Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PhotoElectricAngularGeneratorPolarized.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4PhotoElectricAngularGeneratorPolarized.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4PhotoElectricAngularGeneratorPolarized.cc (Version 8.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // -------------------------------------------     27 // -------------------------------------------------------------------
 28 //                                                 28 //
 29 // GEANT4 Class file                               29 // GEANT4 Class file
 30 //                                                 30 //
 31 //                                                 31 //
 32 // File name:     G4PhotoElectricAngularGenera     32 // File name:     G4PhotoElectricAngularGeneratorPolarized
 33 //                                                 33 //
 34 // Author: A. C. Farinha, L. Peralta, P. Rodri     34 // Author: A. C. Farinha, L. Peralta, P. Rodrigues and A. Trindade
 35 //                                             <<  35 // 
 36 // Creation date:                                  36 // Creation date:
 37 //                                                 37 //
 38 // Modifications:                              <<  38 // Modifications: 
 39 // 10 January 2006                             <<  39 // 10 January 2006       
 40 // 06 May 2011, Replace FILE with std::ifstrea << 
 41 //                                                 40 //
 42 // Class Description:                          <<  41 // Class Description: 
 43 //                                                 42 //
 44 // Concrete class for PhotoElectric Electron A <<  43 // Concrete class for PhotoElectric Electron Angular Polarized Distribution Generation 
 45 //                                                 44 //
 46 // Class Description:                          <<  45 // Class Description: 
 47 // PhotoElectric Electron Angular Generator ba     46 // PhotoElectric Electron Angular Generator based on the general Gavrila photoelectron angular distribution.
 48 // Includes polarization effects for K and L1      47 // Includes polarization effects for K and L1 atomic shells, according to Gavrila (1959, 1961).
 49 // For higher shells the L1 cross-section is u <<  48 // For higher shells the L1 cross-section is used. 
 50 //                                                 49 //
 51 // The Gavrila photoelectron angular distribut     50 // The Gavrila photoelectron angular distribution is a complex function which can not be sampled using
 52 // the inverse-transform method (James 1980).  <<  51 // the inverse-transform method (James 1980). Instead a more general approach based on the one already 
 53 // used to sample bremsstrahlung 2BN cross sec     52 // used to sample bremsstrahlung 2BN cross section (G4Generator2BN, Peralta, 2005) was used.
 54 //                                                 53 //
 55 // M. Gavrila, "Relativistic K-Shell Photoeffe     54 // M. Gavrila, "Relativistic K-Shell Photoeffect", Phys. Rev. 113, 514-526   (1959)
 56 // M. Gavrila, "Relativistic L-Shell Photoeffe     55 // M. Gavrila, "Relativistic L-Shell Photoeffect", Phys. Rev. 124, 1132-1141 (1961)
 57 // F. James, Rept. on Prog. in Phys. 43, 1145      56 // F. James, Rept. on Prog. in Phys. 43, 1145 (1980)
 58 // L. Peralta et al., "A new low-energy bremss     57 // L. Peralta et al., "A new low-energy bremsstrahlung generator for GEANT4", Radiat. Prot. Dosimetry. 116, 59-64 (2005)
 59 //                                                 58 //
 60 //                                                 59 //
 61 // -------------------------------------------     60 // -------------------------------------------------------------------
 62 //                                                 61 //
 63 //                                             <<  62 //    
 64                                                    63 
 65 #include "G4PhotoElectricAngularGeneratorPolar     64 #include "G4PhotoElectricAngularGeneratorPolarized.hh"
 66 #include "G4PhysicalConstants.hh"              << 
 67 #include "G4RotationMatrix.hh"                     65 #include "G4RotationMatrix.hh"
 68 #include "Randomize.hh"                            66 #include "Randomize.hh"
 69 #include "G4Exp.hh"                            << 
 70                                                    67 
 71 G4PhotoElectricAngularGeneratorPolarized::G4Ph <<  68 //    
 72   :G4VEmAngularDistribution("AngularGenSauterG <<  69 
                                                   >>  70 G4PhotoElectricAngularGeneratorPolarized::G4PhotoElectricAngularGeneratorPolarized(const G4String& name):G4VPhotoElectricAngularDistribution(name)
 73 {                                                  71 {
 74   const G4int arrayDim = 980;                      72   const G4int arrayDim = 980;
 75                                                    73 
 76   //minimum electron beta parameter allowed        74   //minimum electron beta parameter allowed
 77   betaArray[0] = 0.02;                             75   betaArray[0] = 0.02;
 78   //beta step                                      76   //beta step
 79   betaArray[1] = 0.001;                            77   betaArray[1] = 0.001;
 80   //maximum index array for a and c tables         78   //maximum index array for a and c tables
 81   betaArray[2] = arrayDim - 1;                     79   betaArray[2] = arrayDim - 1;
 82                                                    80 
 83   // read Majorant Surface Parameters. This ar <<  81   // read Majorant Surface Parameters. This are required in order to generate Gavrila angular photoelectron distribution
 84   //Gavrila angular photoelectron distribution << 
 85   for(G4int level = 0; level < 2; level++){        82   for(G4int level = 0; level < 2; level++){
                                                   >>  83 
 86     char nameChar0[100] = "ftab0.dat"; // K-sh     84     char nameChar0[100] = "ftab0.dat"; // K-shell Majorant Surface Parameters
 87     char nameChar1[100] = "ftab1.dat"; // L-sh     85     char nameChar1[100] = "ftab1.dat"; // L-shell Majorant Surface Parameters
 88                                                    86 
 89     G4String filename;                             87     G4String filename;
 90     if(level == 0) filename = nameChar0;           88     if(level == 0) filename = nameChar0;
 91     if(level == 1) filename = nameChar1;           89     if(level == 1) filename = nameChar1;
 92                                                    90 
 93     const char* path = G4FindDataDir("G4LEDATA <<  91     char* path = getenv("G4LEDATA");
 94     if (!path)                                     92     if (!path)
 95       {                                            93       {
 96         G4String excep = "G4EMDataSet - G4LEDA     94         G4String excep = "G4EMDataSet - G4LEDATA environment variable not set";
 97         G4Exception("G4PhotoElectricAngularGen <<  95         G4Exception(excep);
 98         "em0006",FatalException,"G4LEDATA envi << 
 99   return;                                      << 
100       }                                            96       }
101                                                    97 
102     G4String pathString(path);                     98     G4String pathString(path);
103     G4String dirFile = pathString + "/photoele     99     G4String dirFile = pathString + "/photoelectric_angular/" + filename;
104     std::ifstream infile(dirFile);             << 100     FILE *infile;
105     if (!infile.is_open())                     << 101     infile = fopen(dirFile,"r"); 
                                                   >> 102     if (infile == 0)
106       {                                           103       {
107   G4String excep = "data file: " + dirFile + " << 104   G4String excep = "G4PhotoElectricAngularGeneratorPolarized - data file: " + dirFile + " not found";
108         G4Exception("G4PhotoElectricAngularGen << 105   G4Exception(excep);
109         "em0003",FatalException,excep);        << 
110   return;                                      << 
111       }                                           106       }
112                                                   107 
113     // Read parameters into tables. The parame << 108     // Read parameters into tables. The parameters are function of incident electron energy and shell level
114     // energy and shell level                  << 109     G4float aRead,cRead, beta;
115     G4float aRead=0,cRead=0, beta=0;           << 110     for(G4int i=0 ; i<arrayDim ;i++){
116     for(G4int i=0 ; i<arrayDim ;++i){          << 111       fscanf(infile,"%f\t %e\t %e",&beta,&aRead,&cRead);
117       infile >> beta >> aRead >> cRead;        << 112       aMajorantSurfaceParameterTable[i][level] = aRead;    
118       aMajorantSurfaceParameterTable[i][level] << 
119       cMajorantSurfaceParameterTable[i][level]    113       cMajorantSurfaceParameterTable[i][level] = cRead;
120     }                                             114     }
121     infile.close();                            << 115     fclose(infile);
                                                   >> 116 
122   }                                               117   }
123 }                                                 118 }
124                                                   119 
125 //....oooOO0OOooo........oooOO0OOooo........oo << 120 //    
126                                                   121 
127 G4PhotoElectricAngularGeneratorPolarized::~G4P << 122 G4PhotoElectricAngularGeneratorPolarized::~G4PhotoElectricAngularGeneratorPolarized() 
128 {}                                             << 123 {;}
129                                                   124 
130 //....oooOO0OOooo........oooOO0OOooo........oo << 125 //
131                                                   126 
132 G4ThreeVector&                                 << 127 G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::GetPhotoElectronDirection(const G4ThreeVector& direction, const G4double eKineticEnergy,
133 G4PhotoElectricAngularGeneratorPolarized::Samp << 128                       const G4ThreeVector& polarization, const G4int shellId) const
134                                  const G4Dynam << 
135          G4double eKinEnergy,                  << 
136          G4int shellId,                        << 
137          const G4Material*)                    << 
138 {                                                 129 {
139   // (shellId == 0) - K-shell  - Polarized mod << 
140   // (shellId > 0)  - L1-shell - Polarized mod << 
141                                                << 
142   // Calculate Lorentz term (gamma) and beta p    130   // Calculate Lorentz term (gamma) and beta parameters
143   G4double gamma = 1 + eKinEnergy/electron_mas << 131   G4double gamma   = 1. + eKineticEnergy/electron_mass_c2;
144   G4double beta  = std::sqrt((gamma - 1)*(gamm << 132   G4double beta  = std::sqrt(gamma*gamma-1.)/gamma;
145                                                << 
146   const G4ThreeVector& direction = dp->GetMome << 
147   const G4ThreeVector& polarization = dp->GetP << 
148                                                   133 
149   G4double theta, phi = 0;                        134   G4double theta, phi = 0;
150   // Majorant surface parameters               << 135   G4double aBeta = 0; // Majorant surface parameter (function of the outgoing electron kinetic energy) 
151   // function of the outgoing electron kinetic << 136   G4double cBeta = 0; // Majorant surface parameter (function of the outgoing electron kinetic energy)
152   G4double aBeta = 0;                          << 137 
153   G4double cBeta = 0;                          << 138   G4int shellLevel = 0;
154                                                << 139   if(shellId <  2) shellLevel = 0; // K-shell  // Polarized model for K-shell
155   // For the outgoing kinetic energy           << 140   if(shellId >= 2) shellLevel = 1; // L1-shell // Polarized model for L1 and higher shells
156   // find the current majorant surface paramet << 141 
157   PhotoElectronGetMajorantSurfaceAandCParamete << 142   // For the outgoing kinetic energy find the current majorant surface parameters
158                                                << 143   PhotoElectronGetMajorantSurfaceAandCParameters( shellLevel, beta, &aBeta, &cBeta);
159   // Generate pho and theta according to the s << 144 
160   // and beta parameter of the electron        << 145   // Generate pho and theta according to the shell level and beta parameter of the electron
161   PhotoElectronGeneratePhiAndTheta(shellId, be << 146   PhotoElectronGeneratePhiAndTheta(shellLevel, beta, aBeta, cBeta, &phi, &theta);
162                                                   147 
163   // Determine the rotation matrix                148   // Determine the rotation matrix
164   const G4RotationMatrix rotation =            << 149   G4RotationMatrix rotation = PhotoElectronRotationMatrix(direction, polarization);
165     PhotoElectronRotationMatrix(direction, pol << 
166                                                   150 
167   // Compute final direction of the outgoing e    151   // Compute final direction of the outgoing electron
168   fLocalDirection = PhotoElectronComputeFinalD << 152   G4ThreeVector final_direction = PhotoElectronComputeFinalDirection(rotation, theta, phi);
169                                                   153 
170   return fLocalDirection;                      << 154   return final_direction;
171 }                                                 155 }
172                                                   156 
173 //....oooOO0OOooo........oooOO0OOooo........oo << 157 //
174                                                   158 
175 void                                           << 159 void G4PhotoElectricAngularGeneratorPolarized::PhotoElectronGeneratePhiAndTheta(const G4int shellLevel, const G4double beta, 
176 G4PhotoElectricAngularGeneratorPolarized::Phot << 160                           const G4double aBeta, const G4double cBeta, 
177       G4int shellLevel, G4double beta, G4doubl << 161                           G4double *pphi, G4double *ptheta) const
178       G4double *pphi, G4double *ptheta) const  << 
179 {                                                 162 {
180   G4double rand1, rand2, rand3 = 0;               163   G4double rand1, rand2, rand3 = 0;
181   G4double phi = 0;                               164   G4double phi = 0;
182   G4double theta = 0;                             165   G4double theta = 0;
183   G4double crossSectionValue = 0;                 166   G4double crossSectionValue = 0;
184   G4double crossSectionMajorantFunctionValue =    167   G4double crossSectionMajorantFunctionValue = 0;
185   G4double maxBeta = 0;                           168   G4double maxBeta = 0;
186                                                   169 
187   do {                                            170   do {
188                                                   171 
189     rand1 = G4UniformRand();                      172     rand1 = G4UniformRand();
190     rand2 = G4UniformRand();                      173     rand2 = G4UniformRand();
191     rand3 = G4UniformRand();                      174     rand3 = G4UniformRand();
192                                                << 175   
193     phi=2*pi*rand1;                               176     phi=2*pi*rand1;
194                                                   177 
195     if(shellLevel == 0){                          178     if(shellLevel == 0){
                                                   >> 179 
196       // Polarized Gavrila Cross-Section for K    180       // Polarized Gavrila Cross-Section for K-shell (1959)
197       theta=std::sqrt(((G4Exp(rand2*std::log(1 << 181       theta=std::sqrt(((std::exp(rand2*std::log(1+cBeta*pi*pi)))-1)/cBeta);
198       crossSectionMajorantFunctionValue =      << 182       crossSectionMajorantFunctionValue = CrossSectionMajorantFunction(theta, cBeta);
199   CrossSectionMajorantFunction(theta, cBeta);  << 
200       crossSectionValue = DSigmaKshellGavrila1    183       crossSectionValue = DSigmaKshellGavrila1959(beta, theta, phi);
                                                   >> 184 
201     } else {                                      185     } else {
                                                   >> 186 
202       //  Polarized Gavrila Cross-Section for     187       //  Polarized Gavrila Cross-Section for other shells (L1-shell) (1961)
203       theta = std::sqrt(((G4Exp(rand2*std::log << 188       theta = std::sqrt(((std::exp(rand2*std::log(1+cBeta*pi*pi)))-1)/cBeta);
204       crossSectionMajorantFunctionValue =      << 189       crossSectionMajorantFunctionValue = CrossSectionMajorantFunction(theta, cBeta);
205   CrossSectionMajorantFunction(theta, cBeta);  << 
206       crossSectionValue = DSigmaL1shellGavrila    190       crossSectionValue = DSigmaL1shellGavrila(beta, theta, phi);
                                                   >> 191 
207     }                                             192     }
208                                                   193 
209     maxBeta=rand3*aBeta*crossSectionMajorantFu    194     maxBeta=rand3*aBeta*crossSectionMajorantFunctionValue;
210     if(crossSectionValue < 0.0) { crossSection << 
211                                                   195 
212   } while(maxBeta > crossSectionValue || theta << 196   }while(maxBeta > crossSectionValue);
213                                                   197 
214   *pphi = phi;                                    198   *pphi = phi;
215   *ptheta = theta;                                199   *ptheta = theta;
216 }                                                 200 }
217                                                   201 
218 //....oooOO0OOooo........oooOO0OOooo........oo << 202 //
219                                                   203 
220 G4double                                       << 204 G4double G4PhotoElectricAngularGeneratorPolarized::CrossSectionMajorantFunction(const G4double theta, const G4double cBeta) const
221 G4PhotoElectricAngularGeneratorPolarized::Cros << 
222          G4double theta, G4double cBeta) const << 
223 {                                                 205 {
224   // Compute Majorant Function                    206   // Compute Majorant Function
225   G4double crossSectionMajorantFunctionValue = << 207   G4double crossSectionMajorantFunctionValue = 0; 
226   crossSectionMajorantFunctionValue = theta/(1    208   crossSectionMajorantFunctionValue = theta/(1+cBeta*theta*theta);
227   return crossSectionMajorantFunctionValue;       209   return crossSectionMajorantFunctionValue;
228 }                                                 210 }
229                                                   211 
230 //....oooOO0OOooo........oooOO0OOooo........oo << 212 //
231                                                   213 
232 G4double                                       << 214 G4double G4PhotoElectricAngularGeneratorPolarized::DSigmaKshellGavrila1959(const G4double beta, const G4double theta, const G4double phi) const
233 G4PhotoElectricAngularGeneratorPolarized::DSig << 
234          G4double beta, G4double theta, G4doub << 
235 {                                                 215 {
                                                   >> 216 
236   //Double differential K shell cross-section     217   //Double differential K shell cross-section (Gavrila 1959)
237                                                   218 
238   G4double beta2 = beta*beta;                     219   G4double beta2 = beta*beta;
239   G4double oneBeta2 = 1 - beta2;                  220   G4double oneBeta2 = 1 - beta2;
240   G4double sqrtOneBeta2 = std::sqrt(oneBeta2);    221   G4double sqrtOneBeta2 = std::sqrt(oneBeta2);
241   G4double oneBeta2_to_3_2 = std::pow(oneBeta2    222   G4double oneBeta2_to_3_2 = std::pow(oneBeta2,1.5);
242   G4double cosTheta = std::cos(theta);            223   G4double cosTheta = std::cos(theta);
243   G4double sinTheta2 = std::sin(theta)*std::si    224   G4double sinTheta2 = std::sin(theta)*std::sin(theta);
244   G4double cosPhi2 = std::cos(phi)*std::cos(ph    225   G4double cosPhi2 = std::cos(phi)*std::cos(phi);
245   G4double oneBetaCosTheta = 1-beta*cosTheta;     226   G4double oneBetaCosTheta = 1-beta*cosTheta;
246   G4double dsigma = 0;                            227   G4double dsigma = 0;
247   G4double firstTerm = 0;                         228   G4double firstTerm = 0;
248   G4double secondTerm = 0;                        229   G4double secondTerm = 0;
249                                                   230 
250   firstTerm = sinTheta2*cosPhi2/std::pow(oneBe << 231   firstTerm = sinTheta2*cosPhi2/std::pow(oneBetaCosTheta,4)-(1 - sqrtOneBeta2)/(2*oneBeta2) * 
251               (sinTheta2 * cosPhi2)/std::pow(o    232               (sinTheta2 * cosPhi2)/std::pow(oneBetaCosTheta,3) + (1-sqrtOneBeta2)*
252               (1-sqrtOneBeta2)/(4*oneBeta2_to_    233               (1-sqrtOneBeta2)/(4*oneBeta2_to_3_2) * sinTheta2/std::pow(oneBetaCosTheta,3);
253                                                   234 
254   secondTerm = std::sqrt(1 - sqrtOneBeta2)/(st    235   secondTerm = std::sqrt(1 - sqrtOneBeta2)/(std::pow(2.,3.5)*beta2*std::pow(oneBetaCosTheta,2.5)) *
255                (4*beta2/sqrtOneBeta2 * sinThet    236                (4*beta2/sqrtOneBeta2 * sinTheta2*cosPhi2/oneBetaCosTheta + 4*beta/oneBeta2 * cosTheta * cosPhi2
256                - 4*(1-sqrtOneBeta2)/oneBeta2 *    237                - 4*(1-sqrtOneBeta2)/oneBeta2 *(1+cosPhi2) - beta2 * (1-sqrtOneBeta2)/oneBeta2 * sinTheta2/oneBetaCosTheta
257                + 4*beta2*(1-sqrtOneBeta2)/oneB    238                + 4*beta2*(1-sqrtOneBeta2)/oneBeta2_to_3_2 - 4*beta*(1-sqrtOneBeta2)*(1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta)
258                + (1-sqrtOneBeta2)/(4*beta2*one << 239                + (1-sqrtOneBeta2)/(4*beta2*oneBetaCosTheta*oneBetaCosTheta) * (beta/oneBeta2 - 2/oneBeta2 * cosTheta * cosPhi2 + 
259                (1-sqrtOneBeta2)/oneBeta2_to_3_    240                (1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta - beta * (1-sqrtOneBeta2)/oneBeta2_to_3_2);
260                                                   241 
261   dsigma = ( firstTerm*(1-pi*fine_structure_co << 242   dsigma = ( firstTerm*(1-pi*fine_structure_const/beta) + secondTerm*(pi*fine_structure_const) );
262                                                   243 
263   return dsigma;                                  244   return dsigma;
264 }                                                 245 }
265                                                   246 
266 //....oooOO0OOooo........oooOO0OOooo........oo << 247 //
267                                                   248 
268 G4double                                       << 249 G4double G4PhotoElectricAngularGeneratorPolarized::DSigmaL1shellGavrila(const G4double beta, const G4double theta, const G4double phi) const
269 G4PhotoElectricAngularGeneratorPolarized::DSig << 
270         G4double beta, G4double theta, G4doubl << 
271 {                                                 250 {
                                                   >> 251 
272   //Double differential L1 shell cross-section    252   //Double differential L1 shell cross-section (Gavrila 1961)
273   // 26Oct2022: included factor (1/8) in dsigm << 253 
274   G4double beta2 = beta*beta;                     254   G4double beta2 = beta*beta;
275   G4double oneBeta2 = 1-beta2;                    255   G4double oneBeta2 = 1-beta2;
276   G4double sqrtOneBeta2 = std::sqrt(oneBeta2);    256   G4double sqrtOneBeta2 = std::sqrt(oneBeta2);
277   G4double oneBeta2_to_3_2=std::pow(oneBeta2,1    257   G4double oneBeta2_to_3_2=std::pow(oneBeta2,1.5);
278   G4double cosTheta = std::cos(theta);            258   G4double cosTheta = std::cos(theta);
279   G4double sinTheta2 =std::sin(theta)*std::sin    259   G4double sinTheta2 =std::sin(theta)*std::sin(theta);
280   G4double cosPhi2 = std::cos(phi)*std::cos(ph    260   G4double cosPhi2 = std::cos(phi)*std::cos(phi);
281   G4double oneBetaCosTheta = 1-beta*cosTheta;     261   G4double oneBetaCosTheta = 1-beta*cosTheta;
282                                                << 262   
283   G4double dsigma = 0;                            263   G4double dsigma = 0;
284   G4double firstTerm = 0;                         264   G4double firstTerm = 0;
285   G4double secondTerm = 0;                        265   G4double secondTerm = 0;
286                                                   266 
287   firstTerm = sinTheta2*cosPhi2/std::pow(oneBe    267   firstTerm = sinTheta2*cosPhi2/std::pow(oneBetaCosTheta,4)-(1 - sqrtOneBeta2)/(2*oneBeta2)
288               *  (sinTheta2 * cosPhi2)/std::po    268               *  (sinTheta2 * cosPhi2)/std::pow(oneBetaCosTheta,3) + (1-sqrtOneBeta2)*
289               (1-sqrtOneBeta2)/(4*oneBeta2_to_    269               (1-sqrtOneBeta2)/(4*oneBeta2_to_3_2) * sinTheta2/std::pow(oneBetaCosTheta,3);
290                                                   270 
291   secondTerm = std::sqrt(1 - sqrtOneBeta2)/(st    271   secondTerm = std::sqrt(1 - sqrtOneBeta2)/(std::pow(2.,3.5)*beta2*std::pow(oneBetaCosTheta,2.5)) *
292                (4*beta2/sqrtOneBeta2 * sinThet    272                (4*beta2/sqrtOneBeta2 * sinTheta2*cosPhi2/oneBetaCosTheta + 4*beta/oneBeta2 * cosTheta * cosPhi2
293                - 4*(1-sqrtOneBeta2)/oneBeta2 *    273                - 4*(1-sqrtOneBeta2)/oneBeta2 *(1+cosPhi2) - beta2 * (1-sqrtOneBeta2)/oneBeta2 * sinTheta2/oneBetaCosTheta
294                + 4*beta2*(1-sqrtOneBeta2)/oneB    274                + 4*beta2*(1-sqrtOneBeta2)/oneBeta2_to_3_2 - 4*beta*(1-sqrtOneBeta2)*(1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta)
295                + (1-sqrtOneBeta2)/(4*beta2*one << 275                + (1-sqrtOneBeta2)/(4*beta2*oneBetaCosTheta*oneBetaCosTheta) * (beta/oneBeta2 - 2/oneBeta2 * cosTheta * cosPhi2 + 
296                (1-sqrtOneBeta2)/oneBeta2_to_3_    276                (1-sqrtOneBeta2)/oneBeta2_to_3_2*cosTheta - beta*(1-sqrtOneBeta2)/oneBeta2_to_3_2);
297                                                   277 
298   dsigma = ( firstTerm*(1-pi*fine_structure_co << 278   dsigma = ( firstTerm*(1-pi*fine_structure_const/beta) + secondTerm*(pi*fine_structure_const) );
299                                                   279 
300   return dsigma;                                  280   return dsigma;
301 }                                                 281 }
302                                                   282 
303 //....oooOO0OOooo........oooOO0OOooo........oo << 283 G4double G4PhotoElectricAngularGeneratorPolarized::GetMax(const G4double arg1, const G4double arg2) const
                                                   >> 284 {
                                                   >> 285   if (arg1 > arg2)
                                                   >> 286     return arg1;
                                                   >> 287   else
                                                   >> 288     return arg2;
                                                   >> 289 }
304                                                   290 
305 G4RotationMatrix                               << 291 //
306 G4PhotoElectricAngularGeneratorPolarized::Phot << 292 
307            const G4ThreeVector& direction,     << 293 G4RotationMatrix G4PhotoElectricAngularGeneratorPolarized::PhotoElectronRotationMatrix(const G4ThreeVector& direction, 
308      const G4ThreeVector& polarization)        << 294                            const G4ThreeVector& polarization) const
309 {                                                 295 {
310   G4double mK = direction.mag();                  296   G4double mK = direction.mag();
311   G4double mS = polarization.mag();               297   G4double mS = polarization.mag();
312   G4ThreeVector polarization2 = polarization;     298   G4ThreeVector polarization2 = polarization;
313   const G4double kTolerance = 1e-6;               299   const G4double kTolerance = 1e-6;
314                                                   300 
315   if(!(polarization.isOrthogonal(direction,kTo    301   if(!(polarization.isOrthogonal(direction,kTolerance)) || mS == 0){
316     G4ThreeVector d0 = direction.unit();          302     G4ThreeVector d0 = direction.unit();
317     G4ThreeVector a1 = PerpendicularVector(d0) << 303     G4ThreeVector a1 = SetPerpendicularVector(d0); 
318     G4ThreeVector a0 = a1.unit();              << 304     G4ThreeVector a0 = a1.unit(); 
319     G4double rand1 = G4UniformRand();             305     G4double rand1 = G4UniformRand();
320     G4double angle = twopi*rand1;              << 306     G4double angle = twopi*rand1; 
321     G4ThreeVector b0 = d0.cross(a0);           << 307     G4ThreeVector b0 = d0.cross(a0); 
322     G4ThreeVector c;                              308     G4ThreeVector c;
323     c.setX(std::cos(angle)*(a0.x())+std::sin(a    309     c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x());
324     c.setY(std::cos(angle)*(a0.y())+std::sin(a    310     c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y());
325     c.setZ(std::cos(angle)*(a0.z())+std::sin(a    311     c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z());
326     polarization2 = c.unit();                     312     polarization2 = c.unit();
327     mS = polarization2.mag();                     313     mS = polarization2.mag();
328   }else                                           314   }else
329     {                                             315     {
330       if ( polarization.howOrthogonal(directio    316       if ( polarization.howOrthogonal(direction) != 0)
331   {                                               317   {
332     polarization2 = polarization               << 318     polarization2 = polarization - polarization.dot(direction)/direction.dot(direction) * direction;
333       - polarization.dot(direction)/direction. << 
334   }                                               319   }
335     }                                             320     }
336                                                   321 
337   G4ThreeVector direction2 = direction/mK;        322   G4ThreeVector direction2 = direction/mK;
338   polarization2 = polarization2/mS;               323   polarization2 = polarization2/mS;
339                                                   324 
340   G4ThreeVector y = direction2.cross(polarizat    325   G4ThreeVector y = direction2.cross(polarization2);
341                                                << 326     
342   G4RotationMatrix R(polarization2,y,direction    327   G4RotationMatrix R(polarization2,y,direction2);
343   return R;                                       328   return R;
344 }                                                 329 }
345                                                   330 
346 //....oooOO0OOooo........oooOO0OOooo........oo << 331 void G4PhotoElectricAngularGeneratorPolarized::PhotoElectronGetMajorantSurfaceAandCParameters(const G4int shellLevel, const G4double beta,G4double *majorantSurfaceParameterA, G4double *majorantSurfaceParameterC) const
347                                                << 
348 void                                           << 
349 G4PhotoElectricAngularGeneratorPolarized::Phot << 
350 {                                                 332 {
351   // This member function finds for a given sh << 333   // This member function finds for a given shell and beta value of the outgoing electron the correct Majorant Surface parameters
352   // of the outgoing electron the correct Majo << 334 
353   G4double aBeta,cBeta;                           335   G4double aBeta,cBeta;
354   G4double bMin,bStep;                            336   G4double bMin,bStep;
355   G4int indexMax;                                 337   G4int indexMax;
356   G4int level = 0;                             << 338   G4int level = shellLevel;    
357   if(shellId > 0) { level = 1; }               << 339   if(shellLevel > 1) level = 1; // protection since only K and L1 polarized double differential cross-sections were implemented
358                                                << 340     
359   bMin = betaArray[0];                            341   bMin = betaArray[0];
360   bStep = betaArray[1];                           342   bStep = betaArray[1];
361   indexMax = (G4int)betaArray[2];                 343   indexMax = (G4int)betaArray[2];
362   const G4double kBias = 1e-9;                    344   const G4double kBias = 1e-9;
363                                                   345 
364   G4int k = (G4int)((beta-bMin+kBias)/bStep);  << 346   G4int k = (G4int)((beta-bMin+kBias)/bStep);    
365                                                << 347     
366   if(k < 0)                                       348   if(k < 0)
367     k = 0;                                        349     k = 0;
368   if(k > indexMax)                                350   if(k > indexMax)
369     k = indexMax;                              << 351     k = indexMax; 
370                                                << 352     
371   if(k == 0)                                   << 353   if(k == 0) 
372     aBeta = std::max(aMajorantSurfaceParameter << 354     aBeta = GetMax(aMajorantSurfaceParameterTable[k][level],aMajorantSurfaceParameterTable[k+1][level]);
373   else if(k==indexMax)                            355   else if(k==indexMax)
374     aBeta = std::max(aMajorantSurfaceParameter << 356     aBeta = GetMax(aMajorantSurfaceParameterTable[k-1][level],aMajorantSurfaceParameterTable[k][level]);
375   else{                                           357   else{
376     aBeta = std::max(aMajorantSurfaceParameter << 358     aBeta = GetMax(aMajorantSurfaceParameterTable[k-1][level],aMajorantSurfaceParameterTable[k][level]);
377     aBeta = std::max(aBeta,aMajorantSurfacePar << 359     aBeta = GetMax(aBeta,aMajorantSurfaceParameterTable[k+1][level]);
378   }                                            << 360   }   
379                                                << 361     
380   if(k == 0)                                      362   if(k == 0)
381     cBeta = std::max(cMajorantSurfaceParameter << 363     cBeta = GetMax(cMajorantSurfaceParameterTable[k][level],cMajorantSurfaceParameterTable[k+1][level]);
382   else if(k == indexMax)                          364   else if(k == indexMax)
383     cBeta = std::max(cMajorantSurfaceParameter << 365     cBeta = GetMax(cMajorantSurfaceParameterTable[k-1][level],cMajorantSurfaceParameterTable[k][level]);
384   else{                                           366   else{
385     cBeta = std::max(cMajorantSurfaceParameter << 367     cBeta = GetMax(cMajorantSurfaceParameterTable[k-1][level],cMajorantSurfaceParameterTable[k][level]);
386     cBeta = std::max(cBeta,cMajorantSurfacePar << 368     cBeta = GetMax(cBeta,cMajorantSurfaceParameterTable[k+1][level]);
387   }                                               369   }
388                                                   370 
389   *majorantSurfaceParameterA = aBeta;             371   *majorantSurfaceParameterA = aBeta;
390   *majorantSurfaceParameterC = cBeta;             372   *majorantSurfaceParameterC = cBeta;
                                                   >> 373 
391 }                                                 374 }
392                                                   375 
393 //....oooOO0OOooo........oooOO0OOooo........oo << 
394                                                   376 
395 G4ThreeVector G4PhotoElectricAngularGeneratorP << 377 //
                                                   >> 378 G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::PhotoElectronComputeFinalDirection(const G4RotationMatrix& rotation, const G4double theta, const G4double phi) const
396 {                                                 379 {
397   //computes the photoelectron momentum unitar << 380 
398   G4double sint = std::sin(theta);             << 381   //computes the photoelectron momentum unitary vector 
399   G4double px = std::cos(phi)*sint;            << 382   G4double px = std::cos(phi)*std::sin(theta);
400   G4double py = std::sin(phi)*sint;            << 383   G4double py = std::sin(phi)*std::sin(theta);
401   G4double pz = std::cos(theta);                  384   G4double pz = std::cos(theta);
402                                                   385 
403   G4ThreeVector samplingDirection(px,py,pz);      386   G4ThreeVector samplingDirection(px,py,pz);
404                                                   387 
405   G4ThreeVector outgoingDirection = rotation*s    388   G4ThreeVector outgoingDirection = rotation*samplingDirection;
406   return outgoingDirection;                       389   return outgoingDirection;
407 }                                                 390 }
408                                                   391 
409 //....oooOO0OOooo........oooOO0OOooo........oo << 392 //
410                                                   393 
411 void G4PhotoElectricAngularGeneratorPolarized:    394 void G4PhotoElectricAngularGeneratorPolarized::PrintGeneratorInformation() const
412 {                                                 395 {
413   G4cout << "\n" << G4endl;                       396   G4cout << "\n" << G4endl;
414   G4cout << "Polarized Photoelectric Angular G    397   G4cout << "Polarized Photoelectric Angular Generator" << G4endl;
415   G4cout << "PhotoElectric Electron Angular Ge    398   G4cout << "PhotoElectric Electron Angular Generator based on the general Gavrila photoelectron angular distribution" << G4endl;
416   G4cout << "Includes polarization effects for    399   G4cout << "Includes polarization effects for K and L1 atomic shells, according to Gavrilla (1959, 1961)." << G4endl;
417   G4cout << "For higher shells the L1 cross-se    400   G4cout << "For higher shells the L1 cross-section is used." << G4endl;
418   G4cout << "(see Physics Reference Manual) \n    401   G4cout << "(see Physics Reference Manual) \n" << G4endl;
419 }                                              << 402 } 
420                                                << 
421 //....oooOO0OOooo........oooOO0OOooo........oo << 
422                                                   403 
423 G4ThreeVector                                  << 404 G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::SetPerpendicularVector(const G4ThreeVector& a) const
424 G4PhotoElectricAngularGeneratorPolarized::Perp << 
425          const G4ThreeVector& a) const         << 
426 {                                                 405 {
427   G4double dx = a.x();                            406   G4double dx = a.x();
428   G4double dy = a.y();                            407   G4double dy = a.y();
429   G4double dz = a.z();                            408   G4double dz = a.z();
430   G4double x = dx < 0.0 ? -dx : dx;               409   G4double x = dx < 0.0 ? -dx : dx;
431   G4double y = dy < 0.0 ? -dy : dy;               410   G4double y = dy < 0.0 ? -dy : dy;
432   G4double z = dz < 0.0 ? -dz : dz;               411   G4double z = dz < 0.0 ? -dz : dz;
433   if (x < y) {                                    412   if (x < y) {
434     return x < z ? G4ThreeVector(-dy,dx,0) : G    413     return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy);
435   }else{                                          414   }else{
436     return y < z ? G4ThreeVector(dz,0,-dx) : G    415     return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0);
437   }                                               416   }
438 }                                                 417 }
439                                                   418