Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc (Version 11.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // G4MicroElecLOPhononModel.cc,                    27 // G4MicroElecLOPhononModel.cc, 
 28 //               2020/05/20 P. Caron, C. Ingui <<  28 //                          2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 29 //                          Q. Gibaru is with  <<  29 //                   Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 30 //                          M. Raine and D. La <<  30 //                    M. Raine and D. Lambert are with CEA [a]
 31 //                                                 31 //
 32 // A part of this work has been funded by the      32 // A part of this work has been funded by the French space agency(CNES[c])
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France       33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T     34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED     35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 36 //                                                 36 //
 37 // Based on the following publications             37 // Based on the following publications
 38 //                                                 38 //
 39 // - J. Pierron, C. Inguimbert, M. Belhaj, T.  <<  39 //      - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 40 //   Electron emission yield for low energy el <<  40 //        Electron emission yield for low energy electrons: 
 41 //   Monte Carlo simulation and experimental c <<  41 //        Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 42 //   Journal of Applied Physics 121 (2017) 215 <<  42 //        Journal of Applied Physics 121 (2017) 215107. 
 43 //   https://doi.org/10.1063/1.4984761         <<  43 //               https://doi.org/10.1063/1.4984761
 44 //                                             <<  44 //
 45 // - P. Caron,                                 <<  45 //      - P. Caron,
 46 //   Study of Electron-Induced Single-Event Up <<  46 //        Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 47 //   PHD, 16th October 2019                    <<  47 //        PHD, 16th October 2019
 48 //                                             <<  48 //
 49 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, <<  49 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 50 //   Geant4 physics processes for microdosimet <<  50 //        Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 51 //   Extension of MicroElec to very low energi <<  51 //        Extension of MicroElec to very low energies and new materials
 52 //   NIM B, 2020, in review.                   <<  52 //        NIM B, 2020, in review.
 53 //                                                 53 //
 54 ////////////////////////////////////////////// <<  54 //
                                                   >>  55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 55                                                    56 
 56 #include "G4MicroElecLOPhononModel.hh"             57 #include "G4MicroElecLOPhononModel.hh"
 57 #include "G4SystemOfUnits.hh"                      58 #include "G4SystemOfUnits.hh"
 58 #include "G4PhysicalConstants.hh"                  59 #include "G4PhysicalConstants.hh"
 59                                                    60 
 60 G4MicroElecLOPhononModel::G4MicroElecLOPhononM     61 G4MicroElecLOPhononModel::G4MicroElecLOPhononModel(const G4ParticleDefinition*,
 61                                                <<  62          const G4String& nam) 
 62   : G4VEmModel(nam),isInitialised(false)       <<  63   : G4VEmModel(nam)
 63 {                                                  64 {
 64   G4cout << "Phonon model is constructed " <<  <<  65   fParticleChangeForGamma = GetParticleChangeForGamma();
 65          << "Phonon Energy = " << phononEnergy << 
 66 }                                                  66 }
 67                                                    67 
 68 //....oooOO0OOooo........oooOO0OOooo........oo     68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 69                                                    69 
                                                   >>  70 G4MicroElecLOPhononModel::~G4MicroElecLOPhononModel() 
                                                   >>  71 {}
                                                   >>  72 
                                                   >>  73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  74 
 70 void G4MicroElecLOPhononModel::Initialise(cons     75 void G4MicroElecLOPhononModel::Initialise(const G4ParticleDefinition*,
 71                   const G4DataVector& /*cuts*/     76                   const G4DataVector& /*cuts*/)
 72 {                                              <<  77 {  
 73   if (isInitialised) { return; }                   78   if (isInitialised) { return; }
 74   fParticleChangeForGamma = GetParticleChangeF     79   fParticleChangeForGamma = GetParticleChangeForGamma();
 75   isInitialised = true;                            80   isInitialised = true;
 76 }                                                  81 }
 77                                                    82 
 78 //....oooOO0OOooo........oooOO0OOooo........oo     83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 79                                                    84 
 80 G4double G4MicroElecLOPhononModel::            <<  85 G4double G4MicroElecLOPhononModel::CrossSectionPerVolume(const G4Material* material,
 81 CrossSectionPerVolume(const G4Material* materi <<  86             const G4ParticleDefinition*,
 82                       const G4ParticleDefiniti <<  87             G4double ekin,
 83                             G4double ekin,     <<  88             G4double, G4double)
 84                             G4double, G4double << 
 85 {                                                  89 {
                                                   >>  90   if (material->GetName()!="G4_SILICON_DIOXIDE") return 0.0;
                                                   >>  91 
 86   const G4double e = CLHEP::eplus / CLHEP::cou     92   const G4double e = CLHEP::eplus / CLHEP::coulomb;
 87   const G4double m0 = CLHEP::electron_mass_c2      93   const G4double m0 = CLHEP::electron_mass_c2 / (CLHEP::c_squared*CLHEP::kg);
 88   const G4double h = CLHEP::hbar_Planck * CLHE     94   const G4double h = CLHEP::hbar_Planck * CLHEP::s/ (CLHEP::m2*CLHEP::kg);
 89   const G4double eps0 = CLHEP::epsilon0 * CLHE     95   const G4double eps0 = CLHEP::epsilon0 * CLHEP::m/ (CLHEP::farad);
 90   const G4double kb = CLHEP::k_Boltzmann * CLH     96   const G4double kb = CLHEP::k_Boltzmann * CLHEP::kelvin/ CLHEP::joule;
 91   const G4double T = 300;                      << 
 92   G4double eps = 9;                            << 
 93   G4double einf = 3;                           << 
 94                                                << 
 95   const G4DataVector cuts;                     << 
 96   Initialise(p, cuts);                         << 
 97                                                << 
 98   if (material->GetName() != "G4_SILICON_DIOXI << 
 99    && material->GetName() != "G4_ALUMINUM_OXID << 
100    && material->GetName() != "G4_BORON_NITRIDE << 
101   {                                            << 
102     return 1 / DBL_MAX;                        << 
103   }                                            << 
104                                                << 
105   G4double E =(ekin/eV)*e;                     << 
106                                                << 
107   if (material->GetName() == "G4_ALUMINUM_OXID << 
108   {                                            << 
109     eps = 9;                                   << 
110     einf = 3;                                  << 
111     phononEnergy = 0.1*eV;                     << 
112   }                                            << 
113   if (material->GetName() == "G4_SILICON_DIOXI << 
114   {                                            << 
115     eps = 3.84;                                << 
116     einf = 2.25;                               << 
117     phononEnergy = (0.75*0.153+0.25*0.063 )* e << 
118   }                                            << 
119                                                << 
120   // Nuclear Instruments and Methods in Physic << 
121   // Beam Interactions with Materials and Atom << 
122   // Volume 454, 1 September 2019, Pages 14 -  << 
123   // Nuclear Instruments and Methods in Physic << 
124   // Beam Interactions with Materials and Atom << 
125   // Monte Carlo modeling of low - energy elec << 
126   // electron emission yields in micro - archi << 
127                                                << 
128   if (material->GetName() == "G4_BORON_NITRIDE << 
129   {                                            << 
130     eps = 7.1;                                 << 
131     einf = 4.5;                                << 
132     phononEnergy = 0.17 * eV;                  << 
133   }                                            << 
134                                                    97 
135   G4double hw = (phononEnergy / eV) * e;       <<  98   // Parameters SiO2  
                                                   >>  99   phononEnergy = (0.75*0.153+0.25*0.063 )* CLHEP::eV;
                                                   >> 100   const G4double eps = 3.84;
                                                   >> 101   const G4double einf = 2.25;
                                                   >> 102   const G4double T = 300;  // should be taken from material property
                                                   >> 103       
                                                   >> 104   G4double E =(ekin/CLHEP::eV)*e;
                                                   >> 105   
                                                   >> 106   G4double hw = (phononEnergy / CLHEP::eV) * e;
136   G4double n = 1.0 / (std::exp(hw / (kb*T)) -     107   G4double n = 1.0 / (std::exp(hw / (kb*T)) - 1); //Phonon distribution
137                                                << 108     
138   if (absor)  // Absorption                    << 109   G4double signe = (absor) ? -1. : 1.;
139   {                                            << 110     
140     Eprim = E + hw;                            << 111   G4double racine = std::sqrt(1. + ((-signe*hw) / E));
141     signe = -1;                                << 112   
142   }                                            << 113   G4double P = (std::pow(e, 2) / (4 * pi*eps0*h*h)) * (n + 0.5 + signe*0.5) * ((1 / einf) - (1 / eps)) 
143   else        // Emission                      << 114     * std::sqrt(m0 / (2 * E)) *hw* std::log((1 + racine) / (signe * 1 + ((-signe)*racine)));
144   {                                            << 115   
145     Eprim = E - hw;                            << 116   G4double MFP = (std::sqrt(2. * E / m0) / P)*m;
146     signe = +1;                                << 117   return 2. / MFP;   
147   }                                            << 
148                                                << 
149   G4double racine = std::sqrt(1 + ((-signe*hw) << 
150   G4double P = (std::pow(e, 2) / (4 * pi*eps0* << 
151   G4double MFP = (std::sqrt(2 * E / m0) / P)*m << 
152                                                << 
153   if (material->GetName() == "G4_SILICON_DIOXI << 
154   return 1/(MFP);                              << 
155   // correction CI 12/1/2023 add               << 
156 }                                                 118 }
157                                                   119 
158 //....oooOO0OOooo........oooOO0OOooo........oo    120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
159                                                   121 
160 void G4MicroElecLOPhononModel::                << 122 void G4MicroElecLOPhononModel::SampleSecondaries(
161 SampleSecondaries(std::vector<G4DynamicParticl << 123                                std::vector<G4DynamicParticle*>*,
162                   const G4MaterialCutsCouple*, << 124              const G4MaterialCutsCouple*,
163                   const G4DynamicParticle* aDy << 125              const G4DynamicParticle* aDynamicElectron,
164                   G4double, G4double)          << 126              G4double, G4double)
165 {                                                 127 {
                                                   >> 128 
166   G4double E = aDynamicElectron->GetKineticEne    129   G4double E = aDynamicElectron->GetKineticEnergy();
167   Eprim = (absor) ? E + phononEnergy : E - pho << 130   G4double Eprim = (absor) ? E + phononEnergy : E - phononEnergy;   
168                                                   131 
169   G4double rand = G4UniformRand();                132   G4double rand = G4UniformRand();
170   G4double B = (E + Eprim + 2 * std::sqrt(E*Ep << 133   G4double B = (E + Eprim + 2 * std::sqrt(E*Eprim)) / (E + Eprim - 2 * std::sqrt(E*Eprim));
171              / (E + Eprim - 2 * std::sqrt(E*Ep << 134   G4double cosTheta = ((E + Eprim) / (2 * std::sqrt(E*Eprim)))*(1 - std::pow(B, rand)) + std::pow(B, rand);
172   G4double cosTheta = ((E + Eprim) / (2 * std: << 135   
173                     * (1 - std::pow(B, rand))  << 136   if(Interband){
174   if(Interband)                                << 
175   {                                            << 
176     cosTheta = 1 - 2 * G4UniformRand(); //Isot    137     cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
177   }                                               138   }
178   G4double phi = twopi * G4UniformRand();         139   G4double phi = twopi * G4UniformRand();
179   G4ThreeVector zVers = aDynamicElectron->GetM    140   G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
180   G4ThreeVector xVers = zVers.orthogonal();       141   G4ThreeVector xVers = zVers.orthogonal();
181   G4ThreeVector yVers = zVers.cross(xVers);       142   G4ThreeVector yVers = zVers.cross(xVers);
182                                                   143   
183   G4double xDir = std::sqrt(1. - cosTheta*cosT    144   G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
184   G4double yDir = xDir;                           145   G4double yDir = xDir;
185   xDir *= std::cos(phi);                          146   xDir *= std::cos(phi);
186   yDir *= std::sin(phi);                          147   yDir *= std::sin(phi);
187                                                   148   
188   G4ThreeVector zPrimeVers((xDir*xVers + yDir*    149   G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
189                                                   150   
190   fParticleChangeForGamma->ProposeMomentumDire    151   fParticleChangeForGamma->ProposeMomentumDirection(zPrimeVers.unit());
191   fParticleChangeForGamma->SetProposedKineticE    152   fParticleChangeForGamma->SetProposedKineticEnergy(Eprim);
192 }                                                 153 }
193                                                   154 
194 //....oooOO0OOooo........oooOO0OOooo........oo    155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
195                                                   156