Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4UAtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4UAtomicDeexcitation.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4UAtomicDeexcitation.cc (Version 10.0.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                            *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4UAtomicDeexcitation.cc,v 1.11 
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // Geant4 Class file                               30 // Geant4 Class file
 30 //                                                 31 //  
 31 // Authors: Alfonso Mantero (Alfonso.Mantero@g     32 // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 32 //                                                 33 //
 33 // Created 22 April 2010 from old G4UAtomicDee     34 // Created 22 April 2010 from old G4UAtomicDeexcitation class 
 34 //                                                 35 //
 35 // Modified:                                       36 // Modified:
 36 // ---------                                       37 // ---------
 37 // 20 Oct 2011  Alf  modified to take into acc     38 // 20 Oct 2011  Alf  modified to take into account ECPSSR form Form Factor
 38 // 03 Nov 2011  Alf  Extended Empirical and Fo     39 // 03 Nov 2011  Alf  Extended Empirical and Form Factor ionisation XS models
 39 //                   out thei ranges with Anal     40 //                   out thei ranges with Analytical one.
 40 // 07 Nov 2011  Alf  Restored original ioniati     41 // 07 Nov 2011  Alf  Restored original ioniation XS for alphas, 
 41 //                   letting scaled ones for o     42 //                   letting scaled ones for other ions.   
 42 // 20 Mar 2012  LP   Register G4PenelopeIonisa     43 // 20 Mar 2012  LP   Register G4PenelopeIonisationCrossSection
 43 //                                                 44 //
 44 // -------------------------------------------     45 // -------------------------------------------------------------------
 45 //                                                 46 //
 46 // Class description:                              47 // Class description:
 47 // Implementation of atomic deexcitation           48 // Implementation of atomic deexcitation 
 48 //                                                 49 //
 49 // -------------------------------------------     50 // -------------------------------------------------------------------
 50                                                    51 
 51 #include "G4UAtomicDeexcitation.hh"                52 #include "G4UAtomicDeexcitation.hh"
 52 #include "G4PhysicalConstants.hh"                  53 #include "G4PhysicalConstants.hh"
 53 #include "G4SystemOfUnits.hh"                      54 #include "G4SystemOfUnits.hh"
 54 #include "Randomize.hh"                            55 #include "Randomize.hh"
 55 #include "G4Gamma.hh"                              56 #include "G4Gamma.hh"
 56 #include "G4AtomicTransitionManager.hh"            57 #include "G4AtomicTransitionManager.hh"
 57 #include "G4FluoTransition.hh"                     58 #include "G4FluoTransition.hh"
 58 #include "G4Electron.hh"                           59 #include "G4Electron.hh"
 59 #include "G4Positron.hh"                           60 #include "G4Positron.hh"
 60 #include "G4Proton.hh"                             61 #include "G4Proton.hh"
 61 #include "G4Alpha.hh"                              62 #include "G4Alpha.hh"
 62                                                    63 
 63 #include "G4teoCrossSection.hh"                    64 #include "G4teoCrossSection.hh"
 64 #include "G4empCrossSection.hh"                    65 #include "G4empCrossSection.hh"
 65 #include "G4PenelopeIonisationCrossSection.hh"     66 #include "G4PenelopeIonisationCrossSection.hh"
 66 #include "G4LivermoreIonisationCrossSection.hh     67 #include "G4LivermoreIonisationCrossSection.hh"
 67 #include "G4EmCorrections.hh"                      68 #include "G4EmCorrections.hh"
 68 #include "G4LossTableManager.hh"                   69 #include "G4LossTableManager.hh"
 69 #include "G4EmParameters.hh"                   << 
 70 #include "G4Material.hh"                           70 #include "G4Material.hh"
 71 #include "G4AtomicShells.hh"                       71 #include "G4AtomicShells.hh"
 72                                                    72 
 73 using namespace std;                               73 using namespace std;
 74                                                    74 
 75 //....oooOO0OOooo........oooOO0OOooo........oo << 
 76                                                << 
 77 G4UAtomicDeexcitation::G4UAtomicDeexcitation()     75 G4UAtomicDeexcitation::G4UAtomicDeexcitation():
 78   G4VAtomDeexcitation("UAtomDeexcitation"),        76   G4VAtomDeexcitation("UAtomDeexcitation"),
 79   minGammaEnergy(DBL_MAX),                         77   minGammaEnergy(DBL_MAX), 
 80   minElectronEnergy(DBL_MAX),                      78   minElectronEnergy(DBL_MAX),
 81   newShellId(-1)                               <<  79   emcorr(0)
 82 {                                                  80 {
 83   anaPIXEshellCS = nullptr;                    <<  81   PIXEshellCS    = 0;
 84   PIXEshellCS    = nullptr;                    <<  82   ePIXEshellCS   = 0;
 85   ePIXEshellCS   = nullptr;                    << 
 86   emcorr = G4LossTableManager::Instance()->EmC     83   emcorr = G4LossTableManager::Instance()->EmCorrections();
 87   theElectron = G4Electron::Electron();            84   theElectron = G4Electron::Electron();
 88   thePositron = G4Positron::Positron();            85   thePositron = G4Positron::Positron();
 89   transitionManager = G4AtomicTransitionManage <<  86   transitionManager = 0;
                                                   >>  87   anaPIXEshellCS = 0;
 90 }                                                  88 }
 91                                                    89 
 92 //....oooOO0OOooo........oooOO0OOooo........oo << 
 93                                                << 
 94 G4UAtomicDeexcitation::~G4UAtomicDeexcitation(     90 G4UAtomicDeexcitation::~G4UAtomicDeexcitation()
 95 {                                                  91 {
 96   delete anaPIXEshellCS;                       << 
 97   delete PIXEshellCS;                              92   delete PIXEshellCS;
                                                   >>  93   delete anaPIXEshellCS;
 98   delete ePIXEshellCS;                             94   delete ePIXEshellCS;
 99 }                                                  95 }
100                                                    96 
101 //....oooOO0OOooo........oooOO0OOooo........oo << 
102                                                << 
103 void G4UAtomicDeexcitation::InitialiseForNewRu     97 void G4UAtomicDeexcitation::InitialiseForNewRun()
104 {                                                  98 {
105   if(!IsFluoActive()) { return; }                  99   if(!IsFluoActive()) { return; }
106   transitionManager->Initialise();             << 100   transitionManager = G4AtomicTransitionManager::Instance();
107   if(!IsPIXEActive()) { return; }              << 101   if(IsPIXEActive()) {
108                                                << 102     G4cout << G4endl;
109   if(!anaPIXEshellCS) {                        << 103     G4cout << "### === G4UAtomicDeexcitation::InitialiseForNewRun()" << G4endl;
110     anaPIXEshellCS = new G4teoCrossSection("EC << 104     anaPIXEshellCS = new G4teoCrossSection("Analytical");
                                                   >> 105  
111   }                                               106   }
112   G4cout << G4endl;                            << 107   else  {return;}
113   G4cout << "### === G4UAtomicDeexcitation::In << 108   // initializing PIXE x-section name
114                                                << 109   // 
115   G4EmParameters* param = G4EmParameters::Inst << 110   if (PIXECrossSectionModel() == "" ||
116   G4String namePIXExsModel = param->PIXECrossS << 111       PIXECrossSectionModel() == "Empirical" ||
117   G4String namePIXExsElectronModel = param->PI << 112       PIXECrossSectionModel() == "empirical") 
118                                                << 113     {
119   // Check if old cross section for p/ion shou << 114       SetPIXECrossSectionModel("Empirical");
120   if(PIXEshellCS && namePIXExsModel != PIXEshe << 115     }
                                                   >> 116   else if (PIXECrossSectionModel() == "ECPSSR_Analytical" ||
                                                   >> 117      PIXECrossSectionModel() == "Analytical" || 
                                                   >> 118      PIXECrossSectionModel() == "analytical") 
                                                   >> 119     {
                                                   >> 120       SetPIXECrossSectionModel("Analytical");
                                                   >> 121     }
                                                   >> 122   else if (PIXECrossSectionModel() == "ECPSSR_FormFactor" ||
                                                   >> 123      PIXECrossSectionModel() == "ECPSSR_Tabulated" ||
                                                   >> 124      PIXECrossSectionModel() == "Analytical_Tabulated") 
121     {                                             125     {
122       delete PIXEshellCS;                      << 126       SetPIXECrossSectionModel("ECPSSR_FormFactor");
123       PIXEshellCS = nullptr;                   << 127     }
                                                   >> 128   else 
                                                   >> 129     {
                                                   >> 130       G4cout << "### G4UAtomicDeexcitation::InitialiseForNewRun WARNING "
                                                   >> 131        << G4endl;
                                                   >> 132       G4cout << "    PIXE cross section name " << PIXECrossSectionModel()
                                                   >> 133        << " is unknown, Analytical cross section will be used" << G4endl; 
                                                   >> 134       SetPIXECrossSectionModel("Analytical");
                                                   >> 135     }
                                                   >> 136     
                                                   >> 137   // Check if old model should be deleted 
                                                   >> 138   if(PIXEshellCS) 
                                                   >> 139     {
                                                   >> 140       if(PIXECrossSectionModel() != PIXEshellCS->GetName()) 
                                                   >> 141   {
                                                   >> 142     delete PIXEshellCS;
                                                   >> 143           PIXEshellCS = 0;
                                                   >> 144   }
124     }                                             145     }
125                                                   146 
126   // Instantiate new proton/ion cross section  << 147   // Instantiate empirical model
127   if(!PIXEshellCS) {                              148   if(!PIXEshellCS) {
128     if (namePIXExsModel == "ECPSSR_FormFactor" << 149     if (PIXECrossSectionModel() == "Empirical")
129       {                                           150       {
130   PIXEshellCS = new G4teoCrossSection(namePIXE << 151   PIXEshellCS = new G4empCrossSection("Empirical");
131       }                                           152       }
132     else if(namePIXExsModel == "ECPSSR_ANSTO") << 153 
133       {                                        << 154     if (PIXECrossSectionModel() == "ECPSSR_FormFactor")
134   PIXEshellCS = new G4teoCrossSection(namePIXE << 
135       }                                        << 
136     else if(namePIXExsModel == "Empirical")    << 
137       {                                           155       {
138   PIXEshellCS = new G4empCrossSection(namePIXE << 156   PIXEshellCS = new G4teoCrossSection("ECPSSR_FormFactor");
139       }                                           157       }
140   }                                               158   }
141                                                   159 
142   // Check if old cross section for e+- should << 160   // Electron cross section
143   if(ePIXEshellCS && namePIXExsElectronModel ! << 161   // initializing PIXE x-section name
                                                   >> 162   // 
                                                   >> 163   if (PIXEElectronCrossSectionModel() == "" ||
                                                   >> 164       PIXEElectronCrossSectionModel() == "Livermore")
144     {                                             165     {
145       delete ePIXEshellCS;                     << 166       SetPIXEElectronCrossSectionModel("Livermore");
146       ePIXEshellCS = nullptr;                  << 167     }
147     }                                          << 168   else if (PIXEElectronCrossSectionModel() == "ProtonAnalytical" ||
                                                   >> 169      PIXEElectronCrossSectionModel() == "Analytical" || 
                                                   >> 170      PIXEElectronCrossSectionModel() == "analytical") 
                                                   >> 171     {
                                                   >> 172       SetPIXEElectronCrossSectionModel("ProtonAnalytical");
                                                   >> 173     }
                                                   >> 174   else if (PIXEElectronCrossSectionModel() == "ProtonEmpirical" ||
                                                   >> 175      PIXEElectronCrossSectionModel() == "Empirical" || 
                                                   >> 176      PIXEElectronCrossSectionModel() == "empirical") 
                                                   >> 177     {
                                                   >> 178       SetPIXEElectronCrossSectionModel("ProtonEmpirical");
                                                   >> 179     }
                                                   >> 180   else if (PIXEElectronCrossSectionModel() == "Penelope")
                                                   >> 181     SetPIXEElectronCrossSectionModel("Penelope");
                                                   >> 182   else 
                                                   >> 183     {
                                                   >> 184       G4cout << "### G4UAtomicDeexcitation::InitialiseForNewRun WARNING "
                                                   >> 185        << G4endl;
                                                   >> 186       G4cout << "    PIXE e- cross section name " << PIXEElectronCrossSectionModel()
                                                   >> 187        << " is unknown, PIXE is disabled" << G4endl; 
                                                   >> 188       SetPIXEElectronCrossSectionModel("Livermore");
                                                   >> 189     }
                                                   >> 190     
                                                   >> 191   // Check if old model should be deleted 
                                                   >> 192   if(ePIXEshellCS) 
                                                   >> 193     {
                                                   >> 194       if(PIXEElectronCrossSectionModel() != ePIXEshellCS->GetName()) 
                                                   >> 195   {
                                                   >> 196     delete ePIXEshellCS;
                                                   >> 197           ePIXEshellCS = 0;
                                                   >> 198   }
                                                   >> 199     }
148                                                   200 
149   // Instantiate new e+- cross section         << 201   // Instantiate empirical model
150   if(nullptr == ePIXEshellCS)                  << 202   if(!ePIXEshellCS) 
151     {                                             203     {
152       if(namePIXExsElectronModel == "Empirical << 204       if(PIXEElectronCrossSectionModel() == "Empirical")
153   {                                               205   {
154     ePIXEshellCS = new G4empCrossSection("Empi    206     ePIXEshellCS = new G4empCrossSection("Empirical");
155   }                                               207   }
156       else if(namePIXExsElectronModel == "ECPS << 208 
                                                   >> 209       else if(PIXEElectronCrossSectionModel() == "Analytical") 
157   {                                               210   {
158     ePIXEshellCS = new G4teoCrossSection("ECPS << 211     ePIXEshellCS = new G4teoCrossSection("Analytical");
159   }                                               212   }
160       else if (namePIXExsElectronModel == "Pen << 213 
                                                   >> 214       else if(PIXEElectronCrossSectionModel() == "Livermore")
161   {                                               215   {
162     ePIXEshellCS = new G4PenelopeIonisationCro << 216     ePIXEshellCS = new G4LivermoreIonisationCrossSection();
163   }                                               217   }
164       else                                     << 218       else if (PIXEElectronCrossSectionModel() == "Penelope")
165   {                                               219   {
166     ePIXEshellCS = new G4LivermoreIonisationCr << 220     ePIXEshellCS = new G4PenelopeIonisationCrossSection();
167   }                                               221   }
168     }                                             222     } 
169 }                                                 223 }
170                                                   224 
171 //....oooOO0OOooo........oooOO0OOooo........oo << 225 void G4UAtomicDeexcitation::InitialiseForExtraAtom(G4int /*Z*/)
172                                                << 
173 void G4UAtomicDeexcitation::InitialiseForExtra << 
174 {}                                                226 {}
175                                                   227 
176 //....oooOO0OOooo........oooOO0OOooo........oo << 228 const G4AtomicShell* G4UAtomicDeexcitation::GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)
177                                                << 
178 const G4AtomicShell*                           << 
179 G4UAtomicDeexcitation::GetAtomicShell(G4int Z, << 
180 {                                                 229 {
181   return transitionManager->Shell(Z, (std::siz << 230   return transitionManager->Shell(Z, size_t(shell));
182 }                                                 231 }
183                                                   232 
184 //....oooOO0OOooo........oooOO0OOooo........oo << 
185                                                << 
186 void G4UAtomicDeexcitation::GenerateParticles(    233 void G4UAtomicDeexcitation::GenerateParticles(
187                 std::vector<G4DynamicParticle* << 234           std::vector<G4DynamicParticle*>* vectorOfParticles,  
188           const G4AtomicShell* atomicShell,    << 235           const G4AtomicShell* atomicShell, 
189           G4int Z,                             << 236           G4int Z,
190           G4double gammaCut,                   << 237           G4double gammaCut,
191           G4double eCut)                       << 238           G4double eCut)
192 {                                                 239 {
                                                   >> 240 
193   // Defined initial conditions                   241   // Defined initial conditions
194   G4int givenShellId = atomicShell->ShellId();    242   G4int givenShellId = atomicShell->ShellId();
                                                   >> 243   //G4cout << "generating particles for vacancy in shellId: " << givenShellId << G4endl; // debug
195   minGammaEnergy = gammaCut;                      244   minGammaEnergy = gammaCut;
196   minElectronEnergy = eCut;                       245   minElectronEnergy = eCut;
197   vacancyArray.clear();                        << 246 
198                                                << 247   // V.I. short-cut
                                                   >> 248   //  if(!IsAugerActive()) {  minElectronEnergy = DBL_MAX; }
                                                   >> 249 
199   // generation secondaries                       250   // generation secondaries
200   G4DynamicParticle* aParticle=0;                 251   G4DynamicParticle* aParticle=0;
201   G4int provShellId = 0;                          252   G4int provShellId = 0;
                                                   >> 253   G4int counter = 0;
202                                                   254   
203   //ORIGINAL METHOD BY ALFONSO MANTERO         << 255   // let's check that 5<Z<100
204   if (!IsAugerCascadeActive())                 << 
205     {                                          << 
206       //----------------------------           << 
207       G4int counter = 0;                       << 
208                                                << 
209       // limits of the EPDL data               << 
210       if (Z>5 && Z<105) {                      << 
211                                                   256 
212   // The aim of this loop is to generate more  << 257   if (Z>5 && Z<100) {
213   // from the same ionizing event              << 258 
214   do                                           << 259   // The aim of this loop is to generate more than one fluorecence photon 
                                                   >> 260   // from the same ionizing event 
                                                   >> 261     do
                                                   >> 262       {
                                                   >> 263   if (counter == 0) 
                                                   >> 264     // First call to GenerateParticles(...):
                                                   >> 265     // givenShellId is given by the process
215     {                                             266     {
216       if (counter == 0)                        << 267       provShellId = SelectTypeOfTransition(Z, givenShellId);
217         // First call to GenerateParticles(... << 268 
218         // givenShellId is given by the proces << 269       if  ( provShellId >0) 
219         {                                         270         {
220     provShellId = SelectTypeOfTransition(Z, gi << 271     aParticle = GenerateFluorescence(Z,givenShellId,provShellId);
221                                                << 272     //if (aParticle != 0) { G4cout << "****FLUO!_1**** " << aParticle->GetParticleDefinition()->GetParticleType() << " " << aParticle->GetKineticEnergy()/keV << G4endl ;} //debug  
222     if (provShellId >0)                        << 
223       {                                        << 
224         aParticle =                            << 
225           GenerateFluorescence(Z, givenShellId << 
226       }                                        << 
227     else if (provShellId == -1)                << 
228       {                                        << 
229         aParticle = GenerateAuger(Z, givenShel << 
230       }                                        << 
231         }                                         273         }
232       else                                     << 274       else if ( provShellId == -1)
233         // Following calls to GenerateParticle << 
234         // newShellId is given by GenerateFluo << 
235         {                                         275         {
236     provShellId = SelectTypeOfTransition(Z,new << 276     //    G4cout << "Try to generate Auger 1" << G4endl; //debug
237     if (provShellId >0)                        << 277     aParticle = GenerateAuger(Z, givenShellId);
238       {                                        << 278     //    if (aParticle != 0) { G4cout << "****AUGER!****" << G4endl;} //debug
239         aParticle = GenerateFluorescence(Z,new << 
240       }                                        << 
241     else if ( provShellId == -1)               << 
242       {                                        << 
243         aParticle = GenerateAuger(Z, newShellI << 
244       }                                        << 
245         }                                         279         }
246       ++counter;                               << 280       else
247       if (aParticle != 0)                      << 
248         {                                         281         {
249     vectorOfParticles->push_back(aParticle);   << 282     G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0002",JustWarning, "Energy deposited locally");
250         }                                         283         }
251       else {provShellId = -2;}                 << 284     }
252     }                                          << 285   else 
253   while (provShellId > -2);                    << 286     // Following calls to GenerateParticles(...):
254       }                                        << 287     // newShellId is given by GenerateFluorescence(...)
255     } // Auger cascade is not active           << 288     {
256                                                << 289       provShellId = SelectTypeOfTransition(Z,newShellId);
257   //END OF ORIGINAL METHOD BY ALFONSO MANTERO  << 290       if  (provShellId >0)
258   //----------------------                     << 291         {
259                                                << 292     aParticle = GenerateFluorescence(Z,newShellId,provShellId);
260   // NEW METHOD                                << 293     //if (aParticle != 0) { G4cout << "****FLUO!_2****" << aParticle->GetParticleDefinition()->GetParticleType() << " " << aParticle->GetKineticEnergy()/keV << G4endl;} //debug
261   // Auger cascade by Burkhant Suerfu on March << 294         }
262   if (IsAugerCascadeActive())                  << 295       else if ( provShellId == -1)
                                                   >> 296         {
                                                   >> 297     //    G4cout << "Try to generate Auger 2" << G4endl; //debug
                                                   >> 298     aParticle = GenerateAuger(Z, newShellId);
                                                   >> 299     //    if (aParticle != 0) { G4cout << "****AUGER!****" << G4endl;} //debug
                                                   >> 300         }
                                                   >> 301       else
                                                   >> 302         {
                                                   >> 303     G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0002",JustWarning, "Energy deposited locally");
                                                   >> 304         }
                                                   >> 305     }
                                                   >> 306   counter++;
                                                   >> 307   if (aParticle != 0) 
                                                   >> 308     {
                                                   >> 309       vectorOfParticles->push_back(aParticle);
                                                   >> 310       //G4cout << "Deexcitation Occurred!" << G4endl; //debug
                                                   >> 311     }
                                                   >> 312   else {provShellId = -2;}
                                                   >> 313       }  
                                                   >> 314     while (provShellId > -2); 
                                                   >> 315   }
                                                   >> 316   else
263     {                                             317     {
264       //----------------------                 << 318       G4Exception("G4UAtomicDeexcitation::GenerateParticles()","de0001",JustWarning, "Energy deposited locally");
265       vacancyArray.push_back(givenShellId);    << 319     }
266                                                << 320   
267       // let's check that 5<Z<100              << 321   //G4cout << "---------FATTO!---------" << G4endl; //debug 
268       if (Z<6 || Z>104){                       << 
269   return;                                      << 
270       }                                        << 
271                                                << 
272       // as long as there is vacancy to be fil << 
273       while(!vacancyArray.empty()){            << 
274   //  prepare to process the last element, and << 
275   givenShellId = vacancyArray[0];              << 
276   provShellId = SelectTypeOfTransition(Z,given << 
277                                                << 
278   //G4cout<<"\n------ Atom Transition with Z:  << 
279   //    <<givenShellId<<" & target:"<<provShel << 
280   if(provShellId>0){                           << 
281     aParticle = GenerateFluorescence(Z,givenSh << 
282   }                                            << 
283   else if(provShellId == -1){                  << 
284     aParticle = GenerateAuger(Z, givenShellId) << 
285   }                                            << 
286   //  if a particle is created, put it in the  << 
287   if(aParticle!=0)                             << 
288     vectorOfParticles->push_back(aParticle);   << 
289                                                << 
290   //  one vacancy has been processed. Erase it << 
291   vacancyArray.erase(vacancyArray.begin());    << 
292       }                                        << 
293       //----------------------                 << 
294       //End of Auger cascade by Burkhant Suerf << 
295                                                   322 
296     } // Auger cascade is active               << 
297 }                                                 323 }
298                                                   324 
299 //....oooOO0OOooo........oooOO0OOooo........oo << 
300                                                << 
301 G4double                                          325 G4double 
302 G4UAtomicDeexcitation::GetShellIonisationCross    326 G4UAtomicDeexcitation::GetShellIonisationCrossSectionPerAtom(
303            const G4ParticleDefinition* pdef,   << 327              const G4ParticleDefinition* pdef, 
304            G4int Z,                            << 328              G4int Z, 
305            G4AtomicShellEnumerator shellEnum,  << 329              G4AtomicShellEnumerator shellEnum,
306            G4double kineticEnergy,             << 330              G4double kineticEnergy,
307            const G4Material* mat)              << 331              const G4Material* mat)
308 {                                                 332 {
                                                   >> 333 
309   // we must put a control on the shell that a    334   // we must put a control on the shell that are passed: 
310   // some shells should not pass (line "0" or     335   // some shells should not pass (line "0" or "2")
311                                                   336 
312   // check atomic number                          337   // check atomic number
313   G4double xsec = 0.0;                            338   G4double xsec = 0.0;
314   if(Z > 93 || Z < 6 ) { return xsec; } //corr    339   if(Z > 93 || Z < 6 ) { return xsec; } //corrected by alf - Z<6 missing
315   G4int idx = G4int(shellEnum);                   340   G4int idx = G4int(shellEnum);
316   if(idx >= G4AtomicShells::GetNumberOfShells(    341   if(idx >= G4AtomicShells::GetNumberOfShells(Z)) { return xsec; }
317                                                   342 
                                                   >> 343   // 
318   if(pdef == theElectron || pdef == thePositro    344   if(pdef == theElectron || pdef == thePositron) {
319     xsec = ePIXEshellCS->CrossSection(Z,shellE    345     xsec = ePIXEshellCS->CrossSection(Z,shellEnum,kineticEnergy,0.0,mat);
320     return xsec;                                  346     return xsec;
321   }                                               347   }
322                                                   348 
323   G4double mass = pdef->GetPDGMass();             349   G4double mass = pdef->GetPDGMass();
324   G4double escaled = kineticEnergy;               350   G4double escaled = kineticEnergy;
325   G4double q2 = 0.0;                              351   G4double q2 = 0.0;
326                                                   352 
327   // scaling to protons for all particles excl << 353   // scaling to protons
328   G4int pdg = pdef->GetPDGEncoding();          << 354   if ((pdef->GetParticleName() != "proton" && pdef->GetParticleName() != "alpha" ) )
329   if (pdg != 2212 && pdg != 1000020040)        << 355   {
330     {                                          << 356     mass = proton_mass_c2;
331       mass = proton_mass_c2;                   << 357     escaled = kineticEnergy*mass/(pdef->GetPDGMass());
332       escaled = kineticEnergy*mass/(pdef->GetP << 358 
333                                                << 359     if(mat) {
334       if(mat) {                                << 360       q2 = emcorr->EffectiveChargeSquareRatio(pdef,mat,kineticEnergy);
335   q2 = emcorr->EffectiveChargeSquareRatio(pdef << 361     } else {
336       } else {                                 << 362       G4double q = pdef->GetPDGCharge()/eplus;
337   G4double q = pdef->GetPDGCharge()/eplus;     << 363       q2 = q*q;
338   q2 = q*q;                                    << 
339       }                                        << 
340     }                                             364     }
341                                                << 
342   if(PIXEshellCS) {                            << 
343     xsec = PIXEshellCS->CrossSection(Z,shellEn << 
344   }                                               365   }
345   if(xsec < 1e-100) {                          << 366   
                                                   >> 367   if(PIXEshellCS) { xsec = PIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat); }
                                                   >> 368   if(xsec < 1e-100) { 
                                                   >> 369     
346     xsec = anaPIXEshellCS->CrossSection(Z,shel    370     xsec = anaPIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat); 
                                                   >> 371     
347   }                                               372   }
348                                                   373 
349   if (q2)  {xsec *= q2;}                          374   if (q2)  {xsec *= q2;}
350                                                   375 
351   return xsec;                                    376   return xsec;
352 }                                                 377 }
353                                                   378 
354 //....oooOO0OOooo........oooOO0OOooo........oo << 
355                                                << 
356 void G4UAtomicDeexcitation::SetCutForSecondary    379 void G4UAtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
357 {                                                 380 {
358   minGammaEnergy = cut;                           381   minGammaEnergy = cut;
359 }                                                 382 }
360                                                   383 
361 //....oooOO0OOooo........oooOO0OOooo........oo << 
362                                                << 
363 void G4UAtomicDeexcitation::SetCutForAugerElec    384 void G4UAtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
364 {                                                 385 {
365   minElectronEnergy = cut;                        386   minElectronEnergy = cut;
366 }                                                 387 }
367                                                   388 
368 //....oooOO0OOooo........oooOO0OOooo........oo << 389 G4double 
369                                                << 390 G4UAtomicDeexcitation::ComputeShellIonisationCrossSectionPerAtom(
370 G4double G4UAtomicDeexcitation::ComputeShellIo << 391                                const G4ParticleDefinition* p, 
371         const G4ParticleDefinition* p,         << 392              G4int Z, 
372         G4int Z,                               << 393              G4AtomicShellEnumerator shell,
373         G4AtomicShellEnumerator shell,         << 394              G4double kinE,
374         G4double kinE,                         << 395              const G4Material* mat)
375         const G4Material* mat)                 << 
376 {                                                 396 {
377   return GetShellIonisationCrossSectionPerAtom    397   return GetShellIonisationCrossSectionPerAtom(p,Z,shell,kinE,mat);
378 }                                                 398 }
379                                                   399 
380 //....oooOO0OOooo........oooOO0OOooo........oo << 
381                                                << 
382 G4int G4UAtomicDeexcitation::SelectTypeOfTrans    400 G4int G4UAtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
383 {                                                 401 {
384   if (shellId <=0 ) {                             402   if (shellId <=0 ) {
                                                   >> 403     G4Exception("G4UAtomicDeexcitation::SelecttypeOfTransition()","de0002",JustWarning, "Energy deposited locally");
385     return 0;                                     404     return 0;
386   }                                               405   }
                                                   >> 406   //G4bool fluoTransitionFoundFlag = false;
387                                                   407   
388   G4int provShellId = -1;                         408   G4int provShellId = -1;
389   G4int shellNum = 0;                             409   G4int shellNum = 0;
390   G4int maxNumOfShells = transitionManager->Nu    410   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
391                                                   411   
392   const G4FluoTransition* refShell =           << 412   const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
393     transitionManager->ReachableShell(Z,maxNum << 
394                                                   413 
395   // This loop gives shellNum the value of the    414   // This loop gives shellNum the value of the index of shellId
396   // in the vector storing the list of the she    415   // in the vector storing the list of the shells reachable through
397   // a radiative transition                       416   // a radiative transition
398   if ( shellId <= refShell->FinalShellId())       417   if ( shellId <= refShell->FinalShellId())
399     {                                             418     {
400       while (shellId != transitionManager->Rea    419       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
401   {                                               420   {
402     if(shellNum ==maxNumOfShells-1)               421     if(shellNum ==maxNumOfShells-1)
403       {                                           422       {
404         break;                                    423         break;
405       }                                           424       }
406     shellNum++;                                   425     shellNum++;
407   }                                               426   }
408       G4int transProb = 0; //AM change 29/6/07    427       G4int transProb = 0; //AM change 29/6/07 was 1
409                                                   428    
410       G4double partialProb = G4UniformRand();     429       G4double partialProb = G4UniformRand();      
411       G4double partSum = 0;                       430       G4double partSum = 0;
412       const G4FluoTransition* aShell = transit << 431       const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);      
413       G4int trSize =  (G4int)(aShell->Transiti << 432       G4int trSize =  (aShell->TransitionProbabilities()).size();
414                                                   433     
415       // Loop over the shells wich can provide    434       // Loop over the shells wich can provide an electron for a 
416       // radiative transition towards shellId:    435       // radiative transition towards shellId:
417       // in every loop the partial sum of the     436       // in every loop the partial sum of the first transProb shells
418       // is calculated and compared with a ran    437       // is calculated and compared with a random number [0,1].
419       // If the partial sum is greater, the sh    438       // If the partial sum is greater, the shell whose index is transProb
420       // is chosen as the starting shell for a    439       // is chosen as the starting shell for a radiative transition
421       // and its identity is returned             440       // and its identity is returned
422       // Else, terminateded the loop, -1 is re    441       // Else, terminateded the loop, -1 is returned
423       while(transProb < trSize){                  442       while(transProb < trSize){
424   partSum += aShell->TransitionProbability(tra << 443   
                                                   >> 444    partSum += aShell->TransitionProbability(transProb);
425                                                   445 
426   if(partialProb <= partSum)                   << 446    if(partialProb <= partSum)
427     {                                          << 447      {
428       provShellId = aShell->OriginatingShellId << 448        provShellId = aShell->OriginatingShellId(transProb);
429       break;                                   << 449        //fluoTransitionFoundFlag = true;
430     }                                          << 450 
431   ++transProb;                                 << 451        break;
                                                   >> 452      }
                                                   >> 453    transProb++;
432       }                                           454       }
                                                   >> 455 
433       // here provShellId is the right one or     456       // here provShellId is the right one or is -1.
434       // if -1, the control is passed to the A    457       // if -1, the control is passed to the Auger generation part of the package 
435     }                                             458     }
436   else                                            459   else 
437     {                                             460     {
438       provShellId = -1;                           461       provShellId = -1;
439     }                                             462     }
                                                   >> 463   //G4cout << "FlagTransition= " << provShellId << " ecut(MeV)= " << minElectronEnergy
                                                   >> 464   //   << "  gcut(MeV)= " << minGammaEnergy << G4endl;
440   return provShellId;                             465   return provShellId;
441 }                                                 466 }
442                                                   467 
443 //....oooOO0OOooo........oooOO0OOooo........oo << 
444                                                << 
445 G4DynamicParticle*                                468 G4DynamicParticle* 
446 G4UAtomicDeexcitation::GenerateFluorescence(G4    469 G4UAtomicDeexcitation::GenerateFluorescence(G4int Z, G4int shellId,
447               G4int provShellId )                 470               G4int provShellId )
448 {                                                 471 { 
                                                   >> 472 
                                                   >> 473   //if(!IsDeexActive()) { return 0; }
                                                   >> 474 
449   if (shellId <=0 )                               475   if (shellId <=0 )
                                                   >> 476 
450     {                                             477     {
451       return nullptr;                          << 478       G4Exception("G4UAtomicDeexcitation::GenerateFluorescence()","de0002",JustWarning, "Energy deposited locally");
                                                   >> 479       return 0;
452     }                                             480     }
                                                   >> 481   
453                                                   482 
454   //isotropic angular distribution for the out    483   //isotropic angular distribution for the outcoming photon
455   G4double newcosTh = 1.-2.*G4UniformRand();      484   G4double newcosTh = 1.-2.*G4UniformRand();
456   G4double newsinTh = std::sqrt((1.-newcosTh)*    485   G4double newsinTh = std::sqrt((1.-newcosTh)*(1. + newcosTh));
457   G4double newPhi = twopi*G4UniformRand();        486   G4double newPhi = twopi*G4UniformRand();
458                                                   487   
459   G4double xDir = newsinTh*std::sin(newPhi);      488   G4double xDir = newsinTh*std::sin(newPhi);
460   G4double yDir = newsinTh*std::cos(newPhi);      489   G4double yDir = newsinTh*std::cos(newPhi);
461   G4double zDir = newcosTh;                       490   G4double zDir = newcosTh;
462                                                   491   
463   G4ThreeVector newGammaDirection(xDir,yDir,zD    492   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
464                                                   493   
465   G4int shellNum = 0;                             494   G4int shellNum = 0;
466   G4int maxNumOfShells = transitionManager->Nu    495   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
467                                                   496   
468   // find the index of the shell named shellId    497   // find the index of the shell named shellId
469   while (shellId != transitionManager->           498   while (shellId != transitionManager->
470    ReachableShell(Z,shellNum)->FinalShellId())    499    ReachableShell(Z,shellNum)->FinalShellId())
471     {                                             500     {
472       if(shellNum == maxNumOfShells-1)            501       if(shellNum == maxNumOfShells-1)
473   {                                               502   {
474     break;                                        503     break;
475   }                                               504   }
476       ++shellNum;                              << 505       shellNum++;
477     }                                             506     }
478   // number of shell from wich an electron can    507   // number of shell from wich an electron can reach shellId
479   G4int transitionSize = (G4int)transitionMana << 508   size_t transitionSize = transitionManager->
480     ReachableShell(Z,shellNum)->OriginatingShe    509     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
481                                                   510   
482   G4int index = 0;                             << 511   size_t index = 0;
483                                                   512   
484   // find the index of the shell named provShe    513   // find the index of the shell named provShellId in the vector
485   // storing the shells from which shellId can    514   // storing the shells from which shellId can be reached 
486   while (provShellId != transitionManager->       515   while (provShellId != transitionManager->
487    ReachableShell(Z,shellNum)->OriginatingShel    516    ReachableShell(Z,shellNum)->OriginatingShellId(index))
488     {                                             517     {
489       if(index ==  transitionSize-1)              518       if(index ==  transitionSize-1)
490   {                                               519   {
491     break;                                        520     break;
492   }                                               521   }
493       ++index;                                 << 522       index++;
494     }                                             523     }
495   // energy of the gamma leaving provShellId f    524   // energy of the gamma leaving provShellId for shellId
496   G4double transitionEnergy = transitionManage    525   G4double transitionEnergy = transitionManager->
497     ReachableShell(Z,shellNum)->TransitionEner    526     ReachableShell(Z,shellNum)->TransitionEnergy(index);
498                                                   527   
499   if (transitionEnergy < minGammaEnergy) retur << 528   if (transitionEnergy < minGammaEnergy) return 0;
500                                                   529 
501   // This is the shell where the new vacancy i    530   // This is the shell where the new vacancy is: it is the same
502   // shell where the electron came from           531   // shell where the electron came from
503   newShellId = transitionManager->                532   newShellId = transitionManager->
504     ReachableShell(Z,shellNum)->OriginatingShe    533     ReachableShell(Z,shellNum)->OriginatingShellId(index);
505                                                << 534   
                                                   >> 535   
506   G4DynamicParticle* newPart = new G4DynamicPa    536   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
507                  newGammaDirection,               537                  newGammaDirection,
508                  transitionEnergy);               538                  transitionEnergy);
509                                                << 
510   //Auger cascade by Burkhant Suerfu on March  << 
511   if (IsAugerCascadeActive()) vacancyArray.pus << 
512                                                << 
513   return newPart;                                 539   return newPart;
514 }                                                 540 }
515                                                   541 
516 //....oooOO0OOooo........oooOO0OOooo........oo << 
517                                                << 
518 G4DynamicParticle* G4UAtomicDeexcitation::Gene    542 G4DynamicParticle* G4UAtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
519 {                                                 543 {
520   if(!IsAugerActive()) {                          544   if(!IsAugerActive()) { 
521     //    G4cout << "auger inactive!" << G4end    545     //    G4cout << "auger inactive!" << G4endl; //debug
522     return nullptr;                            << 546     return 0; 
523   }                                               547   }
524                                                   548   
525   if (shellId <=0 ) {                             549   if (shellId <=0 ) {
526     //G4Exception("G4UAtomicDeexcitation::Gene << 550     
527     //    JustWarning, "Energy deposited local << 551 
528     return nullptr;                            << 552       G4Exception("G4UAtomicDeexcitation::GenerateAuger()","de0002",JustWarning, "Energy deposited locally");
                                                   >> 553 
                                                   >> 554       return 0;
                                                   >> 555     
529   }                                               556   }
530                                                   557 
                                                   >> 558   // G4int provShellId = -1;
531   G4int maxNumOfShells = transitionManager->Nu    559   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
532                                                   560   
533   const G4AugerTransition* refAugerTransition     561   const G4AugerTransition* refAugerTransition = 
534     transitionManager->ReachableAugerShell(Z,m << 562         transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
535                                                   563 
536   // This loop gives to shellNum the value of     564   // This loop gives to shellNum the value of the index of shellId
537   // in the vector storing the list of the vac    565   // in the vector storing the list of the vacancies in the variuos shells 
538   // that can originate a NON-radiative transi    566   // that can originate a NON-radiative transition
                                                   >> 567   
539   G4int shellNum = 0;                             568   G4int shellNum = 0;
540                                                << 569 
541   if ( shellId <= refAugerTransition->FinalShe    570   if ( shellId <= refAugerTransition->FinalShellId() ) 
542     // "FinalShellId" is final from the point  << 571     //"FinalShellId" is final from the point of view of the elctron who makes the transition, 
543     // who makes the transition,               << 
544     // being the Id of the shell in which ther    572     // being the Id of the shell in which there is a vacancy
545     {                                             573     {
546       G4int pippo = transitionManager->Reachab    574       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
547       if (shellId != pippo ) {                 << 575       if (shellId  != pippo ) {
548   do {                                            576   do { 
549     ++shellNum;                                << 577     shellNum++;
550     if(shellNum == maxNumOfShells)                578     if(shellNum == maxNumOfShells)
551       {                                           579       {
552         // G4cout << "No Auger transition foun << 580         //        G4cout << "No Auger transition found" << G4endl; //debug
553         return 0;                                 581         return 0;
554       }                                           582       }
555   }                                               583   }
556   while (shellId != (transitionManager->Reacha << 584   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
557       }                                           585       }
558                                                   586 
                                                   >> 587 
559       // Now we have that shellnum is the shel    588       // Now we have that shellnum is the shellIndex of the shell named ShellId
                                                   >> 589 
560       //      G4cout << " the index of the she    590       //      G4cout << " the index of the shell is: "<<shellNum<<G4endl;
                                                   >> 591 
561       // But we have now to select two shells:    592       // But we have now to select two shells: one for the transition, 
562       // and another for the auger emission.      593       // and another for the auger emission.
                                                   >> 594 
563       G4int transitionLoopShellIndex = 0;         595       G4int transitionLoopShellIndex = 0;      
564       G4double partSum = 0;                       596       G4double partSum = 0;
565       const G4AugerTransition* anAugerTransiti    597       const G4AugerTransition* anAugerTransition = 
566   transitionManager->ReachableAugerShell(Z,she << 598             transitionManager->ReachableAugerShell(Z,shellNum);
                                                   >> 599 
                                                   >> 600       //      G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl;
567                                                   601 
568       G4int transitionSize = (G4int)           << 602 
569   (anAugerTransition->TransitionOriginatingShe << 603       G4int transitionSize = 
                                                   >> 604             (anAugerTransition->TransitionOriginatingShellIds())->size();
570       while (transitionLoopShellIndex < transi    605       while (transitionLoopShellIndex < transitionSize) {
571                                                   606 
572         std::vector<G4int>::const_iterator pos    607         std::vector<G4int>::const_iterator pos = 
573     anAugerTransition->TransitionOriginatingSh << 608                anAugerTransition->TransitionOriginatingShellIds()->begin();
574                                                   609 
575         G4int transitionLoopShellId = *(pos+tr    610         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
576         G4int numberOfPossibleAuger = (G4int)  << 611         G4int numberOfPossibleAuger = 
577     (anAugerTransition->AugerTransitionProbabi << 612               (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
578         G4int augerIndex = 0;                     613         G4int augerIndex = 0;
579                                                << 614         //      G4int partSum2 = 0;
                                                   >> 615 
                                                   >> 616 
580   if (augerIndex < numberOfPossibleAuger) {       617   if (augerIndex < numberOfPossibleAuger) {
                                                   >> 618     
581     do                                            619     do 
582       {                                           620       {
583         G4double thisProb = anAugerTransition-    621         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
584                     transitionLoopShellId);       622                     transitionLoopShellId);
585         partSum += thisProb;                      623         partSum += thisProb;
586         augerIndex++;                             624         augerIndex++;
587                                                   625         
588       } while (augerIndex < numberOfPossibleAu    626       } while (augerIndex < numberOfPossibleAuger);
589         }                                      << 627     }
590         ++transitionLoopShellIndex;            << 628         transitionLoopShellIndex++;
591       }                                           629       }
592                                                << 630       
                                                   >> 631 
                                                   >> 632 
                                                   >> 633       // Now we have the entire probability of an auger transition for the vacancy 
                                                   >> 634       // located in shellNum (index of shellId) 
                                                   >> 635 
                                                   >> 636       // AM *********************** F I X E D **************************** AM
                                                   >> 637       // Here we duplicate the previous loop, this time looking to the sum of the probabilities 
                                                   >> 638       // to be under the random number shoot by G4 UniformRdandom. This could have been done in the 
                                                   >> 639       // previuos loop, while integrating the probabilities. There is a bug that will be fixed 
                                                   >> 640       // 5 minutes from now: a line:
                                                   >> 641       // G4int numberOfPossibleAuger = (anAugerTransition->
                                                   >> 642       // AugerTransitionProbabilities(transitionLoopShellId))->size();
                                                   >> 643       // to be inserted.
                                                   >> 644       // AM *********************** F I X E D **************************** AM
                                                   >> 645 
                                                   >> 646       // Remains to get the same result with a single loop.
                                                   >> 647 
                                                   >> 648       // AM *********************** F I X E D **************************** AM
                                                   >> 649       // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from 
                                                   >> 650       // a vacancy in one shell, but not all of these are present in data tables. So if a transition 
                                                   >> 651       // doesn't occur in the main one a local energy deposition must occur, instead of (like now) 
                                                   >> 652       // generating the last transition present in EADL data.
                                                   >> 653       // AM *********************** F I X E D **************************** AM
                                                   >> 654 
                                                   >> 655 
593       G4double totalVacancyAugerProbability =     656       G4double totalVacancyAugerProbability = partSum;
594                                                   657 
                                                   >> 658 
595       //And now we start to select the right a    659       //And now we start to select the right auger transition and emission
596       G4int transitionRandomShellIndex = 0;       660       G4int transitionRandomShellIndex = 0;
597       G4int transitionRandomShellId = 1;          661       G4int transitionRandomShellId = 1;
598       G4int augerIndex = 0;                       662       G4int augerIndex = 0;
599       partSum = 0;                                663       partSum = 0; 
600       G4double partialProb = G4UniformRand();     664       G4double partialProb = G4UniformRand();
                                                   >> 665       // G4int augerOriginatingShellId = 0;
                                                   >> 666       
                                                   >> 667       G4int numberOfPossibleAuger = 0;
601                                                   668       
602       G4int numberOfPossibleAuger = 0;         << 
603       G4bool foundFlag = false;                   669       G4bool foundFlag = false;
604                                                   670 
605       while (transitionRandomShellIndex < tran    671       while (transitionRandomShellIndex < transitionSize) {
606                                                   672 
607         std::vector<G4int>::const_iterator pos    673         std::vector<G4int>::const_iterator pos = 
608     anAugerTransition->TransitionOriginatingSh << 674                anAugerTransition->TransitionOriginatingShellIds()->begin();
609                                                   675 
610         transitionRandomShellId = *(pos+transi    676         transitionRandomShellId = *(pos+transitionRandomShellIndex);
611                                                   677         
612   augerIndex = 0;                                 678   augerIndex = 0;
613   numberOfPossibleAuger = (G4int)(anAugerTrans << 679   numberOfPossibleAuger = (anAugerTransition-> 
614          AugerTransitionProbabilities(transiti    680          AugerTransitionProbabilities(transitionRandomShellId))->size();
615                                                   681 
616         while (augerIndex < numberOfPossibleAu    682         while (augerIndex < numberOfPossibleAuger) {
617     G4double thisProb =anAugerTransition->Auge    683     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
618                      transitionRandomShellId);    684                      transitionRandomShellId);
619                                                   685 
620           partSum += thisProb;                    686           partSum += thisProb;
621                                                   687           
622           if (partSum >= (partialProb*totalVac    688           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
623       foundFlag = true;                           689       foundFlag = true;
624       break;                                      690       break;
625     }                                             691     }
626           augerIndex++;                           692           augerIndex++;
627         }                                         693         }
628         if (partSum >= (partialProb*totalVacan    694         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
629         ++transitionRandomShellIndex;          << 695         transitionRandomShellIndex++;
630       }                                           696       }
631                                                   697 
632       // Now we have the index of the shell fr    698       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
633       // and the id of the shell, from which t    699       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
634       // If no Transition has been found, 0 is    700       // If no Transition has been found, 0 is returned.  
                                                   >> 701 
635       if (!foundFlag) {                           702       if (!foundFlag) {
636   return nullptr;                              << 703   //  G4cout << "Auger not found (foundflag = false) " << G4endl; //debug
637       }                                        << 704   return 0;
                                                   >> 705 
                                                   >> 706 } 
638                                                   707       
639       // Isotropic angular distribution for th    708       // Isotropic angular distribution for the outcoming e-
640       G4double newcosTh = 1.-2.*G4UniformRand(    709       G4double newcosTh = 1.-2.*G4UniformRand();
641       G4double newsinTh = std::sqrt(1.-newcosT << 710       G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
642       G4double newPhi = twopi*G4UniformRand();    711       G4double newPhi = twopi*G4UniformRand();
643                                                   712       
644       G4double xDir = newsinTh*std::sin(newPhi << 713       G4double xDir =  newsinTh*std::sin(newPhi);
645       G4double yDir = newsinTh*std::cos(newPhi    714       G4double yDir = newsinTh*std::cos(newPhi);
646       G4double zDir = newcosTh;                   715       G4double zDir = newcosTh;
647                                                   716       
648       G4ThreeVector newElectronDirection(xDir,    717       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
649                                                   718       
650       // energy of the auger electron emitted  << 719       // energy of the auger electron emitted
651       G4double transitionEnergy =              << 720       
652   anAugerTransition->AugerTransitionEnergy(aug << 721       
                                                   >> 722       G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
                                                   >> 723       /*
                                                   >> 724   G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
                                                   >> 725   G4cout << "augerIndex: " << augerIndex << G4endl;
                                                   >> 726   G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
                                                   >> 727       */
653                                                   728       
654       if (transitionEnergy < minElectronEnergy    729       if (transitionEnergy < minElectronEnergy) {
655   return nullptr;                              << 730   // G4cout << "Problem!  (transitionEnergy < minElectronEnergy)" << G4endl; // debug
                                                   >> 731   // G4cout << "minElectronEnergy(KeV): " << minElectronEnergy/keV << G4endl; // debug
                                                   >> 732   // G4cout << "transitionEnergy(KeV): " << transitionEnergy/keV << G4endl; // debug
                                                   >> 733   return 0;
656       }                                           734       }
657                                                   735 
658       // This is the shell where the new vacan    736       // This is the shell where the new vacancy is: it is the same
659       // shell where the electron came from       737       // shell where the electron came from
660       newShellId = transitionRandomShellId;       738       newShellId = transitionRandomShellId;
661                                                   739       
662       //Auger cascade by Burkhant Suerfu on Ma << 
663       if (IsAugerCascadeActive())              << 
664   {                                            << 
665     vacancyArray.push_back(newShellId);        << 
666     vacancyArray.push_back(anAugerTransition-> << 
667   }                                            << 
668                                                << 
669       return new G4DynamicParticle(G4Electron:    740       return new G4DynamicParticle(G4Electron::Electron(), 
670            newElectronDirection,                  741            newElectronDirection,
671            transitionEnergy);                     742            transitionEnergy);
672     }                                             743     }
673   else                                            744   else 
674     {                                             745     {
675       return nullptr;                          << 746       //      G4cout << "G4UAtomicDeexcitation: no auger transition found" << G4endl ;
                                                   >> 747       //      G4cout << "( shellId <= refAugerTransition->FinalShellId() )" << G4endl;
                                                   >> 748       return 0;
676     }                                             749     }
677 }                                                 750 }
678                                                   751