Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // -------------------------------------------------------------- 28 // 28 // 29 // File name: G4PenelopeBremsstrahlungAngu 29 // File name: G4PenelopeBremsstrahlungAngular 30 // 30 // 31 // Author: Luciano Pandola 31 // Author: Luciano Pandola 32 // 32 // 33 // Creation date: November 2010 33 // Creation date: November 2010 34 // 34 // 35 // History: 35 // History: 36 // ----------- 36 // ----------- 37 // 23 Nov 2010 L. Pandola 1st implement 37 // 23 Nov 2010 L. Pandola 1st implementation 38 // 24 May 2011 L. Pandola Renamed (make 38 // 24 May 2011 L. Pandola Renamed (make v2008 as default Penelope) 39 // 13 Mar 2012 L. Pandola Made a derive 39 // 13 Mar 2012 L. Pandola Made a derived class of G4VEmAngularDistribution 40 // and update th 40 // and update the interface accordingly 41 // 18 Jul 2012 L. Pandola Migrated to t 41 // 18 Jul 2012 L. Pandola Migrated to the new basic interface of G4VEmAngularDistribution 42 // Now returns a 42 // Now returns a G4ThreeVector and takes care of the rotation 43 // 03 Oct 2013 L. Pandola Migrated to M 43 // 03 Oct 2013 L. Pandola Migrated to MT: only the master model handles tables 44 // 17 Oct 2013 L. Pandola Partially rev 44 // 17 Oct 2013 L. Pandola Partially revert MT migration. The angular generator is kept as 45 // thread-local 45 // thread-local, and each worker has full access to it. 46 // 46 // 47 //-------------------------------------------- 47 //---------------------------------------------------------------- 48 48 49 #include "G4PenelopeBremsstrahlungAngular.hh" 49 #include "G4PenelopeBremsstrahlungAngular.hh" 50 50 51 #include "globals.hh" 51 #include "globals.hh" 52 #include "G4PhysicalConstants.hh" 52 #include "G4PhysicalConstants.hh" 53 #include "G4SystemOfUnits.hh" 53 #include "G4SystemOfUnits.hh" 54 #include "G4PhysicsFreeVector.hh" 54 #include "G4PhysicsFreeVector.hh" 55 #include "G4PhysicsTable.hh" 55 #include "G4PhysicsTable.hh" 56 #include "G4Material.hh" 56 #include "G4Material.hh" 57 #include "Randomize.hh" 57 #include "Randomize.hh" 58 #include "G4Exp.hh" 58 #include "G4Exp.hh" 59 59 60 G4PenelopeBremsstrahlungAngular::G4PenelopeBre 60 G4PenelopeBremsstrahlungAngular::G4PenelopeBremsstrahlungAngular() : 61 G4VEmAngularDistribution("Penelope"), fEffec 61 G4VEmAngularDistribution("Penelope"), fEffectiveZSq(nullptr), 62 fLorentzTables1(nullptr),fLorentzTables2(nul 62 fLorentzTables1(nullptr),fLorentzTables2(nullptr) 63 63 64 { 64 { 65 fDataRead = false; 65 fDataRead = false; 66 fVerbosityLevel = 0; 66 fVerbosityLevel = 0; 67 } 67 } 68 68 69 //....oooOO0OOooo........oooOO0OOooo........oo 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 70 70 71 G4PenelopeBremsstrahlungAngular::~G4PenelopeBr 71 G4PenelopeBremsstrahlungAngular::~G4PenelopeBremsstrahlungAngular() 72 { 72 { 73 ClearTables(); 73 ClearTables(); 74 } 74 } 75 75 76 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 77 77 78 void G4PenelopeBremsstrahlungAngular::Initiali 78 void G4PenelopeBremsstrahlungAngular::Initialize() 79 { 79 { 80 ClearTables(); 80 ClearTables(); 81 } 81 } 82 82 83 //....oooOO0OOooo........oooOO0OOooo........oo 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 84 84 85 void G4PenelopeBremsstrahlungAngular::ClearTab 85 void G4PenelopeBremsstrahlungAngular::ClearTables() 86 { 86 { 87 if (fLorentzTables1) 87 if (fLorentzTables1) 88 { 88 { 89 for (auto j=fLorentzTables1->begin(); j 89 for (auto j=fLorentzTables1->begin(); j != fLorentzTables1->end(); ++j) 90 { 90 { 91 G4PhysicsTable* tab = j->second; 91 G4PhysicsTable* tab = j->second; 92 tab->clearAndDestroy(); 92 tab->clearAndDestroy(); 93 delete tab; 93 delete tab; 94 } 94 } 95 fLorentzTables1->clear(); 95 fLorentzTables1->clear(); 96 delete fLorentzTables1; 96 delete fLorentzTables1; 97 fLorentzTables1 = nullptr; 97 fLorentzTables1 = nullptr; 98 } 98 } 99 99 100 if (fLorentzTables2) 100 if (fLorentzTables2) 101 { 101 { 102 for (auto j=fLorentzTables2->begin(); j 102 for (auto j=fLorentzTables2->begin(); j != fLorentzTables2->end(); ++j) 103 { 103 { 104 G4PhysicsTable* tab = j->second; 104 G4PhysicsTable* tab = j->second; 105 tab->clearAndDestroy(); 105 tab->clearAndDestroy(); 106 delete tab; 106 delete tab; 107 } 107 } 108 fLorentzTables2->clear(); 108 fLorentzTables2->clear(); 109 delete fLorentzTables2; 109 delete fLorentzTables2; 110 fLorentzTables2 = nullptr; 110 fLorentzTables2 = nullptr; 111 } 111 } 112 if (fEffectiveZSq) 112 if (fEffectiveZSq) 113 { 113 { 114 delete fEffectiveZSq; 114 delete fEffectiveZSq; 115 fEffectiveZSq = nullptr; 115 fEffectiveZSq = nullptr; 116 } 116 } 117 } 117 } 118 118 119 //....oooOO0OOooo........oooOO0OOooo........oo 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 120 120 121 void G4PenelopeBremsstrahlungAngular::ReadData 121 void G4PenelopeBremsstrahlungAngular::ReadDataFile() 122 { 122 { 123 //Read information from DataBase file 123 //Read information from DataBase file 124 const char* path = G4FindDataDir("G4LEDATA") << 124 char* path = std::getenv("G4LEDATA"); 125 if (!path) 125 if (!path) 126 { 126 { 127 G4String excep = 127 G4String excep = 128 "G4PenelopeBremsstrahlungAngular - G4LEDATA 128 "G4PenelopeBremsstrahlungAngular - G4LEDATA environment variable not set!"; 129 G4Exception("G4PenelopeBremsstrahlungAng 129 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 130 "em0006",FatalException,excep); 130 "em0006",FatalException,excep); 131 return; 131 return; 132 } 132 } 133 G4String pathString(path); 133 G4String pathString(path); 134 G4String pathFile = pathString + "/penelope/ 134 G4String pathFile = pathString + "/penelope/bremsstrahlung/pdbrang.p08"; 135 std::ifstream file(pathFile); 135 std::ifstream file(pathFile); 136 136 137 if (!file.is_open()) 137 if (!file.is_open()) 138 { 138 { 139 G4String excep = "G4PenelopeBremsstrahlu 139 G4String excep = "G4PenelopeBremsstrahlungAngular - data file " + pathFile + " not found!"; 140 G4Exception("G4PenelopeBremsstrahlungAng 140 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 141 "em0003",FatalException,excep); 141 "em0003",FatalException,excep); 142 return; 142 return; 143 } 143 } 144 G4int i=0,j=0,k=0; // i=index for Z, j=index 144 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K 145 145 146 for (k=0;k<fNumberofKPoints;k++) 146 for (k=0;k<fNumberofKPoints;k++) 147 for (i=0;i<fNumberofZPoints;i++) 147 for (i=0;i<fNumberofZPoints;i++) 148 for (j=0;j<fNumberofEPoints;j++) 148 for (j=0;j<fNumberofEPoints;j++) 149 { 149 { 150 G4double a1,a2; 150 G4double a1,a2; 151 G4int ik1,iz1,ie1; 151 G4int ik1,iz1,ie1; 152 G4double zr,er,kr; 152 G4double zr,er,kr; 153 file >> iz1 >> ie1 >> ik1 >> zr >> er >> k 153 file >> iz1 >> ie1 >> ik1 >> zr >> er >> kr >> a1 >> a2; 154 //check the data are correct 154 //check the data are correct 155 if ((iz1-1 == i) && (ik1-1 == k) && (ie1-1 155 if ((iz1-1 == i) && (ik1-1 == k) && (ie1-1 == j)) 156 { 156 { 157 fQQ1[i][j][k]=a1; 157 fQQ1[i][j][k]=a1; 158 fQQ2[i][j][k]=a2; 158 fQQ2[i][j][k]=a2; 159 } 159 } 160 else 160 else 161 { 161 { 162 G4ExceptionDescription ed; 162 G4ExceptionDescription ed; 163 ed << "Corrupted data file " << pathFi 163 ed << "Corrupted data file " << pathFile << "?" << G4endl; 164 G4Exception("G4PenelopeBremsstrahlungA 164 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 165 "em0005",FatalException,ed); 165 "em0005",FatalException,ed); 166 } 166 } 167 } 167 } 168 file.close(); 168 file.close(); 169 fDataRead = true; 169 fDataRead = true; 170 } 170 } 171 171 172 //....oooOO0OOooo........oooOO0OOooo........oo 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 173 173 174 void G4PenelopeBremsstrahlungAngular::PrepareT 174 void G4PenelopeBremsstrahlungAngular::PrepareTables(const G4Material* material,G4bool /*isMaster*/ ) 175 { 175 { 176 //Unused at the moment: the G4PenelopeBremss 176 //Unused at the moment: the G4PenelopeBremsstrahlungAngular is thread-local, so each worker 177 //builds its own version of the tables. 177 //builds its own version of the tables. 178 178 179 //Check if data file has already been read 179 //Check if data file has already been read 180 if (!fDataRead) 180 if (!fDataRead) 181 { 181 { 182 ReadDataFile(); 182 ReadDataFile(); 183 if (!fDataRead) 183 if (!fDataRead) 184 G4Exception("G4PenelopeBremsstrahlungAngular 184 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()", 185 "em2001",FatalException,"Unable to bui 185 "em2001",FatalException,"Unable to build interpolation table"); 186 } 186 } 187 187 188 if (!fLorentzTables1) 188 if (!fLorentzTables1) 189 fLorentzTables1 = new std::map<G4double, 189 fLorentzTables1 = new std::map<G4double,G4PhysicsTable*>; 190 if (!fLorentzTables2) 190 if (!fLorentzTables2) 191 fLorentzTables2 = new std::map<G4double,G4 191 fLorentzTables2 = new std::map<G4double,G4PhysicsTable*>; 192 192 193 G4double Zmat = CalculateEffectiveZ(material 193 G4double Zmat = CalculateEffectiveZ(material); 194 194 195 const G4int reducedEnergyGrid=21; 195 const G4int reducedEnergyGrid=21; 196 //Support arrays. 196 //Support arrays. 197 G4double betas[fNumberofEPoints]; //betas fo 197 G4double betas[fNumberofEPoints]; //betas for interpolation 198 //tables for interpolation 198 //tables for interpolation 199 G4double Q1[fNumberofEPoints][fNumberofKPoin 199 G4double Q1[fNumberofEPoints][fNumberofKPoints]; 200 G4double Q2[fNumberofEPoints][fNumberofKPoin 200 G4double Q2[fNumberofEPoints][fNumberofKPoints]; 201 //expanded tables for interpolation 201 //expanded tables for interpolation 202 G4double Q1E[fNumberofEPoints][reducedEnergy 202 G4double Q1E[fNumberofEPoints][reducedEnergyGrid]; 203 G4double Q2E[fNumberofEPoints][reducedEnergy 203 G4double Q2E[fNumberofEPoints][reducedEnergyGrid]; 204 G4double pZ[fNumberofZPoints] = {2.0,8.0,13. 204 G4double pZ[fNumberofZPoints] = {2.0,8.0,13.0,47.0,79.0,92.0}; 205 205 206 G4int i=0,j=0,k=0; // i=index for Z, j=index 206 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K 207 //Interpolation in Z 207 //Interpolation in Z 208 for (i=0;i<fNumberofEPoints;i++) 208 for (i=0;i<fNumberofEPoints;i++) 209 { 209 { 210 for (j=0;j<fNumberofKPoints;j++) 210 for (j=0;j<fNumberofKPoints;j++) 211 { 211 { 212 G4PhysicsFreeVector* QQ1vector = 212 G4PhysicsFreeVector* QQ1vector = 213 new G4PhysicsFreeVector(fNumberofZPoints 213 new G4PhysicsFreeVector(fNumberofZPoints,/*spline =*/true); 214 G4PhysicsFreeVector* QQ2vector = 214 G4PhysicsFreeVector* QQ2vector = 215 new G4PhysicsFreeVector(fNumberofZPoints 215 new G4PhysicsFreeVector(fNumberofZPoints,/*spline =*/true); 216 216 217 //fill vectors 217 //fill vectors 218 for (k=0;k<fNumberofZPoints;k++) 218 for (k=0;k<fNumberofZPoints;k++) 219 { 219 { 220 QQ1vector->PutValues(k,pZ[k],G4Log(fQQ 220 QQ1vector->PutValues(k,pZ[k],G4Log(fQQ1[k][i][j])); 221 QQ2vector->PutValues(k,pZ[k],fQQ2[k][i 221 QQ2vector->PutValues(k,pZ[k],fQQ2[k][i][j]); 222 } 222 } 223 //Filled: now calculate derivatives 223 //Filled: now calculate derivatives 224 QQ1vector->FillSecondDerivatives(); 224 QQ1vector->FillSecondDerivatives(); 225 QQ2vector->FillSecondDerivatives(); 225 QQ2vector->FillSecondDerivatives(); 226 226 227 Q1[i][j]= G4Exp(QQ1vector->Value(Zmat)); 227 Q1[i][j]= G4Exp(QQ1vector->Value(Zmat)); 228 Q2[i][j]=QQ2vector->Value(Zmat); 228 Q2[i][j]=QQ2vector->Value(Zmat); 229 delete QQ1vector; 229 delete QQ1vector; 230 delete QQ2vector; 230 delete QQ2vector; 231 } 231 } 232 } 232 } 233 G4double pE[fNumberofEPoints] = {1.0e-03*MeV 233 G4double pE[fNumberofEPoints] = {1.0e-03*MeV,5.0e-03*MeV,1.0e-02*MeV,5.0e-02*MeV, 234 1.0e-01*MeV,5.0e-01*MeV}; 234 1.0e-01*MeV,5.0e-01*MeV}; 235 G4double pK[fNumberofKPoints] = {0.0,0.6,0.8 235 G4double pK[fNumberofKPoints] = {0.0,0.6,0.8,0.95}; 236 G4double ppK[reducedEnergyGrid]; 236 G4double ppK[reducedEnergyGrid]; 237 237 238 for(i=0;i<reducedEnergyGrid;i++) 238 for(i=0;i<reducedEnergyGrid;i++) 239 ppK[i]=((G4double) i) * 0.05; 239 ppK[i]=((G4double) i) * 0.05; 240 240 241 241 242 for(i=0;i<fNumberofEPoints;i++) 242 for(i=0;i<fNumberofEPoints;i++) 243 betas[i]=std::sqrt(pE[i]*(pE[i]+2*electron 243 betas[i]=std::sqrt(pE[i]*(pE[i]+2*electron_mass_c2))/(pE[i]+electron_mass_c2); 244 244 245 245 246 for (i=0;i<fNumberofEPoints;i++) 246 for (i=0;i<fNumberofEPoints;i++) 247 { 247 { 248 for (j=0;j<fNumberofKPoints;j++) 248 for (j=0;j<fNumberofKPoints;j++) 249 Q1[i][j]=Q1[i][j]/Zmat; 249 Q1[i][j]=Q1[i][j]/Zmat; 250 } 250 } 251 251 252 //Expanded table of distribution parameters 252 //Expanded table of distribution parameters 253 for (i=0;i<fNumberofEPoints;i++) 253 for (i=0;i<fNumberofEPoints;i++) 254 { 254 { 255 G4PhysicsFreeVector* Q1vector = new G4Ph 255 G4PhysicsFreeVector* Q1vector = new G4PhysicsFreeVector(fNumberofKPoints); 256 G4PhysicsFreeVector* Q2vector = new G4Ph 256 G4PhysicsFreeVector* Q2vector = new G4PhysicsFreeVector(fNumberofKPoints); 257 257 258 for (j=0;j<fNumberofKPoints;j++) 258 for (j=0;j<fNumberofKPoints;j++) 259 { 259 { 260 Q1vector->PutValues(j,pK[j],G4Log(Q1[i][j] 260 Q1vector->PutValues(j,pK[j],G4Log(Q1[i][j])); //logarithmic 261 Q2vector->PutValues(j,pK[j],Q2[i][j]); 261 Q2vector->PutValues(j,pK[j],Q2[i][j]); 262 } 262 } 263 263 264 for (j=0;j<reducedEnergyGrid;j++) 264 for (j=0;j<reducedEnergyGrid;j++) 265 { 265 { 266 Q1E[i][j]=Q1vector->Value(ppK[j]); 266 Q1E[i][j]=Q1vector->Value(ppK[j]); 267 Q2E[i][j]=Q2vector->Value(ppK[j]); 267 Q2E[i][j]=Q2vector->Value(ppK[j]); 268 } 268 } 269 delete Q1vector; 269 delete Q1vector; 270 delete Q2vector; 270 delete Q2vector; 271 } 271 } 272 // 272 // 273 //TABLES to be stored 273 //TABLES to be stored 274 // 274 // 275 G4PhysicsTable* theTable1 = new G4PhysicsTab 275 G4PhysicsTable* theTable1 = new G4PhysicsTable(); 276 G4PhysicsTable* theTable2 = new G4PhysicsTab 276 G4PhysicsTable* theTable2 = new G4PhysicsTable(); 277 // the table will contain reducedEnergyGrid 277 // the table will contain reducedEnergyGrid G4PhysicsFreeVectors with different 278 // values of k, 278 // values of k, 279 // Each of the G4PhysicsFreeVectors has a pr 279 // Each of the G4PhysicsFreeVectors has a profile of 280 // y vs. E 280 // y vs. E 281 // 281 // 282 //reserve space of the vectors. 282 //reserve space of the vectors. 283 for (j=0;j<reducedEnergyGrid;j++) 283 for (j=0;j<reducedEnergyGrid;j++) 284 { 284 { 285 G4PhysicsFreeVector* thevec = new G4Phys 285 G4PhysicsFreeVector* thevec = new G4PhysicsFreeVector(fNumberofEPoints,/*spline=*/true); 286 theTable1->push_back(thevec); 286 theTable1->push_back(thevec); 287 G4PhysicsFreeVector* thevec2 = new G4Phy 287 G4PhysicsFreeVector* thevec2 = new G4PhysicsFreeVector(fNumberofEPoints,/*spline=*/true); 288 theTable2->push_back(thevec2); 288 theTable2->push_back(thevec2); 289 } 289 } 290 290 291 for (j=0;j<reducedEnergyGrid;j++) 291 for (j=0;j<reducedEnergyGrid;j++) 292 { 292 { 293 G4PhysicsFreeVector* thevec = (G4Physics 293 G4PhysicsFreeVector* thevec = (G4PhysicsFreeVector*) (*theTable1)[j]; 294 G4PhysicsFreeVector* thevec2 = (G4Physic 294 G4PhysicsFreeVector* thevec2 = (G4PhysicsFreeVector*) (*theTable2)[j]; 295 for (i=0;i<fNumberofEPoints;i++) 295 for (i=0;i<fNumberofEPoints;i++) 296 { 296 { 297 thevec->PutValues(i,betas[i],Q1E[i][j]); 297 thevec->PutValues(i,betas[i],Q1E[i][j]); 298 thevec2->PutValues(i,betas[i],Q2E[i][j]); 298 thevec2->PutValues(i,betas[i],Q2E[i][j]); 299 } 299 } 300 //Vectors are filled: calculate derivati 300 //Vectors are filled: calculate derivatives 301 thevec->FillSecondDerivatives(); 301 thevec->FillSecondDerivatives(); 302 thevec2->FillSecondDerivatives(); 302 thevec2->FillSecondDerivatives(); 303 } 303 } 304 304 305 if (fLorentzTables1 && fLorentzTables2) 305 if (fLorentzTables1 && fLorentzTables2) 306 { 306 { 307 fLorentzTables1->insert(std::make_pair(Z 307 fLorentzTables1->insert(std::make_pair(Zmat,theTable1)); 308 fLorentzTables2->insert(std::make_pair(Z 308 fLorentzTables2->insert(std::make_pair(Zmat,theTable2)); 309 } 309 } 310 else 310 else 311 { 311 { 312 G4ExceptionDescription ed; 312 G4ExceptionDescription ed; 313 ed << "Unable to create tables of Lorent 313 ed << "Unable to create tables of Lorentz coefficients for " << G4endl; 314 ed << "<Z>= " << Zmat << " in G4Penelop 314 ed << "<Z>= " << Zmat << " in G4PenelopeBremsstrahlungAngular" << G4endl; 315 delete theTable1; 315 delete theTable1; 316 delete theTable2; 316 delete theTable2; 317 G4Exception("G4PenelopeBremsstrahlungAng 317 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()", 318 "em2005",FatalException,ed); 318 "em2005",FatalException,ed); 319 } 319 } 320 320 321 return; 321 return; 322 } 322 } 323 323 324 //....oooOO0OOooo........oooOO0OOooo........oo 324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 325 325 326 G4ThreeVector& G4PenelopeBremsstrahlungAngular 326 G4ThreeVector& G4PenelopeBremsstrahlungAngular::SampleDirection(const G4DynamicParticle* dp, 327 G4double eGamma, 327 G4double eGamma, 328 G4int, 328 G4int, 329 const G4Material* material) 329 const G4Material* material) 330 { 330 { 331 if (!material) 331 if (!material) 332 { 332 { 333 G4Exception("G4PenelopeBremsstrahlungAng 333 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 334 "em2040",FatalException,"The pointer to 334 "em2040",FatalException,"The pointer to G4Material* is nullptr"); 335 return fLocalDirection; 335 return fLocalDirection; 336 } 336 } 337 337 338 //Retrieve the effective Z 338 //Retrieve the effective Z 339 G4double Zmat = 0; 339 G4double Zmat = 0; 340 340 341 //The model might be initialized incorrectly << 341 if (!fEffectiveZSq) 342 //G4PenelopeBremsstrahungModel: make sure it << 343 if (!fEffectiveZSq) << 344 { 342 { 345 G4Exception("G4PenelopeBremsstrahlungAng 343 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 346 "em2040",JustWarning,"EffectiveZSq table << 344 "em2040",FatalException,"EffectiveZ table not available"); 347 PrepareTables(material,false); << 345 return fLocalDirection; 348 //return fLocalDirection; << 346 } 349 } << 350 347 351 //found in the table: return it 348 //found in the table: return it 352 if (fEffectiveZSq->count(material)) 349 if (fEffectiveZSq->count(material)) 353 Zmat = fEffectiveZSq->find(material)->seco 350 Zmat = fEffectiveZSq->find(material)->second; 354 else //this can happen in unit tests or when << 351 else 355 //models other than G4PenelopeBremsstrahun << 352 { 356 { << 357 G4Exception("G4PenelopeBremsstrahlungAng 353 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 358 "em2040",JustWarning,"Material not found << 354 "em2040",FatalException,"Material not found in the effectiveZ table"); 359 PrepareTables(material,false); << 355 return fLocalDirection; 360 Zmat = fEffectiveZSq->find(material)->se << 361 // return fLocalDirection; << 362 } 356 } 363 357 364 if (fVerbosityLevel > 0) 358 if (fVerbosityLevel > 0) 365 { 359 { 366 G4cout << "Effective <Z> for material : 360 G4cout << "Effective <Z> for material : " << material->GetName() << 367 " = " << Zmat << G4endl; 361 " = " << Zmat << G4endl; 368 } 362 } 369 363 370 G4double ePrimary = dp->GetKineticEnergy(); 364 G4double ePrimary = dp->GetKineticEnergy(); 371 365 372 G4double beta = std::sqrt(ePrimary*(ePrimary 366 G4double beta = std::sqrt(ePrimary*(ePrimary+2*electron_mass_c2))/ 373 (ePrimary+electron_mass_c2); 367 (ePrimary+electron_mass_c2); 374 G4double cdt = 0; 368 G4double cdt = 0; 375 G4double sinTheta = 0; 369 G4double sinTheta = 0; 376 G4double phi = 0; 370 G4double phi = 0; 377 371 378 //Use a pure dipole distribution for energy 372 //Use a pure dipole distribution for energy above 500 keV 379 if (ePrimary > 500*keV) 373 if (ePrimary > 500*keV) 380 { 374 { 381 cdt = 2.0*G4UniformRand() - 1.0; 375 cdt = 2.0*G4UniformRand() - 1.0; 382 if (G4UniformRand() > 0.75) 376 if (G4UniformRand() > 0.75) 383 { 377 { 384 if (cdt<0) 378 if (cdt<0) 385 cdt = -1.0*std::pow(-cdt,1./3.); 379 cdt = -1.0*std::pow(-cdt,1./3.); 386 else 380 else 387 cdt = std::pow(cdt,1./3.); 381 cdt = std::pow(cdt,1./3.); 388 } 382 } 389 cdt = (cdt+beta)/(1.0+beta*cdt); 383 cdt = (cdt+beta)/(1.0+beta*cdt); 390 //Get primary kinematics 384 //Get primary kinematics 391 sinTheta = std::sqrt(1. - cdt*cdt); 385 sinTheta = std::sqrt(1. - cdt*cdt); 392 phi = twopi * G4UniformRand(); 386 phi = twopi * G4UniformRand(); 393 fLocalDirection.set(sinTheta* std::cos(p 387 fLocalDirection.set(sinTheta* std::cos(phi), 394 sinTheta* std::sin(phi), 388 sinTheta* std::sin(phi), 395 cdt); 389 cdt); 396 //rotate 390 //rotate 397 fLocalDirection.rotateUz(dp->GetMomentum 391 fLocalDirection.rotateUz(dp->GetMomentumDirection()); 398 //return 392 //return 399 return fLocalDirection; 393 return fLocalDirection; 400 } 394 } 401 395 402 if (!(fLorentzTables1->count(Zmat)) || !(fLo 396 if (!(fLorentzTables1->count(Zmat)) || !(fLorentzTables2->count(Zmat))) 403 { 397 { 404 G4ExceptionDescription ed; 398 G4ExceptionDescription ed; 405 ed << "Unable to retrieve Lorentz tables 399 ed << "Unable to retrieve Lorentz tables for Z= " << Zmat << G4endl; 406 G4Exception("G4PenelopeBremsstrahlungAng 400 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 407 "em2006",FatalException,ed); 401 "em2006",FatalException,ed); 408 } 402 } 409 403 410 //retrieve actual tables 404 //retrieve actual tables 411 const G4PhysicsTable* theTable1 = fLorentzTa 405 const G4PhysicsTable* theTable1 = fLorentzTables1->find(Zmat)->second; 412 const G4PhysicsTable* theTable2 = fLorentzTa 406 const G4PhysicsTable* theTable2 = fLorentzTables2->find(Zmat)->second; 413 407 414 G4double RK=20.0*eGamma/ePrimary; 408 G4double RK=20.0*eGamma/ePrimary; 415 G4int ik=std::min((G4int) RK,19); 409 G4int ik=std::min((G4int) RK,19); 416 410 417 G4double P10=0,P11=0,P1=0; 411 G4double P10=0,P11=0,P1=0; 418 G4double P20=0,P21=0,P2=0; 412 G4double P20=0,P21=0,P2=0; 419 413 420 //First coefficient 414 //First coefficient 421 const G4PhysicsFreeVector* v1 = (G4PhysicsFr 415 const G4PhysicsFreeVector* v1 = (G4PhysicsFreeVector*) (*theTable1)[ik]; 422 const G4PhysicsFreeVector* v2 = (G4PhysicsFr 416 const G4PhysicsFreeVector* v2 = (G4PhysicsFreeVector*) (*theTable1)[ik+1]; 423 P10 = v1->Value(beta); 417 P10 = v1->Value(beta); 424 P11 = v2->Value(beta); 418 P11 = v2->Value(beta); 425 P1=P10+(RK-(G4double) ik)*(P11-P10); 419 P1=P10+(RK-(G4double) ik)*(P11-P10); 426 420 427 //Second coefficient 421 //Second coefficient 428 const G4PhysicsFreeVector* v3 = (G4PhysicsFr 422 const G4PhysicsFreeVector* v3 = (G4PhysicsFreeVector*) (*theTable2)[ik]; 429 const G4PhysicsFreeVector* v4 = (G4PhysicsFr 423 const G4PhysicsFreeVector* v4 = (G4PhysicsFreeVector*) (*theTable2)[ik+1]; 430 P20=v3->Value(beta); 424 P20=v3->Value(beta); 431 P21=v4->Value(beta); 425 P21=v4->Value(beta); 432 P2=P20+(RK-(G4double) ik)*(P21-P20); 426 P2=P20+(RK-(G4double) ik)*(P21-P20); 433 427 434 //Sampling from the Lorenz-trasformed dipole 428 //Sampling from the Lorenz-trasformed dipole distributions 435 P1=std::min(G4Exp(P1)/beta,1.0); 429 P1=std::min(G4Exp(P1)/beta,1.0); 436 G4double betap = std::min(std::max(beta*(1.0 430 G4double betap = std::min(std::max(beta*(1.0+P2/beta),0.0),0.9999); 437 431 438 G4double testf=0; 432 G4double testf=0; 439 433 440 if (G4UniformRand() < P1) 434 if (G4UniformRand() < P1) 441 { 435 { 442 do{ 436 do{ 443 cdt = 2.0*G4UniformRand()-1.0; 437 cdt = 2.0*G4UniformRand()-1.0; 444 testf=2.0*G4UniformRand()-(1.0+cdt*cdt); 438 testf=2.0*G4UniformRand()-(1.0+cdt*cdt); 445 }while(testf>0); 439 }while(testf>0); 446 } 440 } 447 else 441 else 448 { 442 { 449 do{ 443 do{ 450 cdt = 2.0*G4UniformRand()-1.0; 444 cdt = 2.0*G4UniformRand()-1.0; 451 testf=G4UniformRand()-(1.0-cdt*cdt); 445 testf=G4UniformRand()-(1.0-cdt*cdt); 452 }while(testf>0); 446 }while(testf>0); 453 } 447 } 454 cdt = (cdt+betap)/(1.0+betap*cdt); 448 cdt = (cdt+betap)/(1.0+betap*cdt); 455 449 456 //Get primary kinematics 450 //Get primary kinematics 457 sinTheta = std::sqrt(1. - cdt*cdt); 451 sinTheta = std::sqrt(1. - cdt*cdt); 458 phi = twopi * G4UniformRand(); 452 phi = twopi * G4UniformRand(); 459 fLocalDirection.set(sinTheta* std::cos(phi), 453 fLocalDirection.set(sinTheta* std::cos(phi), 460 sinTheta* std::sin(phi), 454 sinTheta* std::sin(phi), 461 cdt); 455 cdt); 462 //rotate 456 //rotate 463 fLocalDirection.rotateUz(dp->GetMomentumDire 457 fLocalDirection.rotateUz(dp->GetMomentumDirection()); 464 //return 458 //return 465 return fLocalDirection; 459 return fLocalDirection; 466 460 467 } 461 } 468 462 469 //....oooOO0OOooo........oooOO0OOooo........oo 463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 464 471 G4double G4PenelopeBremsstrahlungAngular::Calc 465 G4double G4PenelopeBremsstrahlungAngular::CalculateEffectiveZ(const G4Material* material) 472 { 466 { 473 if (!fEffectiveZSq) 467 if (!fEffectiveZSq) 474 fEffectiveZSq = new std::map<const G4Mater 468 fEffectiveZSq = new std::map<const G4Material*,G4double>; 475 469 476 //Already exists: return it 470 //Already exists: return it 477 if (fEffectiveZSq->count(material)) 471 if (fEffectiveZSq->count(material)) 478 return fEffectiveZSq->find(material)->seco 472 return fEffectiveZSq->find(material)->second; 479 473 480 //Helper for the calculation 474 //Helper for the calculation 481 std::vector<G4double> *StechiometricFactors 475 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>; 482 G4int nElements = (G4int)material->GetNumber << 476 G4int nElements = material->GetNumberOfElements(); 483 const G4ElementVector* elementVector = mater 477 const G4ElementVector* elementVector = material->GetElementVector(); 484 const G4double* fractionVector = material->G 478 const G4double* fractionVector = material->GetFractionVector(); 485 for (G4int i=0;i<nElements;++i) << 479 for (G4int i=0;i<nElements;i++) 486 { 480 { 487 G4double fraction = fractionVector[i]; 481 G4double fraction = fractionVector[i]; 488 G4double atomicWeigth = (*elementVector) 482 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 489 StechiometricFactors->push_back(fraction 483 StechiometricFactors->push_back(fraction/atomicWeigth); 490 } 484 } 491 //Find max 485 //Find max 492 G4double MaxStechiometricFactor = 0.; 486 G4double MaxStechiometricFactor = 0.; 493 for (G4int i=0;i<nElements;++i) << 487 for (G4int i=0;i<nElements;i++) 494 { 488 { 495 if ((*StechiometricFactors)[i] > MaxStec 489 if ((*StechiometricFactors)[i] > MaxStechiometricFactor) 496 MaxStechiometricFactor = (*Stechiometr 490 MaxStechiometricFactor = (*StechiometricFactors)[i]; 497 } 491 } 498 //Normalize 492 //Normalize 499 for (G4int i=0;i<nElements;++i) << 493 for (G4int i=0;i<nElements;i++) 500 (*StechiometricFactors)[i] /= MaxStechiom 494 (*StechiometricFactors)[i] /= MaxStechiometricFactor; 501 495 502 G4double sumz2 = 0; 496 G4double sumz2 = 0; 503 G4double sums = 0; 497 G4double sums = 0; 504 for (G4int i=0;i<nElements;++i) << 498 for (G4int i=0;i<nElements;i++) 505 { 499 { 506 G4double Z = (*elementVector)[i]->GetZ() 500 G4double Z = (*elementVector)[i]->GetZ(); 507 sumz2 += (*StechiometricFactors)[i]*Z*Z; 501 sumz2 += (*StechiometricFactors)[i]*Z*Z; 508 sums += (*StechiometricFactors)[i]; 502 sums += (*StechiometricFactors)[i]; 509 } 503 } 510 delete StechiometricFactors; 504 delete StechiometricFactors; 511 505 512 G4double ZBR = std::sqrt(sumz2/sums); 506 G4double ZBR = std::sqrt(sumz2/sums); 513 fEffectiveZSq->insert(std::make_pair(materia 507 fEffectiveZSq->insert(std::make_pair(material,ZBR)); 514 508 515 return ZBR; 509 return ZBR; 516 } 510 } 517 511