsPIXEActive()) { return; } 108 103 109 if(!anaPIXEshellCS) { 104 if(!anaPIXEshellCS) { 110 anaPIXEshellCS = new G4teoCrossSection("EC 105 anaPIXEshellCS = new G4teoCrossSection("ECPSSR_Analytical"); 111 } 106 } 112 G4cout << G4endl; 107 G4cout << G4endl; 113 G4cout << "### === G4UAtomicDeexcitation::In 108 G4cout << "### === G4UAtomicDeexcitation::InitialiseForNewRun()" << G4endl; 114 109 115 G4EmParameters* param = G4EmParameters::Inst 110 G4EmParameters* param = G4EmParameters::Instance(); 116 G4String namePIXExsModel = param->PIXECrossS 111 G4String namePIXExsModel = param->PIXECrossSectionModel(); 117 G4String namePIXExsElectronModel = param->PI 112 G4String namePIXExsElectronModel = param->PIXEElectronCrossSectionModel(); >> 113 >> 114 //G4cout << namePIXExsModel << " " << namePIXExsElectronModel << G4endl; 118 115 119 // Check if old cross section for p/ion shou 116 // Check if old cross section for p/ion should be deleted 120 if(PIXEshellCS && namePIXExsModel != PIXEshe 117 if(PIXEshellCS && namePIXExsModel != PIXEshellCS->GetName()) 121 { 118 { 122 delete PIXEshellCS; 119 delete PIXEshellCS; 123 PIXEshellCS = nullptr; 120 PIXEshellCS = nullptr; 124 } 121 } 125 122 126 // Instantiate new proton/ion cross section 123 // Instantiate new proton/ion cross section 127 if(!PIXEshellCS) { 124 if(!PIXEshellCS) { 128 if (namePIXExsModel == "ECPSSR_FormFactor" 125 if (namePIXExsModel == "ECPSSR_FormFactor") 129 { 126 { 130 PIXEshellCS = new G4teoCrossSection(namePIXE 127 PIXEshellCS = new G4teoCrossSection(namePIXExsModel); 131 } 128 } 132 else if(namePIXExsModel == "ECPSSR_ANSTO") << 133 { << 134 PIXEshellCS = new G4teoCrossSection(namePIXE << 135 } << 136 else if(namePIXExsModel == "Empirical") 129 else if(namePIXExsModel == "Empirical") 137 { 130 { 138 PIXEshellCS = new G4empCrossSection(namePIXE 131 PIXEshellCS = new G4empCrossSection(namePIXExsModel); 139 } 132 } 140 } 133 } >> 134 //G4cout << "PIXE is initialised" << G4endl; 141 135 142 // Check if old cross section for e+- should 136 // Check if old cross section for e+- should be deleted 143 if(ePIXEshellCS && namePIXExsElectronModel ! 137 if(ePIXEshellCS && namePIXExsElectronModel != ePIXEshellCS->GetName()) 144 { 138 { 145 delete ePIXEshellCS; 139 delete ePIXEshellCS; 146 ePIXEshellCS = nullptr; 140 ePIXEshellCS = nullptr; 147 } 141 } 148 142 149 // Instantiate new e+- cross section 143 // Instantiate new e+- cross section 150 if(nullptr == ePIXEshellCS) << 144 if(!ePIXEshellCS) 151 { 145 { 152 if(namePIXExsElectronModel == "Empirical 146 if(namePIXExsElectronModel == "Empirical") 153 { 147 { 154 ePIXEshellCS = new G4empCrossSection("Empi 148 ePIXEshellCS = new G4empCrossSection("Empirical"); 155 } 149 } 156 else if(namePIXExsElectronModel == "ECPS 150 else if(namePIXExsElectronModel == "ECPSSR_Analytical") 157 { 151 { 158 ePIXEshellCS = new G4teoCrossSection("ECPS 152 ePIXEshellCS = new G4teoCrossSection("ECPSSR_Analytical"); 159 } 153 } 160 else if (namePIXExsElectronModel == "Pen 154 else if (namePIXExsElectronModel == "Penelope") 161 { 155 { 162 ePIXEshellCS = new G4PenelopeIonisationCro 156 ePIXEshellCS = new G4PenelopeIonisationCrossSection(); 163 } 157 } 164 else 158 else 165 { 159 { 166 ePIXEshellCS = new G4LivermoreIonisationCr 160 ePIXEshellCS = new G4LivermoreIonisationCrossSection(); 167 } 161 } 168 } 162 } >> 163 //G4cout << "ePIXE is initialised" << G4endl; 169 } 164 } 170 165 171 //....oooOO0OOooo........oooOO0OOooo........oo << 166 void G4UAtomicDeexcitation::InitialiseForExtraAtom(G4int /*Z*/) 172 << 173 void G4UAtomicDeexcitation::InitialiseForExtra << 174 {} 167 {} 175 168 176 //....oooOO0OOooo........oooOO0OOooo........oo << 177 << 178 const G4AtomicShell* 169 const G4AtomicShell* 179 G4UAtomicDeexcitation::GetAtomicShell(G4int Z, 170 G4UAtomicDeexcitation::GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell) 180 { 171 { 181 return transitionManager->Shell(Z, (std::siz << 172 return transitionManager->Shell(Z, size_t(shell)); 182 } 173 } 183 174 184 //....oooOO0OOooo........oooOO0OOooo........oo << 185 << 186 void G4UAtomicDeexcitation::GenerateParticles( 175 void G4UAtomicDeexcitation::GenerateParticles( 187 std::vector<G4DynamicParticle* << 176 std::vector<G4DynamicParticle*>* vectorOfParticles, 188 const G4AtomicShell* atomicShell, << 177 const G4AtomicShell* atomicShell, 189 G4int Z, << 178 G4int Z, 190 G4double gammaCut, << 179 G4double gammaCut, 191 G4double eCut) << 180 G4double eCut) 192 { 181 { >> 182 193 // Defined initial conditions 183 // Defined initial conditions 194 G4int givenShellId = atomicShell->ShellId(); 184 G4int givenShellId = atomicShell->ShellId(); >> 185 //G4cout << "generating particles for vacancy in shellId: " >> 186 // << givenShellId << G4endl; // debug 195 minGammaEnergy = gammaCut; 187 minGammaEnergy = gammaCut; 196 minElectronEnergy = eCut; 188 minElectronEnergy = eCut; 197 vacancyArray.clear(); << 189 198 << 199 // generation secondaries 190 // generation secondaries 200 G4DynamicParticle* aParticle=0; 191 G4DynamicParticle* aParticle=0; 201 G4int provShellId = 0; 192 G4int provShellId = 0; 202 193 203 //ORIGINAL METHOD BY ALFONSO MANTERO << 194 //ORIGINAL METHOD BY ALFONSO MANTERO 204 if (!IsAugerCascadeActive()) << 195 if (!IsAugerCascadeActive()) 205 { << 196 { 206 //---------------------------- << 197 //---------------------------- 207 G4int counter = 0; << 198 G4int counter = 0; 208 << 199 209 // limits of the EPDL data << 200 // let's check that 5<Z<100 210 if (Z>5 && Z<105) { << 201 >> 202 if (Z>5 && Z<100) { 211 203 212 // The aim of this loop is to generate more << 204 // The aim of this loop is to generate more than one fluorecence photon 213 // from the same ionizing event << 205 // from the same ionizing event 214 do << 206 do >> 207 { >> 208 if (counter == 0) >> 209 // First call to GenerateParticles(...): >> 210 // givenShellId is given by the process 215 { 211 { 216 if (counter == 0) << 212 provShellId = SelectTypeOfTransition(Z, givenShellId); 217 // First call to GenerateParticles(... << 213 218 // givenShellId is given by the proces << 214 if ( provShellId >0) 219 { 215 { 220 provShellId = SelectTypeOfTransition(Z, gi << 216 aParticle = GenerateFluorescence(Z,givenShellId,provShellId); 221 << 217 //if (aParticle != 0) { 222 if (provShellId >0) << 218 // G4cout << "****FLUO!_1**** " 223 { << 219 // << aParticle->GetParticleDefinition()->GetParticleType() 224 aParticle = << 220 // << " " << aParticle->GetKineticEnergy()/keV << G4endl ;} 225 GenerateFluorescence(Z, givenShellId << 226 } << 227 else if (provShellId == -1) << 228 { << 229 aParticle = GenerateAuger(Z, givenShel << 230 } << 231 } 221 } 232 else << 222 else if ( provShellId == -1) 233 // Following calls to GenerateParticle << 234 // newShellId is given by GenerateFluo << 235 { 223 { 236 provShellId = SelectTypeOfTransition(Z,new << 224 // G4cout << "Try to generate Auger 1" << G4endl; 237 if (provShellId >0) << 225 aParticle = GenerateAuger(Z, givenShellId); 238 { << 226 // if (aParticle != 0) { G4cout << "****AUGER!****" << G4endl;} 239 aParticle = GenerateFluorescence(Z,new << 240 } << 241 else if ( provShellId == -1) << 242 { << 243 aParticle = GenerateAuger(Z, newShellI << 244 } << 245 } 227 } 246 ++counter; << 228 else 247 if (aParticle != 0) << 248 { 229 { 249 vectorOfParticles->push_back(aParticle); << 230 //G4Exception("G4UAtomicDeexcitation::GenerateParticles()", >> 231 // "de0002",JustWarning, "Energy deposited locally"); 250 } 232 } 251 else {provShellId = -2;} << 233 } 252 } << 234 else 253 while (provShellId > -2); << 235 // Following calls to GenerateParticles(...): 254 } << 236 // newShellId is given by GenerateFluorescence(...) 255 } // Auger cascade is not active << 237 { >> 238 provShellId = SelectTypeOfTransition(Z,newShellId); >> 239 if (provShellId >0) >> 240 { >> 241 aParticle = GenerateFluorescence(Z,newShellId,provShellId); >> 242 //if (aParticle != 0) { G4cout << "****FLUO!_2****" << aParticle->GetParticleDefinition()->GetParticleType() << " " << aParticle->GetKineticEnergy()/keV << G4endl;} //debug >> 243 } >> 244 else if ( provShellId == -1) >> 245 { >> 246 // G4cout << "Try to generate Auger 2" << G4endl; //debug >> 247 aParticle = GenerateAuger(Z, newShellId); >> 248 // if (aParticle != 0) { G4cout << "****AUGER!****" << G4endl;} //debug >> 249 } >> 250 else >> 251 { >> 252 //G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0002",JustWarning, "Energy deposited locally"); >> 253 } >> 254 } >> 255 counter++; >> 256 if (aParticle != 0) >> 257 { >> 258 vectorOfParticles->push_back(aParticle); >> 259 //G4cout << "Deexcitation Occurred!" << G4endl; //debug >> 260 } >> 261 else {provShellId = -2;} >> 262 } >> 263 while (provShellId > -2); >> 264 } >> 265 else >> 266 { >> 267 //G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0001",JustWarning, "Energy deposited locally"); >> 268 } >> 269 >> 270 //G4cout << "---------FATTO!---------" << G4endl; //debug 256 271 257 //END OF ORIGINAL METHOD BY ALFONSO MANTERO << 272 } // Auger cascade is not active 258 //---------------------- << 259 273 260 // NEW METHOD << 274 //END OF ORIGINAL METHOD BY ALFONSO MANTERO 261 // Auger cascade by Burkhant Suerfu on March << 275 //---------------------- 262 if (IsAugerCascadeActive()) << 263 { << 264 //---------------------- << 265 vacancyArray.push_back(givenShellId); << 266 276 267 // let's check that 5<Z<100 << 277 // NEW METHOD 268 if (Z<6 || Z>104){ << 278 // Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) 269 return; << 270 } << 271 279 272 // as long as there is vacancy to be fil << 280 if (IsAugerCascadeActive()) 273 while(!vacancyArray.empty()){ << 281 { 274 // prepare to process the last element, and << 282 //---------------------- 275 givenShellId = vacancyArray[0]; << 276 provShellId = SelectTypeOfTransition(Z,given << 277 << 278 //G4cout<<"\n------ Atom Transition with Z: << 279 // <<givenShellId<<" & target:"<<provShel << 280 if(provShellId>0){ << 281 aParticle = GenerateFluorescence(Z,givenSh << 282 } << 283 else if(provShellId == -1){ << 284 aParticle = GenerateAuger(Z, givenShellId) << 285 } << 286 // if a particle is created, put it in the << 287 if(aParticle!=0) << 288 vectorOfParticles->push_back(aParticle); << 289 283 290 // one vacancy has been processed. Erase it << 284 vacancyArray.push_back(givenShellId); 291 vacancyArray.erase(vacancyArray.begin()); << 292 } << 293 //---------------------- << 294 //End of Auger cascade by Burkhant Suerf << 295 285 296 } // Auger cascade is active << 286 // let's check that 5<Z<100 297 } << 287 if (Z<6 || Z>99){ >> 288 //G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0001",JustWarning, "Energy deposited locally"); >> 289 return; >> 290 } >> 291 >> 292 // as long as there is vacancy to be filled by either fluo or auger, stay in the loop. >> 293 while(!vacancyArray.empty()){ 298 294 299 //....oooOO0OOooo........oooOO0OOooo........oo << 295 // prepare to process the last element, and then delete it from the vector. >> 296 givenShellId = vacancyArray[0]; >> 297 provShellId = SelectTypeOfTransition(Z,givenShellId); >> 298 >> 299 //G4cout<<"\n------ Atom Transition with Z: "<<Z<<"\tbetween current:" >> 300 // <<givenShellId<<" & target:"<<provShellId<<G4endl; >> 301 if(provShellId>0){ >> 302 aParticle = GenerateFluorescence(Z,givenShellId,provShellId); >> 303 // if (aParticle != 0) { >> 304 // G4cout << "****FLUO!_1**** " >> 305 // << aParticle->GetParticleDefinition()->GetParticleType() >> 306 // << " " << aParticle->GetKineticEnergy()/keV << G4endl ;} >> 307 } >> 308 else if(provShellId == -1){ >> 309 aParticle = GenerateAuger(Z, givenShellId); >> 310 // if (aParticle != 0) { G4cout << "****AUGER!****" << >> 311 // aParticle->GetParticleDefinition()->GetParticleType() >> 312 // << " " << aParticle->GetKineticEnergy()/keV << G4endl ; } >> 313 // else G4cout<<G4endl; >> 314 } >> 315 //else >> 316 // G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0002",JustWarning, "Energy deposited locally"); >> 317 >> 318 // if a particle is created, put it in the vector of new particles >> 319 if(aParticle!=0) >> 320 vectorOfParticles->push_back(aParticle); >> 321 else{;} >> 322 // one vacancy has been processed. Erase it. >> 323 vacancyArray.erase(vacancyArray.begin()); >> 324 } >> 325 >> 326 >> 327 //---------------------- >> 328 //End of Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) >> 329 >> 330 } // Auger cascade is active >> 331 >> 332 //ENDSI >> 333 } 300 334 301 G4double 335 G4double 302 G4UAtomicDeexcitation::GetShellIonisationCross 336 G4UAtomicDeexcitation::GetShellIonisationCrossSectionPerAtom( 303 const G4ParticleDefinition* pdef, << 337 const G4ParticleDefinition* pdef, 304 G4int Z, << 338 G4int Z, 305 G4AtomicShellEnumerator shellEnum, << 339 G4AtomicShellEnumerator shellEnum, 306 G4double kineticEnergy, << 340 G4double kineticEnergy, 307 const G4Material* mat) << 341 const G4Material* mat) 308 { 342 { 309 // we must put a control on the shell that a 343 // we must put a control on the shell that are passed: 310 // some shells should not pass (line "0" or 344 // some shells should not pass (line "0" or "2") >> 345 //G4cout << pdef->GetParticleName() << " Z= " << Z << " Shell= " << shellEnum >> 346 // << " E= " << kineticEnergy << G4endl; 311 347 312 // check atomic number 348 // check atomic number 313 G4double xsec = 0.0; 349 G4double xsec = 0.0; 314 if(Z > 93 || Z < 6 ) { return xsec; } //corr 350 if(Z > 93 || Z < 6 ) { return xsec; } //corrected by alf - Z<6 missing 315 G4int idx = G4int(shellEnum); 351 G4int idx = G4int(shellEnum); 316 if(idx >= G4AtomicShells::GetNumberOfShells( 352 if(idx >= G4AtomicShells::GetNumberOfShells(Z)) { return xsec; } 317 353 >> 354 //G4cout << pdef->GetParticleName() << " Z= " << Z << " " << PIXEshellCS >> 355 // << " " << ePIXEshellCS << G4endl; >> 356 // 318 if(pdef == theElectron || pdef == thePositro 357 if(pdef == theElectron || pdef == thePositron) { 319 xsec = ePIXEshellCS->CrossSection(Z,shellE 358 xsec = ePIXEshellCS->CrossSection(Z,shellEnum,kineticEnergy,0.0,mat); 320 return xsec; 359 return xsec; 321 } 360 } 322 361 323 G4double mass = pdef->GetPDGMass(); 362 G4double mass = pdef->GetPDGMass(); 324 G4double escaled = kineticEnergy; 363 G4double escaled = kineticEnergy; 325 G4double q2 = 0.0; 364 G4double q2 = 0.0; 326 365 327 // scaling to protons for all particles excl << 366 // scaling to protons 328 G4int pdg = pdef->GetPDGEncoding(); << 367 if ((pdef->GetParticleName() != "proton" && pdef->GetParticleName() != "alpha" ) ) 329 if (pdg != 2212 && pdg != 1000020040) << 368 { 330 { << 369 mass = proton_mass_c2; 331 mass = proton_mass_c2; << 370 escaled = kineticEnergy*mass/(pdef->GetPDGMass()); 332 escaled = kineticEnergy*mass/(pdef->GetP << 371 333 << 372 if(mat) { 334 if(mat) { << 373 q2 = emcorr->EffectiveChargeSquareRatio(pdef,mat,kineticEnergy); 335 q2 = emcorr->EffectiveChargeSquareRatio(pdef << 374 } else { 336 } else { << 375 G4double q = pdef->GetPDGCharge()/eplus; 337 G4double q = pdef->GetPDGCharge()/eplus; << 376 q2 = q*q; 338 q2 = q*q; << 339 } << 340 } 377 } 341 << 342 if(PIXEshellCS) { << 343 xsec = PIXEshellCS->CrossSection(Z,shellEn << 344 } 378 } 345 if(xsec < 1e-100) { << 379 >> 380 if(PIXEshellCS) { xsec = PIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat); } >> 381 if(xsec < 1e-100) { >> 382 346 xsec = anaPIXEshellCS->CrossSection(Z,shel 383 xsec = anaPIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat); >> 384 347 } 385 } 348 386 349 if (q2) {xsec *= q2;} 387 if (q2) {xsec *= q2;} 350 388 351 return xsec; 389 return xsec; 352 } 390 } 353 391 354 //....oooOO0OOooo........oooOO0OOooo........oo << 355 << 356 void G4UAtomicDeexcitation::SetCutForSecondary 392 void G4UAtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut) 357 { 393 { 358 minGammaEnergy = cut; 394 minGammaEnergy = cut; 359 } 395 } 360 396 361 //....oooOO0OOooo........oooOO0OOooo........oo << 362 << 363 void G4UAtomicDeexcitation::SetCutForAugerElec 397 void G4UAtomicDeexcitation::SetCutForAugerElectrons(G4double cut) 364 { 398 { 365 minElectronEnergy = cut; 399 minElectronEnergy = cut; 366 } 400 } 367 401 368 //....oooOO0OOooo........oooOO0OOooo........oo << 402 G4double 369 << 403 G4UAtomicDeexcitation::ComputeShellIonisationCrossSectionPerAtom( 370 G4double G4UAtomicDeexcitation::ComputeShellIo << 404 const G4ParticleDefinition* p, 371 const G4ParticleDefinition* p, << 405 G4int Z, 372 G4int Z, << 406 G4AtomicShellEnumerator shell, 373 G4AtomicShellEnumerator shell, << 407 G4double kinE, 374 G4double kinE, << 408 const G4Material* mat) 375 const G4Material* mat) << 376 { 409 { 377 return GetShellIonisationCrossSectionPerAtom 410 return GetShellIonisationCrossSectionPerAtom(p,Z,shell,kinE,mat); 378 } 411 } 379 412 380 //....oooOO0OOooo........oooOO0OOooo........oo << 381 << 382 G4int G4UAtomicDeexcitation::SelectTypeOfTrans 413 G4int G4UAtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId) 383 { 414 { 384 if (shellId <=0 ) { 415 if (shellId <=0 ) { >> 416 //G4Exception("G4UAtomicDeexcitation::SelecttypeOfTransition()","de0002", >> 417 // JustWarning, "Energy deposited locally"); 385 return 0; 418 return 0; 386 } 419 } >> 420 //G4bool fluoTransitionFoundFlag = false; 387 421 388 G4int provShellId = -1; 422 G4int provShellId = -1; 389 G4int shellNum = 0; 423 G4int shellNum = 0; 390 G4int maxNumOfShells = transitionManager->Nu 424 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 391 425 392 const G4FluoTransition* refShell = 426 const G4FluoTransition* refShell = 393 transitionManager->ReachableShell(Z,maxNum 427 transitionManager->ReachableShell(Z,maxNumOfShells-1); 394 428 395 // This loop gives shellNum the value of the 429 // This loop gives shellNum the value of the index of shellId 396 // in the vector storing the list of the she 430 // in the vector storing the list of the shells reachable through 397 // a radiative transition 431 // a radiative transition 398 if ( shellId <= refShell->FinalShellId()) 432 if ( shellId <= refShell->FinalShellId()) 399 { 433 { 400 while (shellId != transitionManager->Rea 434 while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId()) 401 { 435 { 402 if(shellNum ==maxNumOfShells-1) 436 if(shellNum ==maxNumOfShells-1) 403 { 437 { 404 break; 438 break; 405 } 439 } 406 shellNum++; 440 shellNum++; 407 } 441 } 408 G4int transProb = 0; //AM change 29/6/07 442 G4int transProb = 0; //AM change 29/6/07 was 1 409 443 410 G4double partialProb = G4UniformRand(); 444 G4double partialProb = G4UniformRand(); 411 G4double partSum = 0; 445 G4double partSum = 0; 412 const G4FluoTransition* aShell = transit 446 const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum); 413 G4int trSize = (G4int)(aShell->Transiti << 447 G4int trSize = (aShell->TransitionProbabilities()).size(); 414 448 415 // Loop over the shells wich can provide 449 // Loop over the shells wich can provide an electron for a 416 // radiative transition towards shellId: 450 // radiative transition towards shellId: 417 // in every loop the partial sum of the 451 // in every loop the partial sum of the first transProb shells 418 // is calculated and compared with a ran 452 // is calculated and compared with a random number [0,1]. 419 // If the partial sum is greater, the sh 453 // If the partial sum is greater, the shell whose index is transProb 420 // is chosen as the starting shell for a 454 // is chosen as the starting shell for a radiative transition 421 // and its identity is returned 455 // and its identity is returned 422 // Else, terminateded the loop, -1 is re 456 // Else, terminateded the loop, -1 is returned 423 while(transProb < trSize){ 457 while(transProb < trSize){ 424 partSum += aShell->TransitionProbability(tra << 458 >> 459 partSum += aShell->TransitionProbability(transProb); 425 460 426 if(partialProb <= partSum) << 461 if(partialProb <= partSum) 427 { << 462 { 428 provShellId = aShell->OriginatingShellId << 463 provShellId = aShell->OriginatingShellId(transProb); 429 break; << 464 //fluoTransitionFoundFlag = true; 430 } << 465 431 ++transProb; << 466 break; >> 467 } >> 468 transProb++; 432 } 469 } >> 470 433 // here provShellId is the right one or 471 // here provShellId is the right one or is -1. 434 // if -1, the control is passed to the A 472 // if -1, the control is passed to the Auger generation part of the package 435 } 473 } 436 else 474 else 437 { 475 { 438 provShellId = -1; 476 provShellId = -1; 439 } 477 } >> 478 //G4cout << "FlagTransition= " << provShellId << " ecut(MeV)= " << minElectronEnergy >> 479 // << " gcut(MeV)= " << minGammaEnergy << G4endl; 440 return provShellId; 480 return provShellId; 441 } 481 } 442 482 443 //....oooOO0OOooo........oooOO0OOooo........oo << 444 << 445 G4DynamicParticle* 483 G4DynamicParticle* 446 G4UAtomicDeexcitation::GenerateFluorescence(G4 484 G4UAtomicDeexcitation::GenerateFluorescence(G4int Z, G4int shellId, 447 G4int provShellId ) 485 G4int provShellId ) 448 { 486 { 449 if (shellId <=0 ) 487 if (shellId <=0 ) 450 { 488 { 451 return nullptr; << 489 //G4Exception("G4UAtomicDeexcitation::GenerateFluorescence()","de0002",JustWarning, "Energy deposited locally"); >> 490 return 0; 452 } 491 } >> 492 453 493 454 //isotropic angular distribution for the out 494 //isotropic angular distribution for the outcoming photon 455 G4double newcosTh = 1.-2.*G4UniformRand(); 495 G4double newcosTh = 1.-2.*G4UniformRand(); 456 G4double newsinTh = std::sqrt((1.-newcosTh)* 496 G4double newsinTh = std::sqrt((1.-newcosTh)*(1. + newcosTh)); 457 G4double newPhi = twopi*G4UniformRand(); 497 G4double newPhi = twopi*G4UniformRand(); 458 498 459 G4double xDir = newsinTh*std::sin(newPhi); 499 G4double xDir = newsinTh*std::sin(newPhi); 460 G4double yDir = newsinTh*std::cos(newPhi); 500 G4double yDir = newsinTh*std::cos(newPhi); 461 G4double zDir = newcosTh; 501 G4double zDir = newcosTh; 462 502 463 G4ThreeVector newGammaDirection(xDir,yDir,zD 503 G4ThreeVector newGammaDirection(xDir,yDir,zDir); 464 504 465 G4int shellNum = 0; 505 G4int shellNum = 0; 466 G4int maxNumOfShells = transitionManager->Nu 506 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 467 507 468 // find the index of the shell named shellId 508 // find the index of the shell named shellId 469 while (shellId != transitionManager-> 509 while (shellId != transitionManager-> 470 ReachableShell(Z,shellNum)->FinalShellId()) 510 ReachableShell(Z,shellNum)->FinalShellId()) 471 { 511 { 472 if(shellNum == maxNumOfShells-1) 512 if(shellNum == maxNumOfShells-1) 473 { 513 { 474 break; 514 break; 475 } 515 } 476 ++shellNum; << 516 shellNum++; 477 } 517 } 478 // number of shell from wich an electron can 518 // number of shell from wich an electron can reach shellId 479 G4int transitionSize = (G4int)transitionMana << 519 size_t transitionSize = transitionManager-> 480 ReachableShell(Z,shellNum)->OriginatingShe 520 ReachableShell(Z,shellNum)->OriginatingShellIds().size(); 481 521 482 G4int index = 0; << 522 size_t index = 0; 483 523 484 // find the index of the shell named provShe 524 // find the index of the shell named provShellId in the vector 485 // storing the shells from which shellId can 525 // storing the shells from which shellId can be reached 486 while (provShellId != transitionManager-> 526 while (provShellId != transitionManager-> 487 ReachableShell(Z,shellNum)->OriginatingShel 527 ReachableShell(Z,shellNum)->OriginatingShellId(index)) 488 { 528 { 489 if(index == transitionSize-1) 529 if(index == transitionSize-1) 490 { 530 { 491 break; 531 break; 492 } 532 } 493 ++index; << 533 index++; 494 } 534 } 495 // energy of the gamma leaving provShellId f 535 // energy of the gamma leaving provShellId for shellId 496 G4double transitionEnergy = transitionManage 536 G4double transitionEnergy = transitionManager-> 497 ReachableShell(Z,shellNum)->TransitionEner 537 ReachableShell(Z,shellNum)->TransitionEnergy(index); 498 538 499 if (transitionEnergy < minGammaEnergy) retur << 539 if (transitionEnergy < minGammaEnergy) return 0; 500 540 501 // This is the shell where the new vacancy i 541 // This is the shell where the new vacancy is: it is the same 502 // shell where the electron came from 542 // shell where the electron came from 503 newShellId = transitionManager-> 543 newShellId = transitionManager-> 504 ReachableShell(Z,shellNum)->OriginatingShe 544 ReachableShell(Z,shellNum)->OriginatingShellId(index); 505 << 545 >> 546 506 G4DynamicParticle* newPart = new G4DynamicPa 547 G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 507 newGammaDirection, 548 newGammaDirection, 508 transitionEnergy); 549 transitionEnergy); 509 << 550 //SI 510 //Auger cascade by Burkhant Suerfu on March 551 //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) 511 if (IsAugerCascadeActive()) vacancyArray.pus 552 if (IsAugerCascadeActive()) vacancyArray.push_back(newShellId); >> 553 //ENDSI 512 554 513 return newPart; 555 return newPart; 514 } 556 } 515 557 516 //....oooOO0OOooo........oooOO0OOooo........oo << 517 << 518 G4DynamicParticle* G4UAtomicDeexcitation::Gene 558 G4DynamicParticle* G4UAtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId) 519 { 559 { 520 if(!IsAugerActive()) { 560 if(!IsAugerActive()) { 521 // G4cout << "auger inactive!" << G4end 561 // G4cout << "auger inactive!" << G4endl; //debug 522 return nullptr; << 562 return 0; 523 } 563 } 524 564 525 if (shellId <=0 ) { 565 if (shellId <=0 ) { 526 //G4Exception("G4UAtomicDeexcitation::Gene 566 //G4Exception("G4UAtomicDeexcitation::GenerateAuger()","de0002", 527 // JustWarning, "Energy deposited local 567 // JustWarning, "Energy deposited locally"); 528 return nullptr; << 568 return 0; 529 } 569 } 530 570 >> 571 // G4int provShellId = -1; 531 G4int maxNumOfShells = transitionManager->Nu 572 G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z); 532 573 533 const G4AugerTransition* refAugerTransition 574 const G4AugerTransition* refAugerTransition = 534 transitionManager->ReachableAugerShell(Z,m << 575 transitionManager->ReachableAugerShell(Z,maxNumOfShells-1); 535 576 536 // This loop gives to shellNum the value of 577 // This loop gives to shellNum the value of the index of shellId 537 // in the vector storing the list of the vac 578 // in the vector storing the list of the vacancies in the variuos shells 538 // that can originate a NON-radiative transi 579 // that can originate a NON-radiative transition >> 580 539 G4int shellNum = 0; 581 G4int shellNum = 0; 540 << 582 541 if ( shellId <= refAugerTransition->FinalShe 583 if ( shellId <= refAugerTransition->FinalShellId() ) 542 // "FinalShellId" is final from the point 584 // "FinalShellId" is final from the point of view of the electron 543 // who makes the transition, 585 // who makes the transition, 544 // being the Id of the shell in which ther 586 // being the Id of the shell in which there is a vacancy 545 { 587 { 546 G4int pippo = transitionManager->Reachab 588 G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId(); 547 if (shellId != pippo ) { << 589 if (shellId != pippo ) { 548 do { 590 do { 549 ++shellNum; << 591 shellNum++; 550 if(shellNum == maxNumOfShells) 592 if(shellNum == maxNumOfShells) 551 { 593 { 552 // G4cout << "No Auger transition foun 594 // G4cout << "No Auger transition found" << G4endl; //debug 553 return 0; 595 return 0; 554 } 596 } 555 } 597 } 556 while (shellId != (transitionManager->Reacha 598 while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ); 557 } 599 } 558 600 559 // Now we have that shellnum is the shel 601 // Now we have that shellnum is the shellIndex of the shell named ShellId 560 // G4cout << " the index of the she 602 // G4cout << " the index of the shell is: "<<shellNum<<G4endl; 561 // But we have now to select two shells: 603 // But we have now to select two shells: one for the transition, 562 // and another for the auger emission. 604 // and another for the auger emission. >> 605 563 G4int transitionLoopShellIndex = 0; 606 G4int transitionLoopShellIndex = 0; 564 G4double partSum = 0; 607 G4double partSum = 0; 565 const G4AugerTransition* anAugerTransiti 608 const G4AugerTransition* anAugerTransition = 566 transitionManager->ReachableAugerShell(Z,she 609 transitionManager->ReachableAugerShell(Z,shellNum); 567 610 568 G4int transitionSize = (G4int) << 611 //G4cout << " corresponding to the ID: " 569 (anAugerTransition->TransitionOriginatingShe << 612 //<< anAugerTransition->FinalShellId()<< G4endl; >> 613 >> 614 G4int transitionSize = >> 615 (anAugerTransition->TransitionOriginatingShellIds())->size(); 570 while (transitionLoopShellIndex < transi 616 while (transitionLoopShellIndex < transitionSize) { 571 617 572 std::vector<G4int>::const_iterator pos 618 std::vector<G4int>::const_iterator pos = 573 anAugerTransition->TransitionOriginatingSh << 619 anAugerTransition->TransitionOriginatingShellIds()->begin(); 574 620 575 G4int transitionLoopShellId = *(pos+tr 621 G4int transitionLoopShellId = *(pos+transitionLoopShellIndex); 576 G4int numberOfPossibleAuger = (G4int) << 622 G4int numberOfPossibleAuger = 577 (anAugerTransition->AugerTransitionProbabi 623 (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size(); 578 G4int augerIndex = 0; 624 G4int augerIndex = 0; 579 << 625 // G4int partSum2 = 0; >> 626 580 if (augerIndex < numberOfPossibleAuger) { 627 if (augerIndex < numberOfPossibleAuger) { 581 do 628 do 582 { 629 { 583 G4double thisProb = anAugerTransition- 630 G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 584 transitionLoopShellId); 631 transitionLoopShellId); 585 partSum += thisProb; 632 partSum += thisProb; 586 augerIndex++; 633 augerIndex++; 587 634 588 } while (augerIndex < numberOfPossibleAu 635 } while (augerIndex < numberOfPossibleAuger); 589 } << 636 } 590 ++transitionLoopShellIndex; << 637 transitionLoopShellIndex++; 591 } 638 } 592 << 639 >> 640 // Now we have the entire probability of an auger transition for the vacancy >> 641 // located in shellNum (index of shellId) >> 642 >> 643 // AM *********************** F I X E D **************************** AM >> 644 // Here we duplicate the previous loop, this time looking to the sum of the probabilities >> 645 // to be under the random number shoot by G4 UniformRdandom. This could have been done in the >> 646 // previuos loop, while integrating the probabilities. There is a bug that will be fixed >> 647 // 5 minutes from now: a line: >> 648 // G4int numberOfPossibleAuger = (anAugerTransition-> >> 649 // AugerTransitionProbabilities(transitionLoopShellId))->size(); >> 650 // to be inserted. >> 651 // AM *********************** F I X E D **************************** AM >> 652 >> 653 // Remains to get the same result with a single loop. >> 654 >> 655 // AM *********************** F I X E D **************************** AM >> 656 // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from >> 657 // a vacancy in one shell, but not all of these are present in data tables. So if a transition >> 658 // doesn't occur in the main one a local energy deposition must occur, instead of (like now) >> 659 // generating the last transition present in EADL data. >> 660 // AM *********************** F I X E D **************************** AM >> 661 593 G4double totalVacancyAugerProbability = 662 G4double totalVacancyAugerProbability = partSum; 594 663 595 //And now we start to select the right a 664 //And now we start to select the right auger transition and emission 596 G4int transitionRandomShellIndex = 0; 665 G4int transitionRandomShellIndex = 0; 597 G4int transitionRandomShellId = 1; 666 G4int transitionRandomShellId = 1; 598 G4int augerIndex = 0; 667 G4int augerIndex = 0; 599 partSum = 0; 668 partSum = 0; 600 G4double partialProb = G4UniformRand(); 669 G4double partialProb = G4UniformRand(); >> 670 // G4int augerOriginatingShellId = 0; >> 671 >> 672 G4int numberOfPossibleAuger = 0; 601 673 602 G4int numberOfPossibleAuger = 0; << 603 G4bool foundFlag = false; 674 G4bool foundFlag = false; 604 675 605 while (transitionRandomShellIndex < tran 676 while (transitionRandomShellIndex < transitionSize) { 606 677 607 std::vector<G4int>::const_iterator pos 678 std::vector<G4int>::const_iterator pos = 608 anAugerTransition->TransitionOriginatingSh << 679 anAugerTransition->TransitionOriginatingShellIds()->begin(); 609 680 610 transitionRandomShellId = *(pos+transi 681 transitionRandomShellId = *(pos+transitionRandomShellIndex); 611 682 612 augerIndex = 0; 683 augerIndex = 0; 613 numberOfPossibleAuger = (G4int)(anAugerTrans << 684 numberOfPossibleAuger = (anAugerTransition-> 614 AugerTransitionProbabilities(transiti 685 AugerTransitionProbabilities(transitionRandomShellId))->size(); 615 686 616 while (augerIndex < numberOfPossibleAu 687 while (augerIndex < numberOfPossibleAuger) { 617 G4double thisProb =anAugerTransition->Auge 688 G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 618 transitionRandomShellId); 689 transitionRandomShellId); 619 690 620 partSum += thisProb; 691 partSum += thisProb; 621 692 622 if (partSum >= (partialProb*totalVac 693 if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was / 623 foundFlag = true; 694 foundFlag = true; 624 break; 695 break; 625 } 696 } 626 augerIndex++; 697 augerIndex++; 627 } 698 } 628 if (partSum >= (partialProb*totalVacan 699 if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was / 629 ++transitionRandomShellIndex; << 700 transitionRandomShellIndex++; 630 } 701 } 631 702 632 // Now we have the index of the shell fr 703 // Now we have the index of the shell from wich comes the auger electron (augerIndex), 633 // and the id of the shell, from which t 704 // and the id of the shell, from which the transition e- come (transitionRandomShellid) 634 // If no Transition has been found, 0 is 705 // If no Transition has been found, 0 is returned. >> 706 635 if (!foundFlag) { 707 if (!foundFlag) { 636 return nullptr; << 708 // G4cout << "Auger not found (foundflag = false) " << G4endl; //debug >> 709 return 0; 637 } 710 } 638 711 639 // Isotropic angular distribution for th 712 // Isotropic angular distribution for the outcoming e- 640 G4double newcosTh = 1.-2.*G4UniformRand( 713 G4double newcosTh = 1.-2.*G4UniformRand(); 641 G4double newsinTh = std::sqrt(1.-newcosT << 714 G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh); 642 G4double newPhi = twopi*G4UniformRand(); 715 G4double newPhi = twopi*G4UniformRand(); 643 716 644 G4double xDir = newsinTh*std::sin(newPhi << 717 G4double xDir = newsinTh*std::sin(newPhi); 645 G4double yDir = newsinTh*std::cos(newPhi 718 G4double yDir = newsinTh*std::cos(newPhi); 646 G4double zDir = newcosTh; 719 G4double zDir = newcosTh; 647 720 648 G4ThreeVector newElectronDirection(xDir, 721 G4ThreeVector newElectronDirection(xDir,yDir,zDir); 649 722 650 // energy of the auger electron emitted << 723 // energy of the auger electron emitted >> 724 651 G4double transitionEnergy = 725 G4double transitionEnergy = 652 anAugerTransition->AugerTransitionEnergy(aug 726 anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId); >> 727 /* >> 728 G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl; >> 729 G4cout << "augerIndex: " << augerIndex << G4endl; >> 730 G4cout << "transitionShellId: " << transitionRandomShellId << G4endl; >> 731 */ 653 732 654 if (transitionEnergy < minElectronEnergy 733 if (transitionEnergy < minElectronEnergy) { 655 return nullptr; << 734 // G4cout << "Problem! (transitionEnergy < minElectronEnergy)" << G4endl; // debug >> 735 // G4cout << "minElectronEnergy(KeV): " << minElectronEnergy/keV << G4endl; // debug >> 736 // G4cout << "transitionEnergy(KeV): " << transitionEnergy/keV << G4endl; // debug >> 737 return 0; 656 } 738 } 657 739 658 // This is the shell where the new vacan 740 // This is the shell where the new vacancy is: it is the same 659 // shell where the electron came from 741 // shell where the electron came from 660 newShellId = transitionRandomShellId; 742 newShellId = transitionRandomShellId; 661 743 >> 744 //SI 662 //Auger cascade by Burkhant Suerfu on Ma 745 //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) 663 if (IsAugerCascadeActive()) 746 if (IsAugerCascadeActive()) 664 { << 747 { 665 vacancyArray.push_back(newShellId); << 748 vacancyArray.push_back(newShellId); 666 vacancyArray.push_back(anAugerTransition-> << 749 vacancyArray.push_back(anAugerTransition->AugerOriginatingShellId(augerIndex,transitionRandomShellId)); 667 } << 750 } 668 << 751 //ENDSI >> 752 669 return new G4DynamicParticle(G4Electron: 753 return new G4DynamicParticle(G4Electron::Electron(), 670 newElectronDirection, 754 newElectronDirection, 671 transitionEnergy); 755 transitionEnergy); 672 } 756 } 673 else 757 else 674 { 758 { 675 return nullptr; << 759 // G4cout << "G4UAtomicDeexcitation: no auger transition found" << G4endl ; >> 760 // G4cout << "( shellId <= refAugerTransition->FinalShellId() )" << G4endl; >> 761 return 0; 676 } 762 } 677 } 763 } 678 764