Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc (Version 8.0)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // G4MicroElecLOPhononModel.cc,                   
 28 //               2020/05/20 P. Caron, C. Ingui    
 29 //                          Q. Gibaru is with     
 30 //                          M. Raine and D. La    
 31 //                                                
 32 // A part of this work has been funded by the     
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France      
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T    
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED    
 36 //                                                
 37 // Based on the following publications            
 38 //                                                
 39 // - J. Pierron, C. Inguimbert, M. Belhaj, T.     
 40 //   Electron emission yield for low energy el    
 41 //   Monte Carlo simulation and experimental c    
 42 //   Journal of Applied Physics 121 (2017) 215    
 43 //   https://doi.org/10.1063/1.4984761            
 44 //                                                
 45 // - P. Caron,                                    
 46 //   Study of Electron-Induced Single-Event Up    
 47 //   PHD, 16th October 2019                       
 48 //                                                
 49 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine,    
 50 //   Geant4 physics processes for microdosimet    
 51 //   Extension of MicroElec to very low energi    
 52 //   NIM B, 2020, in review.                      
 53 //                                                
 54 //////////////////////////////////////////////    
 55                                                   
 56 #include "G4MicroElecLOPhononModel.hh"            
 57 #include "G4SystemOfUnits.hh"                     
 58 #include "G4PhysicalConstants.hh"                 
 59                                                   
 60 G4MicroElecLOPhononModel::G4MicroElecLOPhononM    
 61                                                   
 62   : G4VEmModel(nam),isInitialised(false)          
 63 {                                                 
 64   G4cout << "Phonon model is constructed " <<     
 65          << "Phonon Energy = " << phononEnergy    
 66 }                                                 
 67                                                   
 68 //....oooOO0OOooo........oooOO0OOooo........oo    
 69                                                   
 70 void G4MicroElecLOPhononModel::Initialise(cons    
 71                   const G4DataVector& /*cuts*/    
 72 {                                                 
 73   if (isInitialised) { return; }                  
 74   fParticleChangeForGamma = GetParticleChangeF    
 75   isInitialised = true;                           
 76 }                                                 
 77                                                   
 78 //....oooOO0OOooo........oooOO0OOooo........oo    
 79                                                   
 80 G4double G4MicroElecLOPhononModel::               
 81 CrossSectionPerVolume(const G4Material* materi    
 82                       const G4ParticleDefiniti    
 83                             G4double ekin,        
 84                             G4double, G4double    
 85 {                                                 
 86   const G4double e = CLHEP::eplus / CLHEP::cou    
 87   const G4double m0 = CLHEP::electron_mass_c2     
 88   const G4double h = CLHEP::hbar_Planck * CLHE    
 89   const G4double eps0 = CLHEP::epsilon0 * CLHE    
 90   const G4double kb = CLHEP::k_Boltzmann * CLH    
 91   const G4double T = 300;                         
 92   G4double eps = 9;                               
 93   G4double einf = 3;                              
 94                                                   
 95   const G4DataVector cuts;                        
 96   Initialise(p, cuts);                            
 97                                                   
 98   if (material->GetName() != "G4_SILICON_DIOXI    
 99    && material->GetName() != "G4_ALUMINUM_OXID    
100    && material->GetName() != "G4_BORON_NITRIDE    
101   {                                               
102     return 1 / DBL_MAX;                           
103   }                                               
104                                                   
105   G4double E =(ekin/eV)*e;                        
106                                                   
107   if (material->GetName() == "G4_ALUMINUM_OXID    
108   {                                               
109     eps = 9;                                      
110     einf = 3;                                     
111     phononEnergy = 0.1*eV;                        
112   }                                               
113   if (material->GetName() == "G4_SILICON_DIOXI    
114   {                                               
115     eps = 3.84;                                   
116     einf = 2.25;                                  
117     phononEnergy = (0.75*0.153+0.25*0.063 )* e    
118   }                                               
119                                                   
120   // Nuclear Instruments and Methods in Physic    
121   // Beam Interactions with Materials and Atom    
122   // Volume 454, 1 September 2019, Pages 14 -     
123   // Nuclear Instruments and Methods in Physic    
124   // Beam Interactions with Materials and Atom    
125   // Monte Carlo modeling of low - energy elec    
126   // electron emission yields in micro - archi    
127                                                   
128   if (material->GetName() == "G4_BORON_NITRIDE    
129   {                                               
130     eps = 7.1;                                    
131     einf = 4.5;                                   
132     phononEnergy = 0.17 * eV;                     
133   }                                               
134                                                   
135   G4double hw = (phononEnergy / eV) * e;          
136   G4double n = 1.0 / (std::exp(hw / (kb*T)) -     
137                                                   
138   if (absor)  // Absorption                       
139   {                                               
140     Eprim = E + hw;                               
141     signe = -1;                                   
142   }                                               
143   else        // Emission                         
144   {                                               
145     Eprim = E - hw;                               
146     signe = +1;                                   
147   }                                               
148                                                   
149   G4double racine = std::sqrt(1 + ((-signe*hw)    
150   G4double P = (std::pow(e, 2) / (4 * pi*eps0*    
151   G4double MFP = (std::sqrt(2 * E / m0) / P)*m    
152                                                   
153   if (material->GetName() == "G4_SILICON_DIOXI    
154   return 1/(MFP);                                 
155   // correction CI 12/1/2023 add                  
156 }                                                 
157                                                   
158 //....oooOO0OOooo........oooOO0OOooo........oo    
159                                                   
160 void G4MicroElecLOPhononModel::                   
161 SampleSecondaries(std::vector<G4DynamicParticl    
162                   const G4MaterialCutsCouple*,    
163                   const G4DynamicParticle* aDy    
164                   G4double, G4double)             
165 {                                                 
166   G4double E = aDynamicElectron->GetKineticEne    
167   Eprim = (absor) ? E + phononEnergy : E - pho    
168                                                   
169   G4double rand = G4UniformRand();                
170   G4double B = (E + Eprim + 2 * std::sqrt(E*Ep    
171              / (E + Eprim - 2 * std::sqrt(E*Ep    
172   G4double cosTheta = ((E + Eprim) / (2 * std:    
173                     * (1 - std::pow(B, rand))     
174   if(Interband)                                   
175   {                                               
176     cosTheta = 1 - 2 * G4UniformRand(); //Isot    
177   }                                               
178   G4double phi = twopi * G4UniformRand();         
179   G4ThreeVector zVers = aDynamicElectron->GetM    
180   G4ThreeVector xVers = zVers.orthogonal();       
181   G4ThreeVector yVers = zVers.cross(xVers);       
182                                                   
183   G4double xDir = std::sqrt(1. - cosTheta*cosT    
184   G4double yDir = xDir;                           
185   xDir *= std::cos(phi);                          
186   yDir *= std::sin(phi);                          
187                                                   
188   G4ThreeVector zPrimeVers((xDir*xVers + yDir*    
189                                                   
190   fParticleChangeForGamma->ProposeMomentumDire    
191   fParticleChangeForGamma->SetProposedKineticE    
192 }                                                 
193                                                   
194 //....oooOO0OOooo........oooOO0OOooo........oo    
195