Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 9.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id$
 26 //                                                 27 //
 27 // Author: Sebastien Incerti                       28 // Author: Sebastien Incerti
 28 //         30 October 2008                         29 //         30 October 2008
 29 //         on base of G4LowEnergyPolarizedRayl     30 //         on base of G4LowEnergyPolarizedRayleigh developed by R. Capra
 30 //                                                 31 //
 31 // History:                                        32 // History:
 32 // --------                                        33 // --------
 33 // 02 May 2009   S Incerti as V. Ivanchenko pr     34 // 02 May 2009   S Incerti as V. Ivanchenko proposed in G4LivermoreRayleighModel.cc
 34 //                                                 35 //
 35 // Cleanup initialisation and generation of se     36 // Cleanup initialisation and generation of secondaries:
 36 //                  - apply internal high-ener     37 //                  - apply internal high-energy limit only in constructor 
 37 //                  - do not apply low-energy      38 //                  - do not apply low-energy limit (default is 0)
 38 //                  - remove GetMeanFreePath m     39 //                  - remove GetMeanFreePath method and table
 39 //                  - remove initialisation of     40 //                  - remove initialisation of element selector 
 40 //                  - use G4ElementSelector        41 //                  - use G4ElementSelector
 41                                                    42 
 42 #include "G4LivermorePolarizedRayleighModel.hh     43 #include "G4LivermorePolarizedRayleighModel.hh"
 43 #include "G4PhysicalConstants.hh"                  44 #include "G4PhysicalConstants.hh"
 44 #include "G4SystemOfUnits.hh"                      45 #include "G4SystemOfUnits.hh"
 45 #include "G4LogLogInterpolation.hh"            << 
 46 #include "G4CompositeEMDataSet.hh"             << 
 47 #include "G4AutoLock.hh"                       << 
 48                                                    46 
 49 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50                                                    48 
 51 using namespace std;                               49 using namespace std;
 52 namespace { G4Mutex LivermorePolarizedRayleigh << 
 53                                                    50 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 55                                                    52 
 56 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 57 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 58                                                << 
 59 G4LivermorePolarizedRayleighModel::G4Livermore     53 G4LivermorePolarizedRayleighModel::G4LivermorePolarizedRayleighModel(const G4ParticleDefinition*,
 60                    const G4String& nam)        <<  54                                              const G4String& nam)
 61   :G4VEmModel(nam),fParticleChange(nullptr),is <<  55   :G4VEmModel(nam),fParticleChange(0),isInitialised(false),
                                                   >>  56    crossSectionHandler(0),formFactorData(0)
 62 {                                                  57 {
 63   lowEnergyLimit = 250 * CLHEP::eV;            <<  58   lowEnergyLimit = 250 * eV; 
                                                   >>  59   highEnergyLimit = 100 * GeV;
                                                   >>  60   
                                                   >>  61   //SetLowEnergyLimit(lowEnergyLimit);
                                                   >>  62   SetHighEnergyLimit(highEnergyLimit);
 64   //                                               63   //
 65   verboseLevel= 0;                                 64   verboseLevel= 0;
 66   // Verbosity scale:                              65   // Verbosity scale:
 67   // 0 = nothing                                   66   // 0 = nothing 
 68   // 1 = warning for energy non-conservation       67   // 1 = warning for energy non-conservation 
 69   // 2 = details of energy budget                  68   // 2 = details of energy budget
 70   // 3 = calculation of cross sections, file o     69   // 3 = calculation of cross sections, file openings, sampling of atoms
 71   // 4 = entering in methods                       70   // 4 = entering in methods
 72                                                    71 
 73   if(verboseLevel > 0) {                           72   if(verboseLevel > 0) {
 74     G4cout << "Livermore Polarized Rayleigh is     73     G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl
 75            << "Energy range: " << LowEnergyLim <<  74          << "Energy range: "
 76      << HighEnergyLimit() / CLHEP::GeV << " Ge <<  75          << lowEnergyLimit / eV << " eV - "
 77            << G4endl;                          <<  76          << highEnergyLimit / GeV << " GeV"
                                                   >>  77          << G4endl;
 78   }                                                78   }
 79 }                                                  79 }
 80                                                    80 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 82                                                    82 
 83 G4LivermorePolarizedRayleighModel::~G4Livermor     83 G4LivermorePolarizedRayleighModel::~G4LivermorePolarizedRayleighModel()
 84 {                                                  84 {  
 85   if(IsMaster()) {                             <<  85   if (crossSectionHandler) delete crossSectionHandler;
 86     for(G4int i=0; i<maxZ; ++i) {              <<  86   if (formFactorData) delete formFactorData;
 87       if(dataCS[i]) {                          << 
 88   delete dataCS[i];                            << 
 89   dataCS[i] = nullptr;                         << 
 90   delete formFactorData[i];                    << 
 91   formFactorData[i] = nullptr;                 << 
 92       }                                        << 
 93     }                                          << 
 94   }                                            << 
 95 }                                                  87 }
 96                                                    88 
 97 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98                                                    90 
 99 void G4LivermorePolarizedRayleighModel::Initia     91 void G4LivermorePolarizedRayleighModel::Initialise(const G4ParticleDefinition* particle,
100                                        const G     92                                        const G4DataVector& cuts)
101 {                                                  93 {
102   // Rayleigh process:                      Th <<  94 // Rayleigh process:                      The Quantum Theory of Radiation
103   //                                        W. <<  95 //                                        W. Heitler,       Oxford at the Clarendon Press, Oxford (1954)                                                 
104   // Scattering function:                   A  <<  96 // Scattering function:                   A simple model of photon transport
105   //                                        D. <<  97 //                                        D.E. Cullen,      Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510                                       
106   // Polarization of the outcoming photon:  Be <<  98 // Polarization of the outcoming photon:  Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter
107   //                                        X- <<  99 //                                        T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168                                        
108   //                                        T. << 100 
109   if (verboseLevel > 3)                           101   if (verboseLevel > 3)
110     G4cout << "Calling G4LivermorePolarizedRay    102     G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl;
111                                                   103 
112   if(IsMaster()) {                             << 104   if (crossSectionHandler)
113                                                << 105   {
114     // Initialise element selector             << 106     crossSectionHandler->Clear();
115     InitialiseElementSelectors(particle, cuts) << 107     delete crossSectionHandler;
116                                                << 
117     // Access to elements                      << 
118     const char* path = G4FindDataDir("G4LEDATA << 
119     auto elmTable = G4Element::GetElementTable << 
120     for (auto const & elm : *elmTable) {       << 
121       G4int Z = std::min(elm->GetZasInt(), max << 
122       if( nullptr == dataCS[Z] ) { ReadData(Z, << 
123     }                                          << 
124   }                                               108   }
125                                                   109   
126   if(isInitialised) { return; }                << 110   // Read data files for all materials
127   fParticleChange = GetParticleChangeForGamma( << 
128   isInitialised = true;                        << 
129 }                                              << 
130                                                   111 
                                                   >> 112   crossSectionHandler = new G4CrossSectionHandler;
                                                   >> 113   crossSectionHandler->Clear();
                                                   >> 114   G4String crossSectionFile = "rayl/re-cs-";
                                                   >> 115   crossSectionHandler->LoadData(crossSectionFile);
131                                                   116 
132 //....oooOO0OOooo........oooOO0OOooo........oo << 117   G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
                                                   >> 118   G4String formFactorFile = "rayl/re-ff-";
                                                   >> 119   formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
                                                   >> 120   formFactorData->LoadData(formFactorFile);
133                                                   121 
134 void G4LivermorePolarizedRayleighModel::Initia << 122   InitialiseElementSelectors(particle,cuts);
135                 const G4ParticleDefinition*, G << 
136 {                                              << 
137   SetElementSelectors(masterModel->GetElementS << 
138 }                                              << 
139                                                   123 
140 //....oooOO0OOooo........oooOO0OOooo........oo << 124   //
                                                   >> 125   if (verboseLevel > 2) 
                                                   >> 126     G4cout << "Loaded cross section files for Livermore Polarized Rayleigh model" << G4endl;
141                                                   127 
142 void G4LivermorePolarizedRayleighModel::ReadDa << 128   InitialiseElementSelectors(particle,cuts);
143 {                                              << 
144   if (verboseLevel > 1) {                      << 
145     G4cout << "Calling ReadData() of G4Livermo << 
146      << G4endl;                                << 
147   }                                            << 
148                                                << 
149   if(nullptr != dataCS[Z]) { return; }         << 
150                                                << 
151   const char* datadir = path;                  << 
152                                                << 
153   if(nullptr == datadir)                       << 
154     {                                          << 
155       datadir = G4FindDataDir("G4LEDATA");     << 
156       if(nullptr == datadir)                   << 
157   {                                            << 
158     G4Exception("G4LivermoreRayleighModelModel << 
159           FatalException,                      << 
160           "Environment variable G4LEDATA not d << 
161     return;                                    << 
162   }                                            << 
163     }                                          << 
164   dataCS[Z] = new G4PhysicsFreeVector();       << 
165   formFactorData[Z] = new G4PhysicsFreeVector( << 
166                                                << 
167   std::ostringstream ostCS;                    << 
168   ostCS << datadir << "/livermore/rayl/re-cs-" << 
169   std::ifstream finCS(ostCS.str().c_str());    << 
170                                                << 
171   if( !finCS .is_open() ) {                    << 
172     G4ExceptionDescription ed;                 << 
173     ed << "G4LivermorePolarizedRayleighModel d << 
174        << "> is not opened!" << G4endl;        << 
175     G4Exception("G4LivermorePolarizedRayleighM << 
176     FatalException,                            << 
177     ed,"G4LEDATA version should be G4EMLOW8.0  << 
178     return;                                    << 
179   } else {                                     << 
180     if(verboseLevel > 3) {                     << 
181       G4cout << "File " << ostCS.str()         << 
182        << " is opened by G4LivermoreRayleighMo << 
183     }                                          << 
184     dataCS[Z]->Retrieve(finCS, true);          << 
185   }                                            << 
186                                                   129 
187   std::ostringstream ostFF;                    << 130   if (verboseLevel > 0) { 
188   ostFF << datadir << "/livermore/rayl/re-ff-" << 131     G4cout << "Livermore Polarized Rayleigh model is initialized " << G4endl
189   std::ifstream finFF(ostFF.str().c_str());    << 132          << "Energy range: "
190                                                << 133          << LowEnergyLimit() / eV << " eV - "
191   if( !finFF.is_open() ) {                     << 134          << HighEnergyLimit() / GeV << " GeV"
192     G4ExceptionDescription ed;                 << 135          << G4endl;
193     ed << "G4LivermorePolarizedRayleighModel d << 136    }
194        << "> is not opened!" << G4endl;        << 137 
195     G4Exception("G4LivermorePolarizedRayleighM << 138   if(isInitialised) return;
196     FatalException,                            << 139   fParticleChange = GetParticleChangeForGamma();
197     ed,"G4LEDATA version should be G4EMLOW8.0  << 140   isInitialised = true;
198     return;                                    << 
199   } else {                                     << 
200     if(verboseLevel > 3) {                     << 
201       G4cout << "File " << ostFF.str()         << 
202                << " is opened by G4LivermoreRa << 
203     }                                          << 
204     formFactorData[Z]->Retrieve(finFF, true);  << 
205   }                                            << 
206 }                                                 141 }
207                                                << 142 
208 //....oooOO0OOooo........oooOO0OOooo........oo    143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
209                                                << 144 
210 G4double G4LivermorePolarizedRayleighModel::Co    145 G4double G4LivermorePolarizedRayleighModel::ComputeCrossSectionPerAtom(
211                                         const  << 146                                        const G4ParticleDefinition*,
212           G4double GammaEnergy,                << 147                                              G4double GammaEnergy,
213           G4double Z, G4double,                << 148                                              G4double Z, G4double,
214           G4double, G4double)                  << 149                                              G4double, G4double)
215 {                                                 150 {
216   if (verboseLevel > 1) {                      << 151   if (verboseLevel > 3)
217     G4cout << "G4LivermoreRayleighModel::Compu << 152     G4cout << "Calling CrossSectionPerAtom() of G4LivermorePolarizedRayleighModel" << G4endl;
218      << G4endl;                                << 153 
219   }                                            << 154   if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0;
220                                                << 155 
221   if(GammaEnergy < lowEnergyLimit) { return 0. << 156   G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
222                                                << 157   return cs;
223   G4double xs = 0.0;                           << 
224                                                << 
225   G4int intZ = G4lrint(Z);                     << 
226   if(intZ < 1 || intZ > maxZ) { return xs; }   << 
227                                                << 
228   G4PhysicsFreeVector* pv = dataCS[intZ];      << 
229                                                << 
230   // if element was not initialised            << 
231   // do initialisation safely for MT mode      << 
232   if(nullptr == pv) {                          << 
233     InitialiseForElement(0, intZ);             << 
234     pv = dataCS[intZ];                         << 
235     if(nullptr == pv) { return xs; }           << 
236   }                                            << 
237                                                << 
238   G4int n = G4int(pv->GetVectorLength() - 1);  << 
239   G4double e = GammaEnergy/MeV;                << 
240   if(e >= pv->Energy(n)) {                     << 
241     xs = (*pv)[n]/(e*e);                       << 
242   } else if(e >= pv->Energy(0)) {              << 
243     xs = pv->Value(e)/(e*e);                   << 
244   }                                            << 
245   return xs;                                   << 
246 }                                                 158 }
247                                                   159 
248 //....oooOO0OOooo........oooOO0OOooo........oo    160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249                                                   161 
250 void G4LivermorePolarizedRayleighModel::Sample << 162 void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
251                 std::vector<G4DynamicParticle* << 163                 const G4MaterialCutsCouple* couple,
252     const G4MaterialCutsCouple* couple,        << 164                 const G4DynamicParticle* aDynamicGamma,
253     const G4DynamicParticle* aDynamicGamma,    << 165                 G4double,
254     G4double, G4double)                        << 166                 G4double)
255 {                                                 167 {
256   if (verboseLevel > 3)                           168   if (verboseLevel > 3)
257     G4cout << "Calling SampleSecondaries() of     169     G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl;
258                                                   170 
259   G4double photonEnergy0 = aDynamicGamma->GetK    171   G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
260                                                   172   
261   if (photonEnergy0 <= lowEnergyLimit)            173   if (photonEnergy0 <= lowEnergyLimit)
262   {                                               174   {
263     fParticleChange->ProposeTrackStatus(fStopA << 175       fParticleChange->ProposeTrackStatus(fStopAndKill);
264     fParticleChange->SetProposedKineticEnergy( << 176       fParticleChange->SetProposedKineticEnergy(0.);
265     fParticleChange->ProposeLocalEnergyDeposit << 177       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
266     return;                                    << 178       return ;
267   }                                               179   }
268                                                   180 
269   G4ParticleMomentum photonDirection0 = aDynam    181   G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
270                                                   182 
271   // Select randomly one element in the curren    183   // Select randomly one element in the current material
                                                   >> 184   // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
272   const G4ParticleDefinition* particle =  aDyn    185   const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
273   const G4Element* elm = SelectRandomAtom(coup    186   const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
274   G4int Z = elm->GetZasInt();                  << 187   G4int Z = (G4int)elm->GetZ();
275                                                   188 
276   G4double outcomingPhotonCosTheta = GenerateC    189   G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z);
277   G4double outcomingPhotonPhi = GeneratePhi(ou    190   G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta);
278   G4double beta = GeneratePolarizationAngle(); << 191   G4double beta=GeneratePolarizationAngle();
279                                                   192  
280   // incomingPhoton reference frame:              193   // incomingPhoton reference frame:
281   // z = versor parallel to the incomingPhoton    194   // z = versor parallel to the incomingPhotonDirection
282   // x = versor parallel to the incomingPhoton    195   // x = versor parallel to the incomingPhotonPolarization
283   // y = defined as z^x                           196   // y = defined as z^x
284                                                   197  
285   // outgoingPhoton reference frame:              198   // outgoingPhoton reference frame:
286   // z' = versor parallel to the outgoingPhoto    199   // z' = versor parallel to the outgoingPhotonDirection
287   // x' = defined as x-x*z'z' normalized          200   // x' = defined as x-x*z'z' normalized
288   // y' = defined as z'^x'                     << 201   // y' = defined as z'^x'
                                                   >> 202  
289   G4ThreeVector z(aDynamicGamma->GetMomentumDi    203   G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit()); 
290   G4ThreeVector x(GetPhotonPolarization(*aDyna    204   G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma));
291   G4ThreeVector y(z.cross(x));                    205   G4ThreeVector y(z.cross(x));
292                                                   206  
293   // z' = std::cos(phi)*std::sin(theta)        << 207   // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z
294   // x + std::sin(phi)*std::sin(theta) y + std << 
295   G4double xDir;                                  208   G4double xDir;
296   G4double yDir;                                  209   G4double yDir;
297   G4double zDir;                                  210   G4double zDir;
298   zDir=outcomingPhotonCosTheta;                   211   zDir=outcomingPhotonCosTheta;
299   xDir=std::sqrt(1-outcomingPhotonCosTheta*out    212   xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta);
300   yDir=xDir;                                      213   yDir=xDir;
301   xDir*=std::cos(outcomingPhotonPhi);             214   xDir*=std::cos(outcomingPhotonPhi);
302   yDir*=std::sin(outcomingPhotonPhi);             215   yDir*=std::sin(outcomingPhotonPhi);
303                                                   216  
304   G4ThreeVector zPrime((xDir*x + yDir*y + zDir    217   G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit());
305   G4ThreeVector xPrime(x.perpPart(zPrime).unit    218   G4ThreeVector xPrime(x.perpPart(zPrime).unit());
306   G4ThreeVector yPrime(zPrime.cross(xPrime));     219   G4ThreeVector yPrime(zPrime.cross(xPrime));
307                                                   220  
308   // outgoingPhotonPolarization is directed as << 221   // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta)
309   // x' std::cos(beta) + y' std::sin(beta)     << 
310   G4ThreeVector outcomingPhotonPolarization(xP    222   G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta));
311                                                   223  
312   fParticleChange->ProposeMomentumDirection(zP    224   fParticleChange->ProposeMomentumDirection(zPrime);
313   fParticleChange->ProposePolarization(outcomi    225   fParticleChange->ProposePolarization(outcomingPhotonPolarization);
314   fParticleChange->SetProposedKineticEnergy(ph    226   fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
                                                   >> 227 
315 }                                                 228 }
316                                                   229 
317 //....oooOO0OOooo........oooOO0OOooo........oo    230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318                                                   231 
319 G4double G4LivermorePolarizedRayleighModel::Ge << 232 G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const
320 {                                                 233 {
321   //  d sigma                                     234   //  d sigma                                                                    k0
322   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2     235   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2)
323   //  d theta                                     236   //  d theta                                                                    hc
324                                                   237  
325   //  d sigma                                     238   //  d sigma                                             k0          1 - y
326   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 +    239   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta)
327   //    d y                                       240   //    d y                                               hc            2
328                                                   241 
329   //              Z                               242   //              Z
330   // F(x, Z) ~ --------                           243   // F(x, Z) ~ --------
331   //            a + bx                            244   //            a + bx
332   //                                              245   //
333   // The time to exit from the outer loop grow    246   // The time to exit from the outer loop grows as ~ k0
334   // On pcgeant2 the time is ~ 1 s for k0 ~ 1     247   // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV
335   // event will take ~ 10 hours.                  248   // event will take ~ 10 hours.
336   //                                              249   //
337   // On the avarage the inner loop does 1.5 it    250   // On the avarage the inner loop does 1.5 iterations before exiting
338   const G4double xxfact = CLHEP::cm/(CLHEP::h_ << 251  
339   const G4double xFactor = incomingPhotonEnerg << 252   const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light);
                                                   >> 253   //const G4VEMDataSet * formFactorData = GetScatterFunctionData();
340                                                   254 
341   G4double cosTheta;                              255   G4double cosTheta;
342   G4double fCosTheta;                             256   G4double fCosTheta;
343   G4double x;                                     257   G4double x;
344   G4double fValue;                                258   G4double fValue;
345                                                   259 
346   if (incomingPhotonEnergy > 5.*CLHEP::MeV)    << 260   if (incomingPhotonEnergy > 5.*MeV)
347   {                                               261   {
348     cosTheta = 1.;                                262     cosTheta = 1.;
349   }                                               263   }
350   else                                            264   else
351   {                                               265   {
352     do                                            266     do
353     {                                             267     {
354       do                                          268       do
355   {                                               269   {
356     cosTheta = 2.*G4UniformRand()-1.;             270     cosTheta = 2.*G4UniformRand()-1.;
357     fCosTheta = (1.+cosTheta*cosTheta)/2.;        271     fCosTheta = (1.+cosTheta*cosTheta)/2.;
358   }                                               272   }
359       while (fCosTheta < G4UniformRand());        273       while (fCosTheta < G4UniformRand());
360                                                   274   
361       x = xFactor*std::sqrt((1.-cosTheta)/2.);    275       x = xFactor*std::sqrt((1.-cosTheta)/2.);
362                                                   276   
363       if (x > 1.e+005)                            277       if (x > 1.e+005)
364   fValue = formFactorData[Z]->Value(x);        << 278   fValue = formFactorData->FindValue(x, zAtom-1);
365       else                                        279       else
366   fValue = formFactorData[Z]->Value(0.);       << 280   fValue = formFactorData->FindValue(0., zAtom-1);
367                                                   281    
368       fValue /= Z;                             << 282       fValue/=zAtom;
369       fValue *= fValue;                        << 283       fValue*=fValue;
370     }                                             284     }
371     while(fValue < G4UniformRand());              285     while(fValue < G4UniformRand());
372   }                                               286   }
373                                                   287 
374   return cosTheta;                                288   return cosTheta;
375 }                                                 289 }
376                                                   290 
377 //....oooOO0OOooo........oooOO0OOooo........oo    291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
378                                                   292 
379 G4double G4LivermorePolarizedRayleighModel::Ge    293 G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const
380 {                                                 294 {
381   //  d sigma                                     295   //  d sigma
382   // --------- = alpha * ( 1 - sin^2 (theta) *    296   // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) )
383   //   d phi                                      297   //   d phi
384                                                   298  
385   // On the average the loop takes no more tha    299   // On the average the loop takes no more than 2 iterations before exiting 
386                                                   300 
387   G4double phi;                                   301   G4double phi;
388   G4double cosPhi;                                302   G4double cosPhi;
389   G4double phiProbability;                        303   G4double phiProbability;
390   G4double sin2Theta;                             304   G4double sin2Theta;
391                                                   305  
392   sin2Theta=1.-cosTheta*cosTheta;                 306   sin2Theta=1.-cosTheta*cosTheta;
393                                                   307  
394   do                                              308   do
395     {                                             309     {
396       phi = CLHEP::twopi * G4UniformRand();    << 310       phi = twopi * G4UniformRand();
397       cosPhi = std::cos(phi);                     311       cosPhi = std::cos(phi);
398       phiProbability= 1. - sin2Theta*cosPhi*co    312       phiProbability= 1. - sin2Theta*cosPhi*cosPhi;
399     }                                             313     }
400   while (phiProbability < G4UniformRand());       314   while (phiProbability < G4UniformRand());
401                                                   315  
402   return phi;                                     316   return phi;
403 }                                                 317 }
404                                                   318 
405 //....oooOO0OOooo........oooOO0OOooo........oo    319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
406                                                   320 
407 G4double G4LivermorePolarizedRayleighModel::Ge    321 G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const
408 {                                                 322 {
409   // Rayleigh polarization is always on the x'    323   // Rayleigh polarization is always on the x' direction
                                                   >> 324 
410   return 0;                                       325   return 0;
411 }                                                 326 }
412                                                   327 
413 //....oooOO0OOooo........oooOO0OOooo........oo    328 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   329 
415 G4ThreeVector G4LivermorePolarizedRayleighMode    330 G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle&  photon)
416 {                                                 331 {
417   // From G4VLowEnergyDiscretePhotonProcess.cc << 332 
                                                   >> 333 // SI - From G4VLowEnergyDiscretePhotonProcess.cc
                                                   >> 334  
418   G4ThreeVector photonMomentumDirection;          335   G4ThreeVector photonMomentumDirection;
419   G4ThreeVector photonPolarization;               336   G4ThreeVector photonPolarization;
420                                                   337 
421   photonPolarization = photon.GetPolarization(    338   photonPolarization = photon.GetPolarization(); 
422   photonMomentumDirection = photon.GetMomentum    339   photonMomentumDirection = photon.GetMomentumDirection();
423                                                   340 
424   if ((!photonPolarization.isOrthogonal(photon    341   if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.)
425     {                                             342     {
426       // if |photonPolarization|==0. or |photo    343       // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0|
427       // then polarization is choosen randomly << 344       // then polarization is choosen randomly.
                                                   >> 345   
428       G4ThreeVector e1(photonMomentumDirection    346       G4ThreeVector e1(photonMomentumDirection.orthogonal().unit());
429       G4ThreeVector e2(photonMomentumDirection    347       G4ThreeVector e2(photonMomentumDirection.cross(e1).unit());
430                                                   348   
431       G4double angle(G4UniformRand() * CLHEP:: << 349       G4double angle(G4UniformRand() * twopi);
432                                                   350   
433       e1*=std::cos(angle);                        351       e1*=std::cos(angle);
434       e2*=std::sin(angle);                        352       e2*=std::sin(angle);
435                                                   353   
436       photonPolarization=e1+e2;                   354       photonPolarization=e1+e2;
437     }                                             355     }
438   else if (photonPolarization.howOrthogonal(ph    356   else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.)
439     {                                             357     {
440       // if |photonPolarization * photonDirect    358       // if |photonPolarization * photonDirection0| != 0.
441       // then polarization is made orthonormal << 359       // then polarization is made orthonormal;
                                                   >> 360   
442       photonPolarization=photonPolarization.pe    361       photonPolarization=photonPolarization.perpPart(photonMomentumDirection);
443     }                                             362     }
444                                                   363  
445   return photonPolarization.unit();               364   return photonPolarization.unit();
446 }                                                 365 }
447                                                   366 
448 //....oooOO0OOooo........oooOO0OOooo........oo << 
449                                                << 
450 void G4LivermorePolarizedRayleighModel::Initia << 
451                 const G4ParticleDefinition*, G << 
452 {                                              << 
453   G4AutoLock l(&LivermorePolarizedRayleighMode << 
454   if(nullptr == dataCS[Z]) { ReadData(Z); }    << 
455   l.unlock();                                  << 
456 }                                              << 
457                                                   367