Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Author: Sebastien Incerti << 26 // $Id: G4LivermoreRayleighModel.cc,v 1.8 2009/09/23 16:54:06 flongo Exp $ 27 // 31 March 2012 << 27 // GEANT4 tag $Name: geant4-09-03 $ 28 // on base of G4LivermoreRayleighModel << 29 // 28 // >> 29 // Author: Sebastien Inserti >> 30 // 30 October 2008 >> 31 // >> 32 // History: >> 33 // -------- >> 34 // 18 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries: >> 35 // - apply internal high-energy limit only in constructor >> 36 // - do not apply low-energy limit (default is 0) >> 37 // - remove GetMeanFreePath method and table >> 38 // - remove initialisation of element selector >> 39 // - use G4ElementSelector 30 40 31 #include "G4LivermoreRayleighModel.hh" 41 #include "G4LivermoreRayleighModel.hh" 32 42 33 #include "G4AutoLock.hh" << 34 #include "G4EmParameters.hh" << 35 #include "G4RayleighAngularGenerator.hh" << 36 #include "G4SystemOfUnits.hh" << 37 << 38 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 39 44 40 namespace << 45 using namespace std; 41 { << 42 G4Mutex LivermoreRayleighModelMutex = G4MUTEX_ << 43 } << 44 << 45 G4PhysicsFreeVector* G4LivermoreRayleighModel: << 46 G4String G4LivermoreRayleighModel::gDataDirect << 47 46 48 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 49 48 50 G4LivermoreRayleighModel::G4LivermoreRayleighM << 49 G4LivermoreRayleighModel::G4LivermoreRayleighModel(const G4ParticleDefinition*, 51 { << 50 const G4String& nam) 52 fParticleChange = nullptr; << 51 :G4VEmModel(nam),isInitialised(false),meanFreePathTable(0), 53 lowEnergyLimit = 10 * CLHEP::eV; << 52 formFactorData(0),crossSectionHandler(0) 54 << 53 { 55 SetAngularDistribution(new G4RayleighAngular << 54 lowEnergyLimit = 250 * eV; 56 << 55 highEnergyLimit = 100 * GeV; 57 verboseLevel = 0; << 56 58 // Verbosity scale for debugging purposes: << 57 // SetLowEnergyLimit(lowEnergyLimit); 59 // 0 = nothing << 58 SetHighEnergyLimit(highEnergyLimit); 60 // 1 = calculation of cross sections, file o << 59 // 61 // 2 = entering in methods << 60 verboseLevel= 0; 62 << 61 // Verbosity scale: 63 if (verboseLevel > 0) { << 62 // 0 = nothing 64 G4cout << "G4LivermoreRayleighModel is con << 63 // 1 = warning for energy non-conservation >> 64 // 2 = details of energy budget >> 65 // 3 = calculation of cross sections, file openings, sampling of atoms >> 66 // 4 = entering in methods >> 67 >> 68 if(verboseLevel > 0) { >> 69 G4cout << "Livermore Rayleigh is constructed " << G4endl >> 70 << "Energy range: " >> 71 << lowEnergyLimit / eV << " eV - " >> 72 << highEnergyLimit / GeV << " GeV" >> 73 << G4endl; 65 } 74 } 66 } 75 } 67 76 68 //....oooOO0OOooo........oooOO0OOooo........oo 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 69 78 70 G4LivermoreRayleighModel::~G4LivermoreRayleigh 79 G4LivermoreRayleighModel::~G4LivermoreRayleighModel() 71 { << 80 { 72 if (IsMaster()) { << 81 if (crossSectionHandler) delete crossSectionHandler; 73 for (G4int i = 0; i <= maxZ; ++i) { << 82 if (formFactorData) delete formFactorData; 74 if (nullptr != dataCS[i]) { << 75 delete dataCS[i]; << 76 dataCS[i] = nullptr; << 77 } << 78 } << 79 } << 80 } 83 } 81 84 82 //....oooOO0OOooo........oooOO0OOooo........oo 85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 83 86 84 void G4LivermoreRayleighModel::Initialise(cons 87 void G4LivermoreRayleighModel::Initialise(const G4ParticleDefinition* particle, 85 cons << 88 const G4DataVector& cuts) 86 { 89 { 87 if (verboseLevel > 1) { << 90 if (verboseLevel > 3) 88 G4cout << "Calling Initialise() of G4Liver << 91 G4cout << "Calling G4LivermoreRayleighModel::Initialise()" << G4endl; 89 << "Energy range: " << LowEnergyLim << 90 << " GeV" << G4endl; << 91 } << 92 92 93 if (IsMaster()) { << 93 if (crossSectionHandler) 94 // Initialise element selector << 94 { 95 InitialiseElementSelectors(particle, cuts) << 95 crossSectionHandler->Clear(); 96 << 96 delete crossSectionHandler; 97 // Access to elements << 97 } 98 const G4ElementTable* elemTable = G4Elemen << 98 99 std::size_t numElems = (*elemTable).size() << 99 // Data are read for all materials 100 for (std::size_t ie = 0; ie < numElems; ++ << 100 101 const G4Element* elem = (*elemTable)[ie] << 101 crossSectionHandler = new G4CrossSectionHandler; 102 const G4int Z = std::min(maxZ, elem->Get << 102 crossSectionHandler->Clear(); 103 if (dataCS[Z] == nullptr) { << 103 G4String crossSectionFile = "rayl/re-cs-"; 104 ReadData(Z); << 104 crossSectionHandler->LoadData(crossSectionFile); 105 } << 105 106 } << 106 G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation; 107 } << 107 G4String formFactorFile = "rayl/re-ff-"; 108 if (isInitialised) { << 108 formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.); 109 return; << 109 formFactorData->LoadData(formFactorFile); >> 110 >> 111 InitialiseElementSelectors(particle,cuts); >> 112 >> 113 // >> 114 if (verboseLevel > 2) >> 115 G4cout << "Loaded cross section files for Livermore Rayleigh model" << G4endl; >> 116 >> 117 if (verboseLevel > 0) { >> 118 G4cout << "Livermore Rayleigh model is initialized " << G4endl >> 119 << "Energy range: " >> 120 << LowEnergyLimit() / eV << " eV - " >> 121 << HighEnergyLimit() / GeV << " GeV" >> 122 << G4endl; 110 } 123 } >> 124 >> 125 if(isInitialised) return; 111 fParticleChange = GetParticleChangeForGamma( 126 fParticleChange = GetParticleChangeForGamma(); 112 isInitialised = true; 127 isInitialised = true; 113 } << 114 128 115 //....oooOO0OOooo........oooOO0OOooo........oo << 116 << 117 void G4LivermoreRayleighModel::InitialiseLocal << 118 { << 119 SetElementSelectors(masterModel->GetElementS << 120 } << 121 << 122 //....oooOO0OOooo........oooOO0OOooo........oo << 123 << 124 const G4String& G4LivermoreRayleighModel::Find << 125 { << 126 // no check in this method - environment var << 127 if (gDataDirectory.empty()) { << 128 auto param = G4EmParameters::Instance(); << 129 std::ostringstream ost; << 130 if (param->LivermoreDataDir() == "livermor << 131 ost << param->GetDirLEDATA() << "/liverm << 132 } << 133 else { << 134 ost << param->GetDirLEDATA() << "/epics2 << 135 } << 136 gDataDirectory = ost.str(); << 137 } << 138 return gDataDirectory; << 139 } 129 } 140 130 141 //....oooOO0OOooo........oooOO0OOooo........oo 131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 142 132 143 void G4LivermoreRayleighModel::ReadData(const << 133 G4double G4LivermoreRayleighModel::ComputeCrossSectionPerAtom( >> 134 const G4ParticleDefinition*, >> 135 G4double GammaEnergy, >> 136 G4double Z, G4double, >> 137 G4double, G4double) 144 { 138 { 145 if (verboseLevel > 1) { << 139 if (verboseLevel > 3) 146 G4cout << "Calling ReadData() of G4Livermo << 140 G4cout << "Calling CrossSectionPerAtom() of G4LivermoreRayleighModel" << G4endl; 147 } << 148 const G4int Z = std::min(ZZ, maxZ); << 149 << 150 if (nullptr != dataCS[Z]) { << 151 return; << 152 } << 153 << 154 dataCS[Z] = new G4PhysicsFreeVector(); << 155 << 156 std::ostringstream ostCS; << 157 ostCS << FindDirectoryPath() << "re-cs-" << << 158 141 159 std::ifstream finCS(ostCS.str().c_str()); << 142 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) >> 143 return 0.0; 160 144 161 if (!finCS.is_open()) { << 145 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 162 G4ExceptionDescription ed; << 146 return cs; 163 ed << "G4LivermoreRayleighModel data file << 164 << G4endl; << 165 G4Exception("G4LivermoreRayleighModel::Rea << 166 "G4LEDATA version should be G4 << 167 return; << 168 } << 169 else { << 170 if (verboseLevel > 3) { << 171 G4cout << "File " << ostCS.str() << " is << 172 } << 173 dataCS[Z]->Retrieve(finCS, true); << 174 } << 175 } 147 } 176 148 177 //....oooOO0OOooo........oooOO0OOooo........oo 149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 150 179 G4double G4LivermoreRayleighModel::ComputeCros << 151 void G4LivermoreRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/, 180 << 152 const G4MaterialCutsCouple* couple, 181 << 153 const G4DynamicParticle* aDynamicGamma, >> 154 G4double, >> 155 G4double) 182 { 156 { 183 if (verboseLevel > 1) { << 157 if (verboseLevel > 3) 184 G4cout << "G4LivermoreRayleighModel::Compu << 158 G4cout << "Calling SampleSecondaries() of G4LivermoreRayleighModel" << G4endl; 185 } << 186 << 187 if (GammaEnergy < lowEnergyLimit) { << 188 return 0.0; << 189 } << 190 << 191 G4double xs = 0.0; << 192 G4int intZ = G4lrint(Z); << 193 if (intZ < 1 || intZ > maxZ) { << 194 return xs; << 195 } << 196 159 197 G4PhysicsFreeVector* pv = dataCS[intZ]; << 160 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 198 161 199 // if element was not initialised << 162 // absorption of low-energy gamma 200 // do initialisation safely for MT mode << 163 if (photonEnergy0 <= lowEnergyLimit) 201 if (nullptr == pv) { << 164 { 202 InitialiseForElement(nullptr, intZ); << 165 fParticleChange->ProposeTrackStatus(fStopAndKill); 203 pv = dataCS[intZ]; << 166 fParticleChange->SetProposedKineticEnergy(0.); 204 if (nullptr == pv) { << 167 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 205 return xs; << 168 return ; 206 } 169 } 207 } << 208 << 209 auto n = G4int(pv->GetVectorLength() - 1); << 210 G4double e = GammaEnergy / MeV; << 211 if (e >= pv->Energy(n)) { << 212 xs = (*pv)[n] / (e * e); << 213 } << 214 else if (e >= pv->Energy(0)) { << 215 xs = pv->Value(e) / (e * e); << 216 } << 217 170 218 if (verboseLevel > 1) { << 171 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 219 G4cout << "****** DEBUG: tcs value for Z=" << 220 G4cout << " cs (Geant4 internal unit)=" < << 221 G4cout << " -> first E*E*cs value in CS << 222 G4cout << " -> last E*E*cs value in CS << 223 G4cout << "******************************* << 224 } << 225 return xs; << 226 } << 227 << 228 //....oooOO0OOooo........oooOO0OOooo........oo << 229 << 230 void G4LivermoreRayleighModel::SampleSecondari << 231 << 232 << 233 << 234 { << 235 if (verboseLevel > 1) { << 236 G4cout << "Calling SampleSecondaries() of << 237 } << 238 G4double photonEnergy0 = aDynamicGamma->GetK << 239 172 240 // Select randomly one element in the curren 173 // Select randomly one element in the current material 241 const G4ParticleDefinition* particle = aDyna << 174 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0); 242 const G4Element* elm = SelectRandomAtom(coup << 175 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 243 G4int Z = elm->GetZasInt(); << 176 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0); >> 177 G4int Z = (G4int)elm->GetZ(); 244 178 245 // Sample the angle of the scattered photon 179 // Sample the angle of the scattered photon 246 G4ThreeVector photonDirection = GetAngularDi << 247 aDynamicGamma, photonEnergy0, Z, couple->G << 248 fParticleChange->ProposeMomentumDirection(ph << 249 } << 250 180 251 //....oooOO0OOooo........oooOO0OOooo........oo << 181 G4double wlPhoton = h_Planck*c_light/photonEnergy0; 252 182 253 void G4LivermoreRayleighModel::InitialiseForEl << 183 G4double gReject,x,dataFormFactor; 254 { << 184 G4double randomFormFactor; 255 if (nullptr != dataCS[Z]) { << 185 G4double cosTheta; 256 return; << 186 G4double sinTheta; 257 } << 187 G4double fcostheta; 258 G4AutoLock l(&LivermoreRayleighModelMutex); << 188 259 if (nullptr == dataCS[Z]) { << 189 do 260 ReadData(Z); << 190 { 261 } << 191 do 262 l.unlock(); << 192 { >> 193 cosTheta = 2. * G4UniformRand() - 1.; >> 194 fcostheta = ( 1. + cosTheta*cosTheta)/2.; >> 195 } while (fcostheta < G4UniformRand()); >> 196 >> 197 if (photonEnergy0 > 5) >> 198 { >> 199 cosTheta = 1.; >> 200 } >> 201 >> 202 G4double sinThetaHalf = std::sqrt((1. - cosTheta) / 2.); >> 203 x = sinThetaHalf / (wlPhoton/cm); >> 204 if (x > 1.e+005) >> 205 { >> 206 dataFormFactor = formFactorData->FindValue(x,Z-1); >> 207 } >> 208 else >> 209 { >> 210 dataFormFactor = formFactorData->FindValue(0.,Z-1); >> 211 } >> 212 randomFormFactor = G4UniformRand() * Z * Z; >> 213 sinTheta = std::sqrt(1. - cosTheta*cosTheta); >> 214 gReject = dataFormFactor * dataFormFactor; >> 215 >> 216 } while( gReject < randomFormFactor); >> 217 >> 218 // Scattered photon angles. ( Z - axis along the parent photon) >> 219 G4double phi = twopi * G4UniformRand() ; >> 220 G4double dirX = sinTheta*std::cos(phi); >> 221 G4double dirY = sinTheta*std::sin(phi); >> 222 G4double dirZ = cosTheta; >> 223 >> 224 // Update G4VParticleChange for the scattered photon >> 225 G4ThreeVector photonDirection1(dirX, dirY, dirZ); >> 226 photonDirection1.rotateUz(photonDirection0); >> 227 fParticleChange->ProposeMomentumDirection(photonDirection1); >> 228 >> 229 fParticleChange->SetProposedKineticEnergy(photonEnergy0); 263 } 230 } 264 231 265 //....oooOO0OOooo........oooOO0OOooo........oo << 232 266 233