Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PenelopeOscillatorManager.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4PenelopeOscillatorManager.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4PenelopeOscillatorManager.cc (Version 9.4.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Authors: Luciano Pandola (luciano.pandola a     26 // Authors: Luciano Pandola (luciano.pandola at lngs.infn.it)
 27 //                                                 27 //
 28 // History:                                        28 // History:
 29 // -----------                                     29 // -----------
 30 //                                             <<  30 //  
 31 //  03 Dec 2009  First working version, Lucian     31 //  03 Dec 2009  First working version, Luciano Pandola
 32 //  16 Feb 2010  Added methods to store also t <<  32 //  16 Feb 2010  Added methods to store also total Z and A for the 
 33 //               molecule, Luciano Pandola     <<  33 //               molecule, Luciano Pandola 
 34 //  19 Feb 2010  Scale the Hartree factors in  <<  34 //  19 Feb 2010  Scale the Hartree factors in the Compton Oscillator 
 35 //               table by (1/fine_structure_co <<  35 //               table by (1/fine_structure_const), since the models use 
 36 //               always the ratio (hartreeFact     36 //               always the ratio (hartreeFactor/fine_structure_const)
 37 //  16 Mar 2010  Added methods to calculate an     37 //  16 Mar 2010  Added methods to calculate and store mean exc energy
 38 //               and plasma energy (used for I     38 //               and plasma energy (used for Ionisation). L Pandola
 39 //  18 Mar 2010  Added method to retrieve numb <<  39 //  18 Mar 2010  Added method to retrieve number of atoms per 
 40 //               molecule. L. Pandola              40 //               molecule. L. Pandola
 41 //  06 Sep 2011  Override the local Penelope d << 
 42 //               G4AtomicDeexcitation database << 
 43 //               binding energies. L. Pandola  << 
 44 //  15 Mar 2012  Added method to retrieve numb << 
 45 //               molecule. Restore the origina << 
 46 //               below 100 eV. L. Pandola      << 
 47 //                                                 41 //
 48 // -------------------------------------------     42 // -------------------------------------------------------------------
 49                                                    43 
 50 #include "G4PenelopeOscillatorManager.hh"          44 #include "G4PenelopeOscillatorManager.hh"
 51                                                << 
 52 #include "globals.hh"                          << 
 53 #include "G4PhysicalConstants.hh"              << 
 54 #include "G4SystemOfUnits.hh"                  << 
 55 #include "G4AtomicTransitionManager.hh"        << 
 56 #include "G4AtomicShell.hh"                    << 
 57 #include "G4Material.hh"                           45 #include "G4Material.hh"
 58 #include "G4Exp.hh"                            <<  46 #include "globals.hh"
 59                                                << 
 60 //....oooOO0OOooo........oooOO0OOooo........oo << 
 61                                                << 
 62 G4ThreadLocal G4PenelopeOscillatorManager* G4P << 
 63                                                    47 
 64 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 65                                                    49 
 66 G4PenelopeOscillatorManager::G4PenelopeOscilla <<  50 G4PenelopeOscillatorManager::G4PenelopeOscillatorManager() : 
 67   fOscillatorStoreIonisation(nullptr),fOscilla <<  51   oscillatorStoreIonisation(0),oscillatorStoreCompton(0),atomicNumber(0),
 68   fAtomicNumber(nullptr),fAtomicMass(nullptr), <<  52   atomicMass(0),excitationEnergy(0),plasmaSquared(0),atomsPerMolecule(0)
 69   fPlasmaSquared(nullptr),fAtomsPerMolecule(nu << 
 70   fAtomTablePerMolecule(nullptr)               << 
 71 {                                                  53 {
 72   fReadElementData = false;                        54   fReadElementData = false;
 73   for (G4int i=0;i<5;i++)                          55   for (G4int i=0;i<5;i++)
 74     {                                              56     {
 75       for (G4int j=0;j<2000;j++)                   57       for (G4int j=0;j<2000;j++)
 76   fElementData[i][j] = 0.;                     <<  58   elementData[i][j] = 0.;
 77     }                                              59     }
 78   fVerbosityLevel = 0;                         <<  60   verbosityLevel = 0;
 79 }                                                  61 }
 80                                                    62 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 82                                                    64 
 83 G4PenelopeOscillatorManager::~G4PenelopeOscill     65 G4PenelopeOscillatorManager::~G4PenelopeOscillatorManager()
 84 {                                                  66 {
 85   Clear();                                         67   Clear();
 86   delete instance;                                 68   delete instance;
 87 }                                                  69 }
                                                   >>  70  
                                                   >>  71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  72 
                                                   >>  73 G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::instance = 0;
 88                                                    74 
 89 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 90                                                    76 
 91 G4PenelopeOscillatorManager* G4PenelopeOscilla     77 G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::GetOscillatorManager()
 92 {                                                  78 {
 93   if (!instance)                                   79   if (!instance)
 94     instance = new G4PenelopeOscillatorManager     80     instance = new G4PenelopeOscillatorManager();
 95   return instance;                                 81   return instance;
 96 }                                                  82 }
 97                                                    83 
 98 //....oooOO0OOooo........oooOO0OOooo........oo     84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 99                                                    85 
100 void G4PenelopeOscillatorManager::Clear()          86 void G4PenelopeOscillatorManager::Clear()
101 {                                                  87 {
102   if (fVerbosityLevel > 1)                     <<  88   if (verbosityLevel > 1)
103     G4cout << " G4PenelopeOscillatorManager::C     89     G4cout << " G4PenelopeOscillatorManager::Clear() - Clean Oscillator Tables" << G4endl;
104                                                    90 
105   //Clean up OscillatorStoreIonisation             91   //Clean up OscillatorStoreIonisation
106   for (auto& item : (*fOscillatorStoreIonisati <<  92   std::map<const G4Material*,G4PenelopeOscillatorTable*>::iterator i;
                                                   >>  93   for (i=oscillatorStoreIonisation->begin();i != oscillatorStoreIonisation->end();i++)
107     {                                              94     {
108       G4PenelopeOscillatorTable* table = item. <<  95       G4PenelopeOscillatorTable* table = i->second;
109       if (table)                                   96       if (table)
110   {                                                97   {
111     for (std::size_t k=0;k<table->size();++k)  <<  98     for (size_t k=0;k<table->size();k++) //clean individual oscillators
112       {                                            99       {
113         if ((*table)[k])                       << 100         if ((*table)[k]) 
114     delete ((*table)[k]);                         101     delete ((*table)[k]);
115       }                                           102       }
116     delete table;                                 103     delete table;
117   }                                               104   }
118     }                                             105     }
119   delete fOscillatorStoreIonisation;           << 106   delete oscillatorStoreIonisation;
120                                                   107 
121   //Clean up OscillatorStoreCompton               108   //Clean up OscillatorStoreCompton
122   for (auto& item : (*fOscillatorStoreCompton) << 109   for (i=oscillatorStoreCompton->begin();i != oscillatorStoreCompton->end();i++)
123     {                                             110     {
124       G4PenelopeOscillatorTable* table = item. << 111       G4PenelopeOscillatorTable* table = i->second;
125       if (table)                                  112       if (table)
126   {                                               113   {
127     for (std::size_t k=0;k<table->size();++k)  << 114     for (size_t k=0;k<table->size();k++) //clean individual oscillators
128       {                                           115       {
129         if ((*table)[k])                       << 116         if ((*table)[k]) 
130     delete ((*table)[k]);                         117     delete ((*table)[k]);
131       }                                           118       }
132     delete table;                                 119     delete table;
133   }                                               120   }
134     }                                             121     }
135   delete fOscillatorStoreCompton;              << 122   delete oscillatorStoreCompton;
                                                   >> 123 
                                                   >> 124   if (atomicMass) delete atomicMass;
                                                   >> 125   if (atomicNumber) delete atomicNumber;
                                                   >> 126   if (excitationEnergy) delete excitationEnergy;
                                                   >> 127   if (plasmaSquared) delete plasmaSquared;
                                                   >> 128   if (atomsPerMolecule) delete atomsPerMolecule;
136                                                   129 
137   if (fAtomicMass) delete fAtomicMass;         << 
138   if (fAtomicNumber) delete fAtomicNumber;     << 
139   if (fExcitationEnergy) delete fExcitationEne << 
140   if (fPlasmaSquared) delete fPlasmaSquared;   << 
141   if (fAtomsPerMolecule) delete fAtomsPerMolec << 
142   if (fAtomTablePerMolecule) delete fAtomTable << 
143 }                                                 130 }
144                                                   131 
145 //....oooOO0OOooo........oooOO0OOooo........oo    132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
146                                                   133 
147 void G4PenelopeOscillatorManager::Dump(const G    134 void G4PenelopeOscillatorManager::Dump(const G4Material* material)
148 {                                                 135 {
149   G4PenelopeOscillatorTable* theTable = GetOsc    136   G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material);
150   if (!theTable)                                  137   if (!theTable)
151     {                                             138     {
152       G4cout << " G4PenelopeOscillatorManager:    139       G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
153       G4cout << "Problem in retrieving the Ion << 140       G4cout << "Problem in retrieving the Ionisation Oscillator Table for " << material->GetName() << G4endl;
154        << material->GetName() << G4endl;       << 
155       return;                                     141       return;
156     }                                             142     }
157   G4cout << "*********************************    143   G4cout << "*********************************************************************" << G4endl;
158   G4cout << " Penelope Oscillator Table Ionisa    144   G4cout << " Penelope Oscillator Table Ionisation for " << material->GetName() << G4endl;
159   G4cout << "*********************************    145   G4cout << "*********************************************************************" << G4endl;
160   G4cout << "The table contains " << theTable-    146   G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
161   G4cout << "*********************************    147   G4cout << "*********************************************************************" << G4endl;
162   if (theTable->size() < 10)                      148   if (theTable->size() < 10)
163     for (std::size_t k=0;k<theTable->size();++ << 149     for (size_t k=0;k<theTable->size();k++)
164       {                                           150       {
165   G4cout << "Oscillator # " << k << " Z = " <<    151   G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
166     " Shell Flag = " << (*theTable)[k]->GetShe << 152     " Shell Flag = " << (*theTable)[k]->GetShellFlag() << 
167     " Parent shell ID = " << (*theTable)[k]->G    153     " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
168   G4cout << "Ionisation energy = " << (*theTab    154   G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
169   G4cout << "Occupation number = " << (*theTab    155   G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
170   G4cout << "Resonance energy = " << (*theTabl    156   G4cout << "Resonance energy = " << (*theTable)[k]->GetResonanceEnergy()/eV << " eV" << G4endl;
171   G4cout << "Cufoff resonance energy = " <<    << 157   G4cout << "Cufoff resonance energy = " << 
172     (*theTable)[k]->GetCutoffRecoilResonantEne    158     (*theTable)[k]->GetCutoffRecoilResonantEnergy()/eV << " eV" << G4endl;
173   G4cout << "*********************************    159   G4cout << "*********************************************************************" << G4endl;
174       }                                           160       }
175   for (std::size_t k=0;k<theTable->size();++k) << 161   for (size_t k=0;k<theTable->size();k++)
176     {                                          << 162     { 
177       G4cout << k << " " << (*theTable)[k]->Ge << 163       G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " << 
178   (*theTable)[k]->GetIonisationEnergy()/eV <<  << 164   (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetResonanceEnergy()/eV << " " << 
179        << (*theTable)[k]->GetResonanceEnergy() << 165   (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " << 
180   (*theTable)[k]->GetParentZ() << " " << (*the << 
181   (*theTable)[k]->GetParentShellID() << G4endl    166   (*theTable)[k]->GetParentShellID() << G4endl;
182     }                                             167     }
183   G4cout << "*********************************    168   G4cout << "*********************************************************************" << G4endl;
                                                   >> 169  
184                                                   170 
185   //Compton table                                 171   //Compton table
186   theTable = GetOscillatorTableCompton(materia    172   theTable = GetOscillatorTableCompton(material);
187   if (!theTable)                                  173   if (!theTable)
188     {                                             174     {
189       G4cout << " G4PenelopeOscillatorManager:    175       G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
190       G4cout << "Problem in retrieving the Com << 176       G4cout << "Problem in retrieving the Compton Oscillator Table for " << material->GetName() << G4endl;
191   material->GetName() << G4endl;               << 
192       return;                                     177       return;
193     }                                             178     }
194   G4cout << "*********************************    179   G4cout << "*********************************************************************" << G4endl;
195   G4cout << " Penelope Oscillator Table Compto    180   G4cout << " Penelope Oscillator Table Compton for " << material->GetName() << G4endl;
196   G4cout << "*********************************    181   G4cout << "*********************************************************************" << G4endl;
197   G4cout << "The table contains " << theTable-    182   G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
198   G4cout << "*********************************    183   G4cout << "*********************************************************************" << G4endl;
199   if (theTable->size() < 10)                      184   if (theTable->size() < 10)
200     for (std::size_t k=0;k<theTable->size();++ << 185     for (size_t k=0;k<theTable->size();k++)
201       {                                           186       {
202   G4cout << "Oscillator # " << k << " Z = " <<    187   G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
203     " Shell Flag = " << (*theTable)[k]->GetShe << 188     " Shell Flag = " << (*theTable)[k]->GetShellFlag() << 
204      " Parent shell ID = " << (*theTable)[k]->    189      " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
205   G4cout << "Compton index = " << (*theTable)[    190   G4cout << "Compton index = " << (*theTable)[k]->GetHartreeFactor() << G4endl;
206   G4cout << "Ionisation energy = " << (*theTab    191   G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
207   G4cout << "Occupation number = " << (*theTab    192   G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
208   G4cout << "*********************************    193   G4cout << "*********************************************************************" << G4endl;
209       }                                           194       }
210   for (std::size_t k=0;k<theTable->size();++k) << 195   for (size_t k=0;k<theTable->size();k++)
211     {                                          << 196     { 
212       G4cout << k << " " << (*theTable)[k]->Ge << 197       G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " << 
213   (*theTable)[k]->GetIonisationEnergy()/eV <<  << 198   (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetHartreeFactor() << " " << 
214   (*theTable)[k]->GetParentZ() << " " << (*the << 199   (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " << 
215   (*theTable)[k]->GetParentShellID() << G4endl    200   (*theTable)[k]->GetParentShellID() << G4endl;
216     }                                             201     }
217   G4cout << "*********************************    202   G4cout << "*********************************************************************" << G4endl;
                                                   >> 203   
218                                                   204 
                                                   >> 205   //just to test it
                                                   >> 206   //Clear();
                                                   >> 207  
219   return;                                         208   return;
220 }                                                 209 }
221                                                   210 
222 //....oooOO0OOooo........oooOO0OOooo........oo    211 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223                                                   212 
224 void G4PenelopeOscillatorManager::CheckForTabl    213 void G4PenelopeOscillatorManager::CheckForTablesCreated()
225 {                                                 214 {
226   //Tables should be created at the same time, << 215   //Tables should be created at the same time, since they are both filled 
227   //simultaneously                                216   //simultaneously
228   if (!fOscillatorStoreIonisation)             << 217   if (!oscillatorStoreIonisation) 
229     {                                             218     {
230       fOscillatorStoreIonisation = new std::ma << 219       oscillatorStoreIonisation = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
231       if (!fReadElementData)                      220       if (!fReadElementData)
232   ReadElementData();                              221   ReadElementData();
233       if (!fOscillatorStoreIonisation)         << 222       if (!oscillatorStoreIonisation)
234   //It should be ok now                        << 223   {
235   G4Exception("G4PenelopeOscillatorManager::Ge << 224     //It should be ok now
236         "em2034",FatalException,               << 225     G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl;
237         "Problem in allocating the Oscillator  << 226     G4cout << "Problem in allocating the Oscillator Store for Ionisation" << G4endl;
                                                   >> 227     G4cout << "Abort execution" << G4endl;
                                                   >> 228     G4Exception();
                                                   >> 229   }
238     }                                             230     }
239                                                   231 
240   if (!fOscillatorStoreCompton)                << 232   if (!oscillatorStoreCompton) 
241     {                                             233     {
242       fOscillatorStoreCompton = new std::map<c << 234       oscillatorStoreCompton = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
243       if (!fReadElementData)                      235       if (!fReadElementData)
244   ReadElementData();                              236   ReadElementData();
245       if (!fOscillatorStoreCompton)            << 237       if (!oscillatorStoreCompton)
246   //It should be ok now                        << 238   {
247   G4Exception("G4PenelopeOscillatorManager::Ge << 239     //It should be ok now
248         "em2034",FatalException,               << 240     G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl;
249         "Problem in allocating the Oscillator  << 241     G4cout << "Problem in allocating the Oscillator Store for Compton" << G4endl;
250     }                                          << 242     G4cout << "Abort execution" << G4endl;
251                                                << 243     G4Exception();
252   if (!fAtomicNumber)                          << 244   }
253     fAtomicNumber = new std::map<const G4Mater << 245     }
254   if (!fAtomicMass)                            << 246 
255     fAtomicMass = new std::map<const G4Materia << 247   if (!atomicNumber)
256   if (!fExcitationEnergy)                      << 248     atomicNumber = new std::map<const G4Material*,G4double>;
257     fExcitationEnergy = new std::map<const G4M << 249   if (!atomicMass)
258   if (!fPlasmaSquared)                         << 250     atomicMass = new std::map<const G4Material*,G4double>;
259     fPlasmaSquared = new std::map<const G4Mate << 251   if (!excitationEnergy)
260   if (!fAtomsPerMolecule)                      << 252     excitationEnergy = new std::map<const G4Material*,G4double>;
261     fAtomsPerMolecule = new std::map<const G4M << 253   if (!plasmaSquared)
262   if (!fAtomTablePerMolecule)                  << 254     plasmaSquared = new std::map<const G4Material*,G4double>;
263     fAtomTablePerMolecule = new std::map< std: << 255   if (!atomsPerMolecule)
                                                   >> 256     atomsPerMolecule = new std::map<const G4Material*,G4double>;
                                                   >> 257   
264 }                                                 258 }
265                                                   259 
266                                                   260 
267 //....oooOO0OOooo........oooOO0OOooo........oo    261 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
268                                                   262 
269 G4double G4PenelopeOscillatorManager::GetTotal    263 G4double G4PenelopeOscillatorManager::GetTotalZ(const G4Material* mat)
270 {                                                 264 {
271   // (1) First time, create fOscillatorStores  << 265   // (1) First time, create oscillatorStores and read data
272   CheckForTablesCreated();                        266   CheckForTablesCreated();
273                                                   267 
274   // (2) Check if the material has been alread    268   // (2) Check if the material has been already included
275   if (fAtomicNumber->count(mat))               << 269   if (atomicNumber->count(mat))
276     return fAtomicNumber->find(mat)->second;   << 270     return atomicNumber->find(mat)->second;
277                                                << 271     
278   // (3) If we are here, it means that we have    272   // (3) If we are here, it means that we have to create the table for the material
279   BuildOscillatorTable(mat);                      273   BuildOscillatorTable(mat);
280                                                   274 
281   // (4) now, the oscillator store should be o    275   // (4) now, the oscillator store should be ok
282   if (fAtomicNumber->count(mat))               << 276   if (atomicNumber->count(mat))
283     return fAtomicNumber->find(mat)->second;   << 277     return atomicNumber->find(mat)->second;
284   else                                            278   else
285     {                                             279     {
286       G4cout << "G4PenelopeOscillatorManager::    280       G4cout << "G4PenelopeOscillatorManager::GetTotalZ() " << G4endl;
287       G4cout << "Impossible to retrieve the to << 281       G4cout << "Impossible to retrieve the total Z for " << mat->GetName() << G4endl;      
288       return 0;                                   282       return 0;
289     }                                             283     }
290 }                                                 284 }
291                                                   285 
292 //....oooOO0OOooo........oooOO0OOooo........oo    286 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
293                                                   287 
294 G4double G4PenelopeOscillatorManager::GetTotal    288 G4double G4PenelopeOscillatorManager::GetTotalA(const G4Material* mat)
295 {                                                 289 {
296   // (1) First time, create fOscillatorStores  << 290   // (1) First time, create oscillatorStores and read data
297   CheckForTablesCreated();                        291   CheckForTablesCreated();
298                                                   292 
299   // (2) Check if the material has been alread    293   // (2) Check if the material has been already included
300   if (fAtomicMass->count(mat))                 << 294   if (atomicMass->count(mat))
301     return fAtomicMass->find(mat)->second;     << 295     return atomicMass->find(mat)->second;
302                                                << 296     
303   // (3) If we are here, it means that we have    297   // (3) If we are here, it means that we have to create the table for the material
304   BuildOscillatorTable(mat);                      298   BuildOscillatorTable(mat);
305                                                   299 
306   // (4) now, the oscillator store should be o    300   // (4) now, the oscillator store should be ok
307   if (fAtomicMass->count(mat))                 << 301   if (atomicMass->count(mat))
308     return fAtomicMass->find(mat)->second;     << 302     return atomicMass->find(mat)->second;
309   else                                            303   else
310     {                                             304     {
311       G4cout << "G4PenelopeOscillatorManager::    305       G4cout << "G4PenelopeOscillatorManager::GetTotalA() " << G4endl;
312       G4cout << "Impossible to retrieve the to << 306       G4cout << "Impossible to retrieve the total A for " << mat->GetName() << G4endl;      
313       return 0;                                   307       return 0;
314     }                                             308     }
315 }                                                 309 }
316                                                   310 
317 //....oooOO0OOooo........oooOO0OOooo........oo    311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318                                                   312 
319 G4PenelopeOscillatorTable* G4PenelopeOscillato    313 G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableIonisation(const G4Material* mat)
320 {                                                 314 {
321   // (1) First time, create fOscillatorStores  << 315   // (1) First time, create oscillatorStores and read data
322   CheckForTablesCreated();                        316   CheckForTablesCreated();
323                                                   317 
324   // (2) Check if the material has been alread    318   // (2) Check if the material has been already included
325   if (fOscillatorStoreIonisation->count(mat))  << 319   if (oscillatorStoreIonisation->count(mat))
326     {                                             320     {
327       //Ok, it exists                             321       //Ok, it exists
328       return fOscillatorStoreIonisation->find( << 322       return oscillatorStoreIonisation->find(mat)->second;
329     }                                             323     }
330                                                   324 
331   // (3) If we are here, it means that we have    325   // (3) If we are here, it means that we have to create the table for the material
332   BuildOscillatorTable(mat);                      326   BuildOscillatorTable(mat);
333                                                   327 
334   // (4) now, the oscillator store should be o    328   // (4) now, the oscillator store should be ok
335   if (fOscillatorStoreIonisation->count(mat))  << 329   if (oscillatorStoreIonisation->count(mat))
336     return fOscillatorStoreIonisation->find(ma << 330     return oscillatorStoreIonisation->find(mat)->second;
337   else                                            331   else
338     {                                             332     {
339       G4cout << "G4PenelopeOscillatorManager::    333       G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl;
340       G4cout << "Impossible to create ionisati << 334       G4cout << "Impossible to create ionisation oscillator table for " << mat->GetName() << G4endl;      
341       return nullptr;                          << 335       return NULL;
342     }                                             336     }
343 }                                                 337 }
344                                                   338 
345 //....oooOO0OOooo........oooOO0OOooo........oo    339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346                                                   340 
347 G4PenelopeOscillator* G4PenelopeOscillatorMana    341 G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorIonisation(const G4Material* material,
348                      G4int index)                 342                      G4int index)
349 {                                                 343 {
350   G4PenelopeOscillatorTable* theTable = GetOsc    344   G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material);
351   if (((std::size_t)index) < theTable->size()) << 345   if (((size_t)index) < theTable->size())
352     return (*theTable)[index];                    346     return (*theTable)[index];
353   else                                            347   else
354     {                                             348     {
355       G4cout << "WARNING: Ionisation table for << 349       G4cout << "WARNING: Ionisation table for material " << material->GetName() << " has " << 
356   theTable->size() << " oscillators" << G4endl    350   theTable->size() << " oscillators" << G4endl;
357       G4cout << "Oscillator #" << index << " c    351       G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
358       G4cout << "Returning null pointer" << G4    352       G4cout << "Returning null pointer" << G4endl;
359       return nullptr;                          << 353       return NULL;
360     }                                          << 354     }     
361 }                                                 355 }
362                                                   356 
363                                                   357 
364 //....oooOO0OOooo........oooOO0OOooo........oo    358 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
365                                                   359 
366 G4PenelopeOscillatorTable* G4PenelopeOscillato    360 G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableCompton(const G4Material* mat)
367 {                                                 361 {
368   // (1) First time, create fOscillatorStore a << 362   // (1) First time, create oscillatorStore and read data
369   CheckForTablesCreated();                        363   CheckForTablesCreated();
370                                                   364 
371   // (2) Check if the material has been alread    365   // (2) Check if the material has been already included
372   if (fOscillatorStoreCompton->count(mat))     << 366   if (oscillatorStoreCompton->count(mat))
373     {                                             367     {
374       //Ok, it exists                             368       //Ok, it exists
375       return fOscillatorStoreCompton->find(mat << 369       return oscillatorStoreCompton->find(mat)->second;
376     }                                             370     }
377                                                   371 
378   // (3) If we are here, it means that we have    372   // (3) If we are here, it means that we have to create the table for the material
379   BuildOscillatorTable(mat);                      373   BuildOscillatorTable(mat);
380                                                   374 
381   // (4) now, the oscillator store should be o    375   // (4) now, the oscillator store should be ok
382   if (fOscillatorStoreCompton->count(mat))     << 376   if (oscillatorStoreCompton->count(mat))
383     return fOscillatorStoreCompton->find(mat)- << 377     return oscillatorStoreCompton->find(mat)->second;
384   else                                            378   else
385     {                                             379     {
386       G4cout << "G4PenelopeOscillatorManager::    380       G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl;
387       G4cout << "Impossible to create Compton  << 381       G4cout << "Impossible to create Compton oscillator table for " << mat->GetName() << G4endl;      
388       return nullptr;                          << 382       return NULL;
389     }                                             383     }
390 }                                                 384 }
391                                                   385 
392 //....oooOO0OOooo........oooOO0OOooo........oo    386 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
393                                                   387 
394 G4PenelopeOscillator* G4PenelopeOscillatorMana    388 G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorCompton(const G4Material* material,
395                   G4int index)                    389                   G4int index)
396 {                                                 390 {
397   G4PenelopeOscillatorTable* theTable = GetOsc    391   G4PenelopeOscillatorTable* theTable = GetOscillatorTableCompton(material);
398   if (((std::size_t)index) < theTable->size()) << 392   if (((size_t)index) < theTable->size())
399     return (*theTable)[index];                    393     return (*theTable)[index];
400   else                                            394   else
401     {                                             395     {
402       G4cout << "WARNING: Compton table for ma << 396       G4cout << "WARNING: Compton table for material " << material->GetName() << " has " << 
403   theTable->size() << " oscillators" << G4endl    397   theTable->size() << " oscillators" << G4endl;
404       G4cout << "Oscillator #" << index << " c    398       G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
405       G4cout << "Returning null pointer" << G4    399       G4cout << "Returning null pointer" << G4endl;
406       return nullptr;                          << 400       return NULL;
407     }                                          << 401     }     
408 }                                                 402 }
409                                                   403 
410 //....oooOO0OOooo........oooOO0OOooo........oo    404 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
411                                                   405 
412 void G4PenelopeOscillatorManager::BuildOscilla    406 void G4PenelopeOscillatorManager::BuildOscillatorTable(const G4Material* material)
413 {                                                 407 {
414   //THIS CORRESPONDS TO THE ROUTINE PEMATW of     408   //THIS CORRESPONDS TO THE ROUTINE PEMATW of PENELOPE
415                                                   409 
416   G4double meanAtomExcitationEnergy[99] = {19.    410   G4double meanAtomExcitationEnergy[99] = {19.2*eV, 41.8*eV, 40.0*eV, 63.7*eV, 76.0*eV, 81.0*eV,
417              82.0*eV, 95.0*eV,115.0*eV,137.0*e    411              82.0*eV, 95.0*eV,115.0*eV,137.0*eV,149.0*eV,156.0*eV,
418              166.0*eV,                            412              166.0*eV,
419              173.0*eV,173.0*eV,180.0*eV,174.0*    413              173.0*eV,173.0*eV,180.0*eV,174.0*eV,188.0*eV,190.0*eV,191.0*eV,
420              216.0*eV,233.0*eV,245.0*eV,257.0*    414              216.0*eV,233.0*eV,245.0*eV,257.0*eV,272.0*eV,286.0*eV,297.0*eV,
421              311.0*eV,322.0*eV,330.0*eV,334.0*    415              311.0*eV,322.0*eV,330.0*eV,334.0*eV,350.0*eV,347.0*eV,348.0*eV,
422              343.0*eV,352.0*eV,363.0*eV,366.0*    416              343.0*eV,352.0*eV,363.0*eV,366.0*eV,379.0*eV,393.0*eV,417.0*eV,
423              424.0*eV,428.0*eV,441.0*eV,449.0*    417              424.0*eV,428.0*eV,441.0*eV,449.0*eV,470.0*eV,470.0*eV,469.0*eV,
424              488.0*eV,488.0*eV,487.0*eV,485.0*    418              488.0*eV,488.0*eV,487.0*eV,485.0*eV,491.0*eV,482.0*eV,488.0*eV,
425              491.0*eV,501.0*eV,523.0*eV,535.0*    419              491.0*eV,501.0*eV,523.0*eV,535.0*eV,546.0*eV,560.0*eV,574.0*eV,
426              580.0*eV,591.0*eV,614.0*eV,628.0*    420              580.0*eV,591.0*eV,614.0*eV,628.0*eV,650.0*eV,658.0*eV,674.0*eV,
427              684.0*eV,694.0*eV,705.0*eV,718.0*    421              684.0*eV,694.0*eV,705.0*eV,718.0*eV,727.0*eV,736.0*eV,746.0*eV,
428              757.0*eV,790.0*eV,790.0*eV,800.0*    422              757.0*eV,790.0*eV,790.0*eV,800.0*eV,810.0*eV,823.0*eV,823.0*eV,
429              830.0*eV,825.0*eV,794.0*eV,827.0*    423              830.0*eV,825.0*eV,794.0*eV,827.0*eV,826.0*eV,841.0*eV,847.0*eV,
430              878.0*eV,890.0*eV,902.0*eV,921.0*    424              878.0*eV,890.0*eV,902.0*eV,921.0*eV,934.0*eV,939.0*eV,952.0*eV,
431              966.0*eV,980.0*eV};                  425              966.0*eV,980.0*eV};
432                                                   426 
433   if (fVerbosityLevel > 0)                     << 427   if (verbosityLevel > 0)
434     G4cout << "Going to build Oscillator Table    428     G4cout << "Going to build Oscillator Table for " << material->GetName() << G4endl;
435                                                   429 
436   G4int nElements = (G4int)material->GetNumber << 430   G4int nElements = material->GetNumberOfElements();
437   const G4ElementVector* elementVector = mater    431   const G4ElementVector* elementVector = material->GetElementVector();
438                                                << 432  
                                                   >> 433     
439   //At the moment, there's no way in Geant4 to    434   //At the moment, there's no way in Geant4 to know if a material
440   //is defined with atom numbers or fraction o    435   //is defined with atom numbers or fraction of weigth
441   const G4double* fractionVector = material->G    436   const G4double* fractionVector = material->GetFractionVector();
442                                                   437 
443   //Take always the composition by fraction of << 438 
                                                   >> 439   //Take always the composition by fraction of mass. For the composition by 
444   //atoms: it is calculated by Geant4 but with    440   //atoms: it is calculated by Geant4 but with some rounding to integers
445   G4double totalZ = 0;                            441   G4double totalZ = 0;
446   G4double totalMolecularWeight = 0;              442   G4double totalMolecularWeight = 0;
447   G4double meanExcitationEnergy = 0;              443   G4double meanExcitationEnergy = 0;
448                                                   444 
449   std::vector<G4double> *StechiometricFactors     445   std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
450                                                << 446   
451   for (G4int i=0;i<nElements;i++)                 447   for (G4int i=0;i<nElements;i++)
452     {                                             448     {
453       //G4int iZ = (G4int) (*elementVector)[i]    449       //G4int iZ = (G4int) (*elementVector)[i]->GetZ();
454       G4double fraction = fractionVector[i];      450       G4double fraction = fractionVector[i];
455       G4double atomicWeigth = (*elementVector) << 451       G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole);
456       StechiometricFactors->push_back(fraction    452       StechiometricFactors->push_back(fraction/atomicWeigth);
457     }                                          << 453     }      
458   //Find max                                      454   //Find max
459   G4double MaxStechiometricFactor = 0.;           455   G4double MaxStechiometricFactor = 0.;
460   for (G4int i=0;i<nElements;i++)                 456   for (G4int i=0;i<nElements;i++)
461     {                                             457     {
462       if ((*StechiometricFactors)[i] > MaxStec    458       if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
463   MaxStechiometricFactor = (*StechiometricFact    459   MaxStechiometricFactor = (*StechiometricFactors)[i];
464     }                                             460     }
465   if (MaxStechiometricFactor<1e-16)               461   if (MaxStechiometricFactor<1e-16)
466     {                                             462     {
467       G4ExceptionDescription ed;               << 463       G4cout << "G4PenelopeOscillatorManager::BuildOscillatorTable" << G4endl;
468       ed << "Problem with the mass composition << 464       G4cout << "Problem with the mass composition of " << material->GetName() << G4endl;
469       ed << "MaxStechiometricFactor = " << Max << 465       G4Exception();
470       G4Exception("G4PenelopeOscillatorManager << 
471       "em2035",FatalException,ed);             << 
472     }                                             466     }
473   //Normalize                                     467   //Normalize
474   for (G4int i=0;i<nElements;++i)              << 468   for (G4int i=0;i<nElements;i++)
475     (*StechiometricFactors)[i] /=  MaxStechiom    469     (*StechiometricFactors)[i] /=  MaxStechiometricFactor;
476                                                   470 
477   // Equivalent atoms per molecule                471   // Equivalent atoms per molecule
478   G4double theatomsPerMolecule = 0;               472   G4double theatomsPerMolecule = 0;
479   for (G4int i=0;i<nElements;i++)                 473   for (G4int i=0;i<nElements;i++)
480     theatomsPerMolecule += (*StechiometricFact    474     theatomsPerMolecule += (*StechiometricFactors)[i];
481   G4double moleculeDensity =                   << 475   G4double moleculeDensity = 
482     material->GetTotNbOfAtomsPerVolume()/theat    476     material->GetTotNbOfAtomsPerVolume()/theatomsPerMolecule; //molecules per unit volume
483                                                   477 
484   if (fVerbosityLevel > 1)                     << 478 
                                                   >> 479   if (verbosityLevel > 1)
485     {                                             480     {
486       for (std::size_t i=0;i<StechiometricFact << 481       for (size_t i=0;i<StechiometricFactors->size();i++)
487   {                                               482   {
488     G4cout << "Element " << (*elementVector)[i << 483     G4cout << "Element " << (*elementVector)[i]->GetSymbol() << " (Z = " << 
489       (*elementVector)[i]->GetZasInt() << ") - << 484       (*elementVector)[i]->GetZ() << ") --> " << 
490       (*StechiometricFactors)[i] << " atoms/mo << 485       (*StechiometricFactors)[i] << " atoms/molecule " << G4endl;       
491   }                                               486   }
492     }                                             487     }
493                                                   488 
494   for (G4int i=0;i<nElements;++i)              << 489 
                                                   >> 490   for (G4int i=0;i<nElements;i++)
495     {                                             491     {
496       G4int iZ = (*elementVector)[i]->GetZasIn << 492       G4int iZ = (G4int) (*elementVector)[i]->GetZ();
497       totalZ += iZ * (*StechiometricFactors)[i    493       totalZ += iZ * (*StechiometricFactors)[i];
498       totalMolecularWeight += (*elementVector) << 494       totalMolecularWeight += (*elementVector)[i]->GetA() * (*StechiometricFactors)[i];
499       meanExcitationEnergy += iZ*G4Log(meanAto << 495       meanExcitationEnergy += iZ*std::log(meanAtomExcitationEnergy[iZ-1])*(*StechiometricFactors)[i];
500       std::pair<const G4Material*,G4int> theKe << 496       /*
501       if (!fAtomTablePerMolecule->count(theKey << 497       G4cout << iZ << " " << (*StechiometricFactors)[i] << " " << totalZ << " " << 
502   fAtomTablePerMolecule->insert(std::make_pair << 498   totalMolecularWeight/(g/mole) << " " << meanExcitationEnergy << " " << 
503     }                                          << 499   meanAtomExcitationEnergy[iZ-1]/eV << 
504   meanExcitationEnergy = G4Exp(meanExcitationE << 500   G4endl;
505                                                << 501       */
506   fAtomicNumber->insert(std::make_pair(materia << 502     }
507   fAtomicMass->insert(std::make_pair(material, << 503   meanExcitationEnergy = std::exp(meanExcitationEnergy/totalZ);
508   fExcitationEnergy->insert(std::make_pair(mat << 504 
509   fAtomsPerMolecule->insert(std::make_pair(mat << 505   atomicNumber->insert(std::make_pair(material,totalZ));
                                                   >> 506   atomicMass->insert(std::make_pair(material,totalMolecularWeight));
                                                   >> 507   excitationEnergy->insert(std::make_pair(material,meanExcitationEnergy));
                                                   >> 508   atomsPerMolecule->insert(std::make_pair(material,theatomsPerMolecule));
510                                                   509 
511   if (fVerbosityLevel > 1)                     << 510   if (verbosityLevel > 1)
512     {                                             511     {
513       G4cout << "Calculated mean excitation en << 512       G4cout << "Calculated mean excitation energy for " << material->GetName() << 
514   " = " << meanExcitationEnergy/eV << " eV" <<    513   " = " << meanExcitationEnergy/eV << " eV" << G4endl;
515     }                                             514     }
516                                                << 515   
517   std::vector<G4PenelopeOscillator> *helper =     516   std::vector<G4PenelopeOscillator> *helper = new std::vector<G4PenelopeOscillator>;
518                                                   517 
519   //First Oscillator: conduction band. Tentati << 518   //First Oscillator: conduction band. Tentativaly assumed to consist of valence electrons (each 
520   //atom contributes a number of electrons equ    519   //atom contributes a number of electrons equal to its lowest chemical valence)
521   G4PenelopeOscillator newOsc;                 << 520   G4PenelopeOscillator newOsc; 
522   newOsc.SetOscillatorStrength(0.);               521   newOsc.SetOscillatorStrength(0.);
523   newOsc.SetIonisationEnergy(0*eV);               522   newOsc.SetIonisationEnergy(0*eV);
524   newOsc.SetHartreeFactor(0);                     523   newOsc.SetHartreeFactor(0);
525   newOsc.SetParentZ(0);                           524   newOsc.SetParentZ(0);
526   newOsc.SetShellFlag(30);                        525   newOsc.SetShellFlag(30);
527   newOsc.SetParentShellID(30); //does not corr    526   newOsc.SetParentShellID(30); //does not correspond to any "real" level
528   helper->push_back(newOsc);                      527   helper->push_back(newOsc);
529                                                   528 
530   //Load elements and oscillators                 529   //Load elements and oscillators
531   for (G4int k=0;k<nElements;k++)                 530   for (G4int k=0;k<nElements;k++)
532     {                                             531     {
533       G4double Z = (*elementVector)[k]->GetZ()    532       G4double Z = (*elementVector)[k]->GetZ();
534       G4bool finished = false;                    533       G4bool finished = false;
535       for (G4int i=0;i<2000 && !finished;i++)     534       for (G4int i=0;i<2000 && !finished;i++)
536   {                                               535   {
537     /*                                            536     /*
538       fElementData[0][i] = Z;                  << 537       elementData[0][i] = Z;
539       fElementData[1][i] = shellCode;          << 538       elementData[1][i] = shellCode;
540       fElementData[2][i] = occupationNumber;   << 539       elementData[2][i] = occupationNumber;
541       fElementData[3][i] = ionisationEnergy;   << 540       elementData[3][i] = ionisationEnergy;
542       fElementData[4][i] = hartreeProfile;     << 541       elementData[4][i] = hartreeProfile;
543     */                                            542     */
544     if (fElementData[0][i] == Z)               << 543     if (elementData[0][i] == Z)
545       {                                           544       {
546         G4int shellID = (G4int) fElementData[1 << 545         G4int shellID = (G4int) elementData[1][i];
547         G4double occup = fElementData[2][i];   << 546         G4double occup = elementData[2][i];
548         if (shellID > 0)                          547         if (shellID > 0)
549     {                                             548     {
550                                                << 
551       if (std::fabs(occup) > 0)                   549       if (std::fabs(occup) > 0)
552         {                                         550         {
553           G4PenelopeOscillator newOscLocal;    << 551           G4PenelopeOscillator newOsc; 
554           newOscLocal.SetOscillatorStrength(st << 552           newOsc.SetOscillatorStrength(std::fabs(occup)*(*StechiometricFactors)[k]);
555           newOscLocal.SetIonisationEnergy(fEle << 553           newOsc.SetIonisationEnergy(elementData[3][i]);
556           newOscLocal.SetHartreeFactor(fElemen << 554           newOsc.SetHartreeFactor(elementData[4][i]/fine_structure_const);
557           newOscLocal.SetParentZ(fElementData[ << 555           newOsc.SetParentZ(elementData[0][i]);
558           //keep track of the origianl shell l    556           //keep track of the origianl shell level
559           newOscLocal.SetParentShellID((G4int) << 557           newOsc.SetParentShellID((G4int)elementData[1][i]);
560           //register only K, L and M shells. O << 558           //register only K, L and M shells. Outer shells all grouped with 
561           //shellIndex = 30                       559           //shellIndex = 30
562           if (fElementData[0][i] > 6 && fEleme << 560           if (elementData[0][i] > 6 && elementData[1][i] < 10)
563       newOscLocal.SetShellFlag(((G4int)fElemen << 561       newOsc.SetShellFlag(((G4int)elementData[1][i]));
564           else                                    562           else
565       newOscLocal.SetShellFlag(30);            << 563       newOsc.SetShellFlag(30);
566           helper->push_back(newOscLocal);      << 564           helper->push_back(newOsc);
567           if (occup < 0)                       << 565           if (occup < 0)      
568       {                                           566       {
569         G4double ff = (*helper)[0].GetOscillat    567         G4double ff = (*helper)[0].GetOscillatorStrength();
570         ff += std::fabs(occup)*(*Stechiometric    568         ff += std::fabs(occup)*(*StechiometricFactors)[k];
571         (*helper)[0].SetOscillatorStrength(ff)    569         (*helper)[0].SetOscillatorStrength(ff);
572       }                                        << 570       } 
573         }                                         571         }
574     }                                             572     }
                                                   >> 573 
575       }                                           574       }
576     if (fElementData[0][i] > Z)                << 575     if ( elementData[0][i] > Z)
577       finished = true;                         << 576       finished = true;  
578   }                                               577   }
579     }                                             578     }
580                                                   579 
581   delete StechiometricFactors;                    580   delete StechiometricFactors;
582                                                << 581   
583   //NOW: sort oscillators according to increas    582   //NOW: sort oscillators according to increasing ionisation energy
584   //Notice: it works because helper is a vecto << 583   //Notice: it works because helper is a vector of _object_, not a 
585   //vector to _pointers_                          584   //vector to _pointers_
586   std::sort(helper->begin(),helper->end());       585   std::sort(helper->begin(),helper->end());
587                                                << 586   
588   // Plasma energy and conduction band excitat    587   // Plasma energy and conduction band excitation
589   static const G4double RydbergEnergy = 13.605 << 588   G4double RydbergEnergy = 13.60569*eV;
590   G4double Omega = std::sqrt(4*pi*moleculeDens << 589   G4double Omega = std::sqrt(4*pi*moleculeDensity*totalZ*Bohr_radius)*Bohr_radius*2.0*RydbergEnergy; 
591   G4double conductionStrength = (*helper)[0].G    590   G4double conductionStrength = (*helper)[0].GetOscillatorStrength();
592   G4double plasmaEnergy = Omega*std::sqrt(cond    591   G4double plasmaEnergy = Omega*std::sqrt(conductionStrength/totalZ);
593                                                   592 
594   fPlasmaSquared->insert(std::make_pair(materi << 593   plasmaSquared->insert(std::make_pair(material,Omega*Omega));
595                                                   594 
596   G4bool isAConductor = false;                    595   G4bool isAConductor = false;
597   G4int nullOsc = 0;                              596   G4int nullOsc = 0;
598                                                   597 
599   if (fVerbosityLevel > 1)                     << 598   if (verbosityLevel > 1)
600     {                                             599     {
601       G4cout << "Estimated oscillator strength << 600       G4cout << "Estimated oscillator strenght and energy of plasmon: " << 
602   conductionStrength << " and " << plasmaEnerg    601   conductionStrength << " and " << plasmaEnergy/eV << " eV" << G4endl;
603     }                                             602     }
604                                                   603 
605   if (conductionStrength < 0.01 || plasmaEnerg << 604   if (conductionStrength < 0.5 || plasmaEnergy<1.0*eV) //this is an insulator
606     {                                             605     {
607       if (fVerbosityLevel >1 )                 << 
608   G4cout << material->GetName() << " is an ins << 
609       //remove conduction band oscillator         606       //remove conduction band oscillator
610       helper->erase(helper->begin());             607       helper->erase(helper->begin());
611     }                                             608     }
612   else //this is a conductor, Outer shells mov    609   else //this is a conductor, Outer shells moved to conduction band
613     {                                             610     {
614       if (fVerbosityLevel >1 )                 << 
615   G4cout << material->GetName() << " is a cond << 
616       isAConductor = true;                        611       isAConductor = true;
617       //copy the conduction strength.. The num << 612       //copy the conduction strenght.. The number is going to change.
618       G4double conductionStrengthCopy = conduc    613       G4double conductionStrengthCopy = conductionStrength;
619       G4bool quit = false;                        614       G4bool quit = false;
620       for (std::size_t i = 1; i<helper->size() << 615       for (size_t i = 1; i<helper->size() && !quit ;i++)
621   {                                               616   {
622     G4double oscStre = (*helper)[i].GetOscilla    617     G4double oscStre = (*helper)[i].GetOscillatorStrength();
623     //loop is repeated over here                  618     //loop is repeated over here
624     if (oscStre < conductionStrengthCopy)      << 619     if (oscStre < conductionStrength)
625       {                                           620       {
626         conductionStrengthCopy = conductionStr    621         conductionStrengthCopy = conductionStrengthCopy-oscStre;
627         (*helper)[i].SetOscillatorStrength(0.)    622         (*helper)[i].SetOscillatorStrength(0.);
628         nullOsc++;                                623         nullOsc++;
629       }                                           624       }
630     else //this is passed only once - no goto  << 625     else //this is passed only once - no goto - 
631       {                                           626       {
632         quit = true;                              627         quit = true;
633         (*helper)[i].SetOscillatorStrength(osc    628         (*helper)[i].SetOscillatorStrength(oscStre-conductionStrengthCopy);
634         if (std::fabs((*helper)[i].GetOscillat    629         if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
635     {                                             630     {
636       conductionStrength += (*helper)[i].GetOs << 631       conductionStrength += (*helper)[i].GetOscillatorStrength(); 
637       (*helper)[i].SetOscillatorStrength(0.);     632       (*helper)[i].SetOscillatorStrength(0.);
638       nullOsc++;                                  633       nullOsc++;
639     }                                             634     }
640       }                                           635       }
641   }                                               636   }
                                                   >> 637     
642       //Update conduction band                    638       //Update conduction band
643       (*helper)[0].SetOscillatorStrength(condu    639       (*helper)[0].SetOscillatorStrength(conductionStrength);
644       (*helper)[0].SetIonisationEnergy(0.);       640       (*helper)[0].SetIonisationEnergy(0.);
645       (*helper)[0].SetResonanceEnergy(plasmaEn    641       (*helper)[0].SetResonanceEnergy(plasmaEnergy);
646       G4double hartree = 0.75/std::sqrt(3.0*pi    642       G4double hartree = 0.75/std::sqrt(3.0*pi*pi*moleculeDensity*
647           Bohr_radius*Bohr_radius*Bohr_radius*    643           Bohr_radius*Bohr_radius*Bohr_radius*conductionStrength);
648       (*helper)[0].SetHartreeFactor(hartree/fi    644       (*helper)[0].SetHartreeFactor(hartree/fine_structure_const);
649   }                                            << 645     }
650                                                << 646   
651   //Check f-sum rule                              647   //Check f-sum rule
652   G4double sum = 0;                               648   G4double sum = 0;
653   for (std::size_t i=0;i<helper->size();++i)   << 649   for (size_t i=0;i<helper->size();i++)
654     {                                             650     {
655       sum += (*helper)[i].GetOscillatorStrengt    651       sum += (*helper)[i].GetOscillatorStrength();
656     }                                             652     }
657   if (std::fabs(sum-totalZ) > (1e-6*totalZ))      653   if (std::fabs(sum-totalZ) > (1e-6*totalZ))
658     {                                             654     {
659       G4ExceptionDescription ed;               << 655       G4cout << "G4PenelopeOscillatorManager - Inconsistent oscillator data " << G4endl;
660       ed << "Inconsistent oscillator data for  << 656       G4cout << sum << " " << totalZ << G4endl;
661       ed << sum << " " << totalZ << G4endl;    << 657       G4Exception();
662       G4Exception("G4PenelopeOscillatorManager << 
663       "em2036",FatalException,ed);             << 
664     }                                             658     }
665   if (std::fabs(sum-totalZ) > (1e-12*totalZ))     659   if (std::fabs(sum-totalZ) > (1e-12*totalZ))
666     {                                             660     {
667       G4double fact = totalZ/sum;                 661       G4double fact = totalZ/sum;
668       for (std::size_t i=0;i<helper->size();++ << 662       for (size_t i=0;i<helper->size();i++)
669   {                                               663   {
670     G4double ff = (*helper)[i].GetOscillatorSt    664     G4double ff = (*helper)[i].GetOscillatorStrength()*fact;
671     (*helper)[i].SetOscillatorStrength(ff);    << 665     (*helper)[i].SetOscillatorStrength(ff); 
672   }                                               666   }
673     }                                             667     }
674                                                   668 
675    //Remove null items                            669    //Remove null items
676   for (G4int k=0;k<nullOsc;k++)                   670   for (G4int k=0;k<nullOsc;k++)
677     {                                          << 671     {     
678       G4bool exit=false;                          672       G4bool exit=false;
679       for (std::size_t i=0;i<helper->size() && << 673       for (size_t i=0;i<helper->size() && !exit;i++)
680   {                                               674   {
681     if (std::fabs((*helper)[i].GetOscillatorSt    675     if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
682       {                                           676       {
683         helper->erase(helper->begin()+i);         677         helper->erase(helper->begin()+i);
684         exit = true;                              678         exit = true;
685       }                                           679       }
686   }                                               680   }
687     }                                             681     }
688                                                   682 
                                                   >> 683 
689   //Sternheimer's adjustment factor               684   //Sternheimer's adjustment factor
690   G4double adjustmentFactor = 0;                  685   G4double adjustmentFactor = 0;
691   if (helper->size() > 1)                         686   if (helper->size() > 1)
692     {                                             687     {
693       G4double TST = totalZ*G4Log(meanExcitati << 688       G4double TST = totalZ*std::log(meanExcitationEnergy/eV);
694       G4double AALow = 0.1;                    << 689       G4double AALow = 0.5;
695       G4double AAHigh = 10.;                      690       G4double AAHigh = 10.;
696       do                                          691       do
697   {                                               692   {
698     adjustmentFactor = (AALow+AAHigh)*0.5;        693     adjustmentFactor = (AALow+AAHigh)*0.5;
699     G4double sumLocal = 0;                     << 694     G4double sum = 0;
700     for (std::size_t i=0;i<helper->size();++i) << 695     for (size_t i=0;i<helper->size();i++)
701       {                                           696       {
702         if (i == 0 && isAConductor)            << 697         if (i == 0 && isAConductor)        
703     {                                             698     {
704       G4double resEne = (*helper)[i].GetResona    699       G4double resEne = (*helper)[i].GetResonanceEnergy();
705       sumLocal += (*helper)[i].GetOscillatorSt << 700       sum += (*helper)[i].GetOscillatorStrength()*std::log(resEne/eV);
706     }                                             701     }
707         else                                      702         else
708     {                                             703     {
709       G4double ionEne = (*helper)[i].GetIonisa    704       G4double ionEne = (*helper)[i].GetIonisationEnergy();
710       G4double oscStre = (*helper)[i].GetOscil    705       G4double oscStre = (*helper)[i].GetOscillatorStrength();
711       G4double WI2 = (adjustmentFactor*adjustm << 706       G4double WI2 = (adjustmentFactor*adjustmentFactor*ionEne*ionEne) + 
712         2./3.*(oscStre/totalZ)*Omega*Omega;       707         2./3.*(oscStre/totalZ)*Omega*Omega;
713       G4double resEne = std::sqrt(WI2);           708       G4double resEne = std::sqrt(WI2);
714       (*helper)[i].SetResonanceEnergy(resEne);    709       (*helper)[i].SetResonanceEnergy(resEne);
715       sumLocal +=  (*helper)[i].GetOscillatorS << 710       sum +=  (*helper)[i].GetOscillatorStrength()*std::log(resEne/eV);
716     }                                          << 711     }       
717       }                                           712       }
718     if (sumLocal < TST)                        << 713     if (sum < TST)
719       AALow = adjustmentFactor;                   714       AALow = adjustmentFactor;
720     else                                          715     else
721       AAHigh = adjustmentFactor;                  716       AAHigh = adjustmentFactor;
722     if (fVerbosityLevel > 3)                   << 717   }while((AAHigh-AALow)>(1e-14*adjustmentFactor));      
723       G4cout << "Sternheimer's adjustment fact << 
724         adjustmentFactor << " " << TST << " "  << 
725         sumLocal << G4endl;                    << 
726   }while((AAHigh-AALow)>(1e-14*adjustmentFacto << 
727     }                                             718     }
728   else                                            719   else
729     {                                             720     {
730       G4double ionEne = (*helper)[0].GetIonisa    721       G4double ionEne = (*helper)[0].GetIonisationEnergy();
731       (*helper)[0].SetIonisationEnergy(std::fa    722       (*helper)[0].SetIonisationEnergy(std::fabs(ionEne));
732       (*helper)[0].SetResonanceEnergy(meanExci    723       (*helper)[0].SetResonanceEnergy(meanExcitationEnergy);
733     }                                             724     }
734   if (fVerbosityLevel > 1)                     << 725   if (verbosityLevel > 1)
735     {                                             726     {
736       G4cout << "Sternheimer's adjustment fact    727       G4cout << "Sternheimer's adjustment factor: " << adjustmentFactor << G4endl;
737     }                                             728     }
738                                                   729 
739   //Check again for data consistency              730   //Check again for data consistency
740   G4double xcheck = (*helper)[0].GetOscillator << 731   G4double xcheck = (*helper)[0].GetOscillatorStrength()*std::log((*helper)[0].GetResonanceEnergy());
741   G4double TST = (*helper)[0].GetOscillatorStr    732   G4double TST = (*helper)[0].GetOscillatorStrength();
742   for (std::size_t i=1;i<helper->size();++i)   << 733   for (size_t i=1;i<helper->size();i++)
743     {                                             734     {
744       xcheck += (*helper)[i].GetOscillatorStre << 735       xcheck += (*helper)[i].GetOscillatorStrength()*std::log((*helper)[i].GetResonanceEnergy());
745       TST += (*helper)[i].GetOscillatorStrengt    736       TST += (*helper)[i].GetOscillatorStrength();
746     }                                             737     }
747   if (std::fabs(TST-totalZ)>1e-8*totalZ)          738   if (std::fabs(TST-totalZ)>1e-8*totalZ)
748     {                                             739     {
749       G4ExceptionDescription ed;               << 740       G4cout << "G4PenelopeOscillatorManager - Inconsistent oscillator data " << G4endl;
750       ed << "Inconsistent oscillator data " << << 741       G4cout << TST << " " << totalZ << G4endl;
751       ed << TST << " " << totalZ << G4endl;    << 742       G4Exception();
752       G4Exception("G4PenelopeOscillatorManager << 
753       "em2036",FatalException,ed);             << 
754     }                                             743     }
755   xcheck = G4Exp(xcheck/totalZ);               << 744   xcheck = std::exp(xcheck/totalZ);
756   if (std::fabs(xcheck-meanExcitationEnergy) >    745   if (std::fabs(xcheck-meanExcitationEnergy) > 1e-8*meanExcitationEnergy)
757     {                                             746     {
758       G4ExceptionDescription ed;               << 747       G4cout << "G4PenelopeOscillatorManager - Error in Sterheimer factor calculation " << G4endl;
759       ed << "Error in Sterheimer factor calcul << 748       G4cout << xcheck/eV << " " << meanExcitationEnergy/eV << G4endl;
760       ed << xcheck/eV << " " << meanExcitation << 749       G4Exception();
761       G4Exception("G4PenelopeOscillatorManager << 
762       "em2037",FatalException,ed);             << 
763     }                                             750     }
764                                                   751 
765   //Selection of the lowest ionisation energy  << 752   //Selection of the lowest ionisation energy for inner shells. Only the K, L and M shells with 
766   //ionisation energy less than the N1 shell o << 753   //ionisation energy less than the N1 shell of the heaviest element in the material are considered as 
767   //inner shells. As a results, the inner/oute << 754   //inner shells. As a results, the inner/outer shell character of an atomic shell depends on the 
768   //composition of the material.                  755   //composition of the material.
769   G4double Zmax = 0;                              756   G4double Zmax = 0;
770   for (G4int k=0;k<nElements;k++)                 757   for (G4int k=0;k<nElements;k++)
771     {                                             758     {
772       G4double Z = (*elementVector)[k]->GetZ()    759       G4double Z = (*elementVector)[k]->GetZ();
773       if (Z>Zmax) Zmax = Z;                       760       if (Z>Zmax) Zmax = Z;
774     }                                             761     }
775   //Find N1 level of the heaviest element (if     762   //Find N1 level of the heaviest element (if any).
776   G4bool found = false;                           763   G4bool found = false;
777   G4double cutEnergy = 50*eV;                     764   G4double cutEnergy = 50*eV;
778   for (std::size_t i=0;i<helper->size() && !fo << 765   for (size_t i=0;i<helper->size() && !found;i++)
779     {                                             766     {
780       G4double Z = (*helper)[i].GetParentZ();     767       G4double Z = (*helper)[i].GetParentZ();
781       G4int shID = (*helper)[i].GetParentShell    768       G4int shID = (*helper)[i].GetParentShellID(); //look for the N1 level
782       if (shID == 10 && Z == Zmax)                769       if (shID == 10 && Z == Zmax)
783   {                                               770   {
784     found = true;                                 771     found = true;
785     if ((*helper)[i].GetIonisationEnergy() > c    772     if ((*helper)[i].GetIonisationEnergy() > cutEnergy)
786       cutEnergy = (*helper)[i].GetIonisationEn    773       cutEnergy = (*helper)[i].GetIonisationEnergy();
787   }                                               774   }
788     }                                             775     }
789   //Make that cutEnergy cannot be higher than  << 776   //Make that cutEnergy cannot be higher than 250 eV, namely the fluorescence level by 
790   //Geant4                                        777   //Geant4
791   G4double lowEnergyLimitForFluorescence = 250    778   G4double lowEnergyLimitForFluorescence = 250*eV;
792   cutEnergy = std::min(cutEnergy,lowEnergyLimi    779   cutEnergy = std::min(cutEnergy,lowEnergyLimitForFluorescence);
793                                                   780 
794   if (fVerbosityLevel > 1)                     << 781   if (verbosityLevel > 1)
795       G4cout << "Cutoff energy: " << cutEnergy    782       G4cout << "Cutoff energy: " << cutEnergy/eV << " eV" << G4endl;
                                                   >> 783   
796   //                                              784   //
797   //Copy helper in the oscillatorTable for Ion    785   //Copy helper in the oscillatorTable for Ionisation
798   //                                              786   //
799   //Oscillator table Ionisation for the materi    787   //Oscillator table Ionisation for the material
800   G4PenelopeOscillatorTable* theTable = new G4    788   G4PenelopeOscillatorTable* theTable = new G4PenelopeOscillatorTable(); //vector of oscillator
801   G4PenelopeOscillatorResEnergyComparator comp    789   G4PenelopeOscillatorResEnergyComparator comparator;
802   std::sort(helper->begin(),helper->end(),comp    790   std::sort(helper->begin(),helper->end(),comparator);
803                                                   791 
804   //COPY THE HELPER (vector of object) to theT << 792   //COPY THE HELPER (vector of object) to theTable (vector of Pointers). 
805   for (std::size_t i=0;i<helper->size();++i)   << 793   for (size_t i=0;i<helper->size();i++)
806     {                                             794     {
807       //copy content --> one may need it later << 795       //copy content --> one may need it later (e.g. to fill an other table, with variations)
808       G4PenelopeOscillator* theOsc = new G4Pen    796       G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
809       theTable->push_back(theOsc);                797       theTable->push_back(theOsc);
810     }                                             798     }
811                                                   799 
812   //Oscillators of outer shells with resonance    800   //Oscillators of outer shells with resonance energies differing by a factor less than
813   //Rgroup are grouped as a single oscillator  << 801   //Rgroup are grouped as a single oscillator  
814   G4double Rgroup = 1.05;                      << 802   G4double Rgroup = 1.05; 
815   std::size_t Nost = theTable->size();         << 803   size_t Nost = theTable->size();  
816                                                << 804  
817   std::size_t firstIndex = (isAConductor) ? 1  << 805   size_t firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
818   G4bool loopAgain = false;                       806   G4bool loopAgain = false;
819   G4int nLoops = 0;                            << 
820   G4int removedLevels = 0;                        807   G4int removedLevels = 0;
821   do                                              808   do
822     {                                          << 809     {        
823       loopAgain = false;                          810       loopAgain = false;
824       nLoops++;                                << 
825       if (Nost>firstIndex+1)                      811       if (Nost>firstIndex+1)
826   {                                            << 812   {
827     removedLevels = 0;                            813     removedLevels = 0;
828     for (std::size_t i=firstIndex;i<theTable-> << 814     for (size_t i=firstIndex;i<Nost-1;i++)
829       {                                           815       {
830         G4bool skipLoop = false;                  816         G4bool skipLoop = false;
831         G4int shellFlag = (*theTable)[i]->GetS    817         G4int shellFlag = (*theTable)[i]->GetShellFlag();
832         G4double ionEne = (*theTable)[i]->GetI    818         G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
833         G4double resEne = (*theTable)[i]->GetR    819         G4double resEne = (*theTable)[i]->GetResonanceEnergy();
834         G4double resEnePlus1 = (*theTable)[i+1    820         G4double resEnePlus1 = (*theTable)[i+1]->GetResonanceEnergy();
835         G4double oscStre = (*theTable)[i]->Get    821         G4double oscStre = (*theTable)[i]->GetOscillatorStrength();
836         G4double oscStrePlus1 = (*theTable)[i+    822         G4double oscStrePlus1 = (*theTable)[i+1]->GetOscillatorStrength();
837         //if (shellFlag < 10 && ionEne>cutEner    823         //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
838         if (ionEne>cutEnergy) //remove conditi    824         if (ionEne>cutEnergy) //remove condition that shellFlag < 10!
839     skipLoop = true;                              825     skipLoop = true;
840         if (resEne<1.0*eV || resEnePlus1<1.0*e    826         if (resEne<1.0*eV || resEnePlus1<1.0*eV)
841     skipLoop = true;                              827     skipLoop = true;
842         if (resEnePlus1 > Rgroup*resEne)          828         if (resEnePlus1 > Rgroup*resEne)
843     skipLoop = true;                              829     skipLoop = true;
844         if (!skipLoop)                            830         if (!skipLoop)
845     {                                             831     {
846       G4double newRes = G4Exp((oscStre*G4Log(r << 832       G4double newRes = std::exp((oscStre*std::log(resEne)+
847                 oscStrePlus1*G4Log(resEnePlus1 << 833                 oscStrePlus1*std::log(resEnePlus1))
848                /(oscStre+oscStrePlus1));          834                /(oscStre+oscStrePlus1));
849       (*theTable)[i]->SetResonanceEnergy(newRe    835       (*theTable)[i]->SetResonanceEnergy(newRes);
850       G4double newIon = (oscStre*ionEne+          836       G4double newIon = (oscStre*ionEne+
851              oscStrePlus1*(*theTable)[i+1]->Ge    837              oscStrePlus1*(*theTable)[i+1]->GetIonisationEnergy())/
852         (oscStre+oscStrePlus1);                   838         (oscStre+oscStrePlus1);
853       (*theTable)[i]->SetIonisationEnergy(newI    839       (*theTable)[i]->SetIonisationEnergy(newIon);
854       G4double newStre = oscStre+oscStrePlus1;    840       G4double newStre = oscStre+oscStrePlus1;
855       (*theTable)[i]->SetOscillatorStrength(ne    841       (*theTable)[i]->SetOscillatorStrength(newStre);
856       G4double newHartree = (oscStre*(*theTabl    842       G4double newHartree = (oscStre*(*theTable)[i]->GetHartreeFactor()+
857            oscStrePlus1*(*theTable)[i+1]->GetH    843            oscStrePlus1*(*theTable)[i+1]->GetHartreeFactor())/
858         (oscStre+oscStrePlus1);                   844         (oscStre+oscStrePlus1);
859       (*theTable)[i]->SetHartreeFactor(newHart    845       (*theTable)[i]->SetHartreeFactor(newHartree);
860       if ((*theTable)[i]->GetParentZ() != (*th    846       if ((*theTable)[i]->GetParentZ() != (*theTable)[i+1]->GetParentZ())
861         (*theTable)[i]->SetParentZ(0.);           847         (*theTable)[i]->SetParentZ(0.);
862       if (shellFlag < 10 || (*theTable)[i+1]->    848       if (shellFlag < 10 || (*theTable)[i+1]->GetShellFlag() < 10)
863         {                                         849         {
864           G4int newFlag = std::min(shellFlag,(    850           G4int newFlag = std::min(shellFlag,(*theTable)[i+1]->GetShellFlag());
865           (*theTable)[i]->SetShellFlag(newFlag << 851           (*theTable)[i]->SetShellFlag(newFlag);      
866         }                                         852         }
867       else                                        853       else
868         (*theTable)[i]->SetShellFlag(30);         854         (*theTable)[i]->SetShellFlag(30);
869       //We've lost anyway the track of the ori    855       //We've lost anyway the track of the original level
870       (*theTable)[i]->SetParentShellID((*theTa    856       (*theTable)[i]->SetParentShellID((*theTable)[i]->GetShellFlag());
871                                                   857 
872                                                << 858       if (i<Nost-2)
873       if (i<theTable->size()-2)                << 
874         {                                         859         {
875           for (std::size_t ii=i+1;ii<theTable- << 860           for (size_t ii=i+1;ii<Nost-1;ii++)
876       (*theTable)[ii] = (*theTable)[ii+1];     << 861       (*theTable)[ii] = (*theTable)[ii+1];    
877         }                                         862         }
878       //G4cout << theTable->size() << G4endl;     863       //G4cout << theTable->size() << G4endl;
                                                   >> 864       //theTable->erase(theTable->end()); 
879       theTable->erase(theTable->begin()+theTab    865       theTable->erase(theTable->begin()+theTable->size()-1); //delete last element
880       removedLevels++;                            866       removedLevels++;
881     }                                          << 867     }         
882       }                                           868       }
883   }                                               869   }
884       if (removedLevels)                          870       if (removedLevels)
885   {                                               871   {
886     Nost -= removedLevels;                        872     Nost -= removedLevels;
887     loopAgain = true;                             873     loopAgain = true;
888   }                                               874   }
889       if (Rgroup < 1.414213 || Nost > 64)         875       if (Rgroup < 1.414213 || Nost > 64)
890   {                                               876   {
891     Rgroup = Rgroup*Rgroup;                       877     Rgroup = Rgroup*Rgroup;
892     loopAgain = true;                             878     loopAgain = true;
893   }                                               879   }
894       //Add protection against infinite loops  << 
895       if (nLoops > 100 && !removedLevels)      << 
896   loopAgain = false;                           << 
897     }while(loopAgain);                            880     }while(loopAgain);
898                                                   881 
899   if (fVerbosityLevel > 1)                     << 882   if (verbosityLevel > 1)
900     {                                             883     {
901       G4cout << "Final grouping factor for Ion    884       G4cout << "Final grouping factor for Ionisation: " << Rgroup << G4endl;
902     }                                             885     }
903                                                   886 
904   //Final Electron/Positron model parameters      887   //Final Electron/Positron model parameters
905   for (std::size_t i=0;i<theTable->size();++i) << 888   for (size_t i=0;i<theTable->size();i++)
906     {                                             889     {
907       //Set cutoff recoil energy for the reson    890       //Set cutoff recoil energy for the resonant mode
908       G4double ionEne = (*theTable)[i]->GetIon    891       G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
909       if (ionEne < 1e-3*eV)                       892       if (ionEne < 1e-3*eV)
910   {                                               893   {
911     G4double resEne = (*theTable)[i]->GetReson    894     G4double resEne = (*theTable)[i]->GetResonanceEnergy();
912     (*theTable)[i]->SetIonisationEnergy(0.*eV)    895     (*theTable)[i]->SetIonisationEnergy(0.*eV);
913     (*theTable)[i]->SetCutoffRecoilResonantEne    896     (*theTable)[i]->SetCutoffRecoilResonantEnergy(resEne);
914   }                                               897   }
915       else                                        898       else
916   (*theTable)[i]->SetCutoffRecoilResonantEnerg << 899   (*theTable)[i]->SetCutoffRecoilResonantEnergy(ionEne);  
917     }                                             900     }
918                                                << 901   
919   //Last step                                     902   //Last step
920   fOscillatorStoreIonisation->insert(std::make << 903   oscillatorStoreIonisation->insert(std::make_pair(material,theTable));
921                                                   904 
922   /******************************************  << 905   
                                                   >> 906   /*
923     SAME FOR COMPTON                              907     SAME FOR COMPTON
924   ******************************************/  << 908   */
925   //                                              909   //
926   //Copy helper in the oscillatorTable for Com    910   //Copy helper in the oscillatorTable for Compton
927   //                                              911   //
928   //Oscillator table Ionisation for the materi    912   //Oscillator table Ionisation for the material
929   G4PenelopeOscillatorTable* theTableC = new G    913   G4PenelopeOscillatorTable* theTableC = new G4PenelopeOscillatorTable(); //vector of oscillator
930   //order by ionisation energy                    914   //order by ionisation energy
931   std::sort(helper->begin(),helper->end());       915   std::sort(helper->begin(),helper->end());
932   //COPY THE HELPER (vector of object) to theT << 916   //COPY THE HELPER (vector of object) to theTable (vector of Pointers). 
933   for (std::size_t i=0;i<helper->size();++i)   << 917   for (size_t i=0;i<helper->size();i++)
934     {                                             918     {
935       //copy content --> one may need it later << 919       //copy content --> one may need it later (e.g. to fill an other table, with variations)
936       G4PenelopeOscillator* theOsc = new G4Pen    920       G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
937       theTableC->push_back(theOsc);               921       theTableC->push_back(theOsc);
938     }                                          << 922     }  
939   //Oscillators of outer shells with resonance    923   //Oscillators of outer shells with resonance energies differing by a factor less than
940   //Rgroup are grouped as a single oscillator  << 924   //Rgroup are grouped as a single oscillator  
941   Rgroup = 1.5;                                << 925   Rgroup = 1.5; 
942   Nost = theTableC->size();                    << 926   Nost = theTableC->size();  
943                                                << 927   
944   firstIndex = (isAConductor) ? 1 : 0; //for c    928   firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
945   loopAgain = false;                              929   loopAgain = false;
946   removedLevels = 0;                              930   removedLevels = 0;
947   do                                              931   do
948     {                                          << 932     {        
949       nLoops++;                                << 
950       loopAgain = false;                          933       loopAgain = false;
951       if (Nost>firstIndex+1)                      934       if (Nost>firstIndex+1)
952   {                                               935   {
953     removedLevels = 0;                            936     removedLevels = 0;
954     for (std::size_t i=firstIndex;i<theTableC- << 937     for (size_t i=firstIndex;i<Nost-1;i++)
955       {                                           938       {
956         G4bool skipLoop = false;                  939         G4bool skipLoop = false;
                                                   >> 940         //G4int shellFlag = (*theTableC)[i]->GetShellFlag();
957         G4double ionEne = (*theTableC)[i]->Get    941         G4double ionEne = (*theTableC)[i]->GetIonisationEnergy();
958         G4double ionEnePlus1 = (*theTableC)[i+    942         G4double ionEnePlus1 = (*theTableC)[i+1]->GetIonisationEnergy();
959         G4double oscStre = (*theTableC)[i]->Ge    943         G4double oscStre = (*theTableC)[i]->GetOscillatorStrength();
960         G4double oscStrePlus1 = (*theTableC)[i    944         G4double oscStrePlus1 = (*theTableC)[i+1]->GetOscillatorStrength();
961         //if (shellFlag < 10 && ionEne>cutEner    945         //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
962         if (ionEne>cutEnergy)                  << 946         if (ionEne>cutEnergy) 
963     skipLoop = true;                              947     skipLoop = true;
964         if (ionEne<1.0*eV || ionEnePlus1<1.0*e    948         if (ionEne<1.0*eV || ionEnePlus1<1.0*eV)
965     skipLoop = true;                              949     skipLoop = true;
966         if (ionEnePlus1 > Rgroup*ionEne)          950         if (ionEnePlus1 > Rgroup*ionEne)
967     skipLoop = true;                              951     skipLoop = true;
968                                                << 952         
969         if (!skipLoop)                            953         if (!skipLoop)
970     {                                             954     {
971       G4double newIon = (oscStre*ionEne+          955       G4double newIon = (oscStre*ionEne+
972              oscStrePlus1*ionEnePlus1)/           956              oscStrePlus1*ionEnePlus1)/
973         (oscStre+oscStrePlus1);                   957         (oscStre+oscStrePlus1);
974       (*theTableC)[i]->SetIonisationEnergy(new    958       (*theTableC)[i]->SetIonisationEnergy(newIon);
975       G4double newStre = oscStre+oscStrePlus1;    959       G4double newStre = oscStre+oscStrePlus1;
976       (*theTableC)[i]->SetOscillatorStrength(n    960       (*theTableC)[i]->SetOscillatorStrength(newStre);
977       G4double newHartree = (oscStre*(*theTabl    961       G4double newHartree = (oscStre*(*theTableC)[i]->GetHartreeFactor()+
978            oscStrePlus1*(*theTableC)[i+1]->Get    962            oscStrePlus1*(*theTableC)[i+1]->GetHartreeFactor())/
979         (oscStre+oscStrePlus1);                   963         (oscStre+oscStrePlus1);
980       (*theTableC)[i]->SetHartreeFactor(newHar    964       (*theTableC)[i]->SetHartreeFactor(newHartree);
981       if ((*theTableC)[i]->GetParentZ() != (*t    965       if ((*theTableC)[i]->GetParentZ() != (*theTableC)[i+1]->GetParentZ())
982         (*theTableC)[i]->SetParentZ(0.);       << 966         (*theTableC)[i]->SetParentZ(0.);      
983       (*theTableC)[i]->SetShellFlag(30);          967       (*theTableC)[i]->SetShellFlag(30);
984       (*theTableC)[i]->SetParentShellID((*theT    968       (*theTableC)[i]->SetParentShellID((*theTableC)[i]->GetShellFlag());
985                                                   969 
986       if (i<theTableC->size()-2)               << 970       if (i<Nost-2)
987         {                                         971         {
988           for (std::size_t ii=i+1;ii<theTableC << 972           for (size_t ii=i+1;ii<Nost-1;ii++)
989       (*theTableC)[ii] = (*theTableC)[ii+1];   << 973       (*theTableC)[ii] = (*theTableC)[ii+1];    
990         }                                         974         }
991       theTableC->erase(theTableC->begin()+theT    975       theTableC->erase(theTableC->begin()+theTableC->size()-1); //delete last element
                                                   >> 976       //theTableC->erase(theTableC->end()); //delete last element
992       removedLevels++;                            977       removedLevels++;
993     }                                          << 978     }         
994       }                                           979       }
995   }                                               980   }
996       if (removedLevels)                          981       if (removedLevels)
997   {                                               982   {
998     Nost -= removedLevels;                        983     Nost -= removedLevels;
999     loopAgain = true;                             984     loopAgain = true;
1000   }                                              985   }
1001       if (Rgroup < 2.0 || Nost > 64)             986       if (Rgroup < 2.0 || Nost > 64)
1002   {                                              987   {
1003     Rgroup = Rgroup*Rgroup;                      988     Rgroup = Rgroup*Rgroup;
1004     loopAgain = true;                            989     loopAgain = true;
1005   }                                              990   }
1006       //Add protection against infinite loops << 
1007       if (nLoops > 100 && !removedLevels)     << 
1008   loopAgain = false;                          << 
1009     }while(loopAgain);                           991     }while(loopAgain);
1010                                                  992 
1011                                                  993 
1012    if (fVerbosityLevel > 1)                   << 994    if (verbosityLevel > 1)
1013     {                                            995     {
1014       G4cout << "Final grouping factor for Co    996       G4cout << "Final grouping factor for Compton: " << Rgroup << G4endl;
1015     }                                            997     }
1016                                                  998 
1017    //Last step                                << 999     //Last step
1018    fOscillatorStoreCompton->insert(std::make_ << 1000    oscillatorStoreCompton->insert(std::make_pair(material,theTableC));
1019                                               << 1001   
1020    //CLEAN UP theHelper and its content       << 1002   /* //TESTING PURPOSES
1021    delete helper;                             << 1003   if (verbosityLevel > 1)
1022    if (fVerbosityLevel > 1)                   << 1004     {
1023      Dump(material);                          << 1005       G4cout << "The table contains " << helper->size() << " oscillators " << G4endl;      
1024                                               << 1006       for (size_t k=0;k<helper->size();k++)
                                                   >> 1007   {
                                                   >> 1008     G4cout << "Oscillator # " << k << G4endl;
                                                   >> 1009     G4cout << "Z = " << (*helper)[k].GetParentZ() << G4endl;
                                                   >> 1010     G4cout << "Shell Flag = " << (*helper)[k].GetShellFlag() << G4endl;
                                                   >> 1011     G4cout << "Compton index = " << (*helper)[k].GetHartreeFactor() << G4endl;
                                                   >> 1012     G4cout << "Ionisation energy = " << (*helper)[k].GetIonisationEnergy()/eV << " eV" << G4endl;
                                                   >> 1013     G4cout << "Occupation number = " << (*helper)[k].GetOscillatorStrength() << G4endl;
                                                   >> 1014     G4cout << "Resonance energy = " << (*helper)[k].GetResonanceEnergy()/eV << " eV" << G4endl;
                                                   >> 1015   }
                                                   >> 1016       
                                                   >> 1017       for (size_t k=0;k<helper->size();k++)
                                                   >> 1018   {
                                                   >> 1019     G4cout << k << " " << (*helper)[k].GetOscillatorStrength() << " " << 
                                                   >> 1020       (*helper)[k].GetIonisationEnergy()/eV << " " << (*helper)[k].GetResonanceEnergy()/eV << " " << 
                                                   >> 1021       (*helper)[k].GetParentZ() << " " << (*helper)[k].GetShellFlag() << " " << 
                                                   >> 1022       (*helper)[k].GetHartreeFactor() << G4endl;      
                                                   >> 1023   }
                                                   >> 1024     } 
                                                   >> 1025   */
                                                   >> 1026  
                                                   >> 1027 
                                                   >> 1028   //CLEAN UP theHelper and its content 
                                                   >> 1029   delete helper;
                                                   >> 1030   if (verbosityLevel > 1)
                                                   >> 1031     Dump(material);
                                                   >> 1032 
1025   return;                                        1033   return;
1026 }                                                1034 }
1027                                                  1035 
1028 //....oooOO0OOooo........oooOO0OOooo........o    1036 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1029                                                  1037 
1030 void G4PenelopeOscillatorManager::ReadElement    1038 void G4PenelopeOscillatorManager::ReadElementData()
1031 {                                                1039 {
1032   if (fVerbosityLevel > 0)                    << 1040   if (verbosityLevel > 0)
1033     {                                            1041     {
1034       G4cout << "G4PenelopeOscillatorManager:    1042       G4cout << "G4PenelopeOscillatorManager::ReadElementData()" << G4endl;
1035       G4cout << "Going to read Element Data"     1043       G4cout << "Going to read Element Data" << G4endl;
1036     }                                            1044     }
1037     const char* path = G4FindDataDir("G4LEDAT << 1045   char* path = getenv("G4LEDATA");
1038     if(!path)                                 << 1046   if (!path)
1039     {                                            1047     {
1040       G4String excep = "G4PenelopeOscillatorM    1048       G4String excep = "G4PenelopeOscillatorManager - G4LEDATA environment variable not set!";
1041       G4Exception("G4PenelopeOscillatorManage << 1049       G4Exception(excep);
1042       "em0006",FatalException,excep);         << 
1043       return;                                    1050       return;
1044     }                                            1051     }
1045   G4String pathString(path);                     1052   G4String pathString(path);
1046   G4String pathFile = pathString + "/penelope    1053   G4String pathFile = pathString + "/penelope/pdatconf.p08";
1047   std::ifstream file(pathFile);                  1054   std::ifstream file(pathFile);
1048                                                  1055 
1049   if (!file.is_open())                           1056   if (!file.is_open())
1050     {                                            1057     {
1051       G4String excep = "G4PenelopeOscillatorM    1058       G4String excep = "G4PenelopeOscillatorManager - data file " + pathFile + " not found!";
1052       G4Exception("G4PenelopeOscillatorManage << 1059       G4Exception(excep);
1053       "em0003",FatalException,excep);         << 
1054     }                                            1060     }
1055                                               << 
1056   G4AtomicTransitionManager* theTransitionMan << 
1057     G4AtomicTransitionManager::Instance();    << 
1058   theTransitionManager->Initialise();         << 
1059                                               << 
1060   //Read header (22 lines)                       1061   //Read header (22 lines)
1061   G4String theHeader;                            1062   G4String theHeader;
1062   for (G4int iline=0;iline<22;iline++)           1063   for (G4int iline=0;iline<22;iline++)
1063     getline(file,theHeader);                     1064     getline(file,theHeader);
1064   //Done                                         1065   //Done
1065   G4int Z=0;                                     1066   G4int Z=0;
1066   G4int shellCode = 0;                           1067   G4int shellCode = 0;
1067   G4String shellId = "NULL";                     1068   G4String shellId = "NULL";
1068   G4int occupationNumber = 0;                    1069   G4int occupationNumber = 0;
1069   G4double ionisationEnergy = 0.0*eV;            1070   G4double ionisationEnergy = 0.0*eV;
1070   G4double hartreeProfile = 0.;                  1071   G4double hartreeProfile = 0.;
1071   G4int shellCounter = 0;                     << 
1072   G4int oldZ = -1;                            << 
1073   G4int numberOfShells = 0;                   << 
1074   //Start reading data                           1072   //Start reading data
1075   for (G4int i=0;!file.eof();i++)                1073   for (G4int i=0;!file.eof();i++)
1076     {                                            1074     {
1077       file >> Z >> shellCode >> shellId >> oc    1075       file >> Z >> shellCode >> shellId >> occupationNumber >> ionisationEnergy >> hartreeProfile;
1078       if (Z>0 && i<2000)                         1076       if (Z>0 && i<2000)
1079   {                                              1077   {
1080     fElementData[0][i] = Z;                   << 1078     elementData[0][i] = Z;
1081     fElementData[1][i] = shellCode;           << 1079     elementData[1][i] = shellCode;
1082     fElementData[2][i] = occupationNumber;    << 1080     elementData[2][i] = occupationNumber;
1083     //reset things                            << 1081     elementData[3][i] = ionisationEnergy*eV;
1084     if (Z != oldZ)                            << 1082     elementData[4][i] = hartreeProfile;
1085       {                                       << 
1086         shellCounter = 0;                     << 
1087         oldZ = Z;                             << 
1088         numberOfShells = theTransitionManager << 
1089       }                                       << 
1090     G4double bindingEnergy = -1*eV;           << 
1091     if (shellCounter<numberOfShells)          << 
1092       {                                       << 
1093         G4AtomicShell* shell = theTransitionM << 
1094         bindingEnergy = shell->BindingEnergy( << 
1095       }                                       << 
1096     //Valid level found in the G4AtomicTransi << 
1097     //the ionisation energy found in the Pene << 
1098     fElementData[3][i] = (bindingEnergy>100*e << 
1099     fElementData[4][i] = hartreeProfile;      << 
1100     shellCounter++;                           << 
1101   }                                              1083   }
1102     }                                            1084     }
1103   file.close();                                  1085   file.close();
1104                                               << 1086   
1105   if (fVerbosityLevel > 1)                    << 1087   if (verbosityLevel > 1)
1106     {                                            1088     {
1107       G4cout << "G4PenelopeOscillatorManager:    1089       G4cout << "G4PenelopeOscillatorManager::ReadElementData(): Data file read" << G4endl;
1108     }                                            1090     }
1109   fReadElementData = true;                       1091   fReadElementData = true;
1110   return;                                        1092   return;
                                                   >> 1093 
1111 }                                                1094 }
1112                                                  1095 
1113 //....oooOO0OOooo........oooOO0OOooo........o    1096 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1114 G4double G4PenelopeOscillatorManager::GetMean    1097 G4double G4PenelopeOscillatorManager::GetMeanExcitationEnergy(const G4Material* mat)
1115 {                                                1098 {
1116   // (1) First time, create fOscillatorStores << 1099   // (1) First time, create oscillatorStores and read data
1117   CheckForTablesCreated();                       1100   CheckForTablesCreated();
1118                                                  1101 
1119   // (2) Check if the material has been alrea    1102   // (2) Check if the material has been already included
1120   if (fExcitationEnergy->count(mat))          << 1103   if (excitationEnergy->count(mat))
1121     return fExcitationEnergy->find(mat)->seco << 1104     return excitationEnergy->find(mat)->second;
1122                                               << 1105     
1123   // (3) If we are here, it means that we hav    1106   // (3) If we are here, it means that we have to create the table for the material
1124   BuildOscillatorTable(mat);                     1107   BuildOscillatorTable(mat);
1125                                                  1108 
1126   // (4) now, the oscillator store should be     1109   // (4) now, the oscillator store should be ok
1127   if (fExcitationEnergy->count(mat))          << 1110   if (excitationEnergy->count(mat))
1128     return fExcitationEnergy->find(mat)->seco << 1111     return excitationEnergy->find(mat)->second;
1129   else                                           1112   else
1130     {                                            1113     {
1131       G4cout << "G4PenelopeOscillatorManager:    1114       G4cout << "G4PenelopeOscillatorManager::GetMolecularExcitationEnergy() " << G4endl;
1132       G4cout << "Impossible to retrieve the e << 1115       G4cout << "Impossible to retrieve the excitation energy for  " << mat->GetName() << G4endl;      
1133       return 0;                                  1116       return 0;
1134     }                                            1117     }
1135 }                                                1118 }
1136                                                  1119 
1137 //....oooOO0OOooo........oooOO0OOooo........o    1120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1138 G4double G4PenelopeOscillatorManager::GetPlas    1121 G4double G4PenelopeOscillatorManager::GetPlasmaEnergySquared(const G4Material* mat)
1139 {                                                1122 {
1140   // (1) First time, create fOscillatorStores << 1123   // (1) First time, create oscillatorStores and read data
1141   CheckForTablesCreated();                       1124   CheckForTablesCreated();
1142                                                  1125 
1143   // (2) Check if the material has been alrea    1126   // (2) Check if the material has been already included
1144   if (fPlasmaSquared->count(mat))             << 1127   if (plasmaSquared->count(mat))
1145     return fPlasmaSquared->find(mat)->second; << 1128     return plasmaSquared->find(mat)->second;
1146                                               << 1129     
1147   // (3) If we are here, it means that we hav    1130   // (3) If we are here, it means that we have to create the table for the material
1148   BuildOscillatorTable(mat);                     1131   BuildOscillatorTable(mat);
1149                                                  1132 
1150   // (4) now, the oscillator store should be     1133   // (4) now, the oscillator store should be ok
1151   if (fPlasmaSquared->count(mat))             << 1134   if (plasmaSquared->count(mat))
1152     return fPlasmaSquared->find(mat)->second; << 1135     return plasmaSquared->find(mat)->second;
1153   else                                           1136   else
1154     {                                            1137     {
1155       G4cout << "G4PenelopeOscillatorManager:    1138       G4cout << "G4PenelopeOscillatorManager::GetPlasmaEnergySquared() " << G4endl;
1156       G4cout << "Impossible to retrieve the p << 1139       G4cout << "Impossible to retrieve the plasma energy for  " << mat->GetName() << G4endl;      
1157       return 0;                                  1140       return 0;
1158     }                                            1141     }
1159 }                                                1142 }
1160                                                  1143 
1161 //....oooOO0OOooo........oooOO0OOooo........o    1144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162                                               << 
1163 G4double G4PenelopeOscillatorManager::GetAtom    1145 G4double G4PenelopeOscillatorManager::GetAtomsPerMolecule(const G4Material* mat)
1164 {                                                1146 {
1165   // (1) First time, create fOscillatorStores << 1147   // (1) First time, create oscillatorStores and read data
1166   CheckForTablesCreated();                       1148   CheckForTablesCreated();
1167                                                  1149 
1168   // (2) Check if the material has been alrea    1150   // (2) Check if the material has been already included
1169   if (fAtomsPerMolecule->count(mat))          << 1151   if (atomsPerMolecule->count(mat))
1170     return fAtomsPerMolecule->find(mat)->seco << 1152     return atomsPerMolecule->find(mat)->second;
1171                                               << 1153     
1172   // (3) If we are here, it means that we hav << 
1173   BuildOscillatorTable(mat);                  << 
1174                                               << 
1175   // (4) now, the oscillator store should be  << 
1176   if (fAtomsPerMolecule->count(mat))          << 
1177     return fAtomsPerMolecule->find(mat)->seco << 
1178   else                                        << 
1179     {                                         << 
1180       G4cout << "G4PenelopeOscillatorManager: << 
1181       G4cout << "Impossible to retrieve the n << 
1182        << mat->GetName() << G4endl;           << 
1183       return 0;                               << 
1184     }                                         << 
1185 }                                             << 
1186                                               << 
1187 //....oooOO0OOooo........oooOO0OOooo........o << 
1188                                               << 
1189 G4double G4PenelopeOscillatorManager::GetNumb << 
1190 {                                             << 
1191   // (1) First time, create fOscillatorStores << 
1192   CheckForTablesCreated();                    << 
1193                                               << 
1194   // (2) Check if the material/Z couple has b << 
1195   std::pair<const G4Material*,G4int> theKey = << 
1196   if (fAtomTablePerMolecule->count(theKey))   << 
1197     return fAtomTablePerMolecule->find(theKey << 
1198                                               << 
1199   // (3) If we are here, it means that we hav    1154   // (3) If we are here, it means that we have to create the table for the material
1200   BuildOscillatorTable(mat);                     1155   BuildOscillatorTable(mat);
1201                                                  1156 
1202   // (4) now, the oscillator store should be     1157   // (4) now, the oscillator store should be ok
1203   if (fAtomTablePerMolecule->count(theKey))   << 1158   if (atomsPerMolecule->count(mat))
1204     return fAtomTablePerMolecule->find(theKey << 1159     return atomsPerMolecule->find(mat)->second;
1205   else                                           1160   else
1206     {                                            1161     {
1207       G4cout << "G4PenelopeOscillatorManager:    1162       G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl;
1208       G4cout << "Impossible to retrieve the n << 1163       G4cout << "Impossible to retrieve the number of atoms per molecule for  " 
1209        << Z << " in material " << mat->GetNam << 1164        << mat->GetName() << G4endl;      
1210       return 0;                                  1165       return 0;
1211     }                                            1166     }
1212 }                                                1167 }
1213                                                  1168