Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4LivermorePolarizedRayleighModel.cc,v 1.5 2009-05-02 15:20:53 sincerti Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // Author: Sebastien Incerti 29 // Author: Sebastien Incerti 28 // 30 October 2008 30 // 30 October 2008 29 // on base of G4LowEnergyPolarizedRayl 31 // on base of G4LowEnergyPolarizedRayleigh developed by R. Capra 30 // 32 // 31 // History: 33 // History: 32 // -------- 34 // -------- 33 // 02 May 2009 S Incerti as V. Ivanchenko pr 35 // 02 May 2009 S Incerti as V. Ivanchenko proposed in G4LivermoreRayleighModel.cc 34 // 36 // 35 // Cleanup initialisation and generation of se 37 // Cleanup initialisation and generation of secondaries: 36 // - apply internal high-ener 38 // - apply internal high-energy limit only in constructor 37 // - do not apply low-energy 39 // - do not apply low-energy limit (default is 0) 38 // - remove GetMeanFreePath m 40 // - remove GetMeanFreePath method and table 39 // - remove initialisation of 41 // - remove initialisation of element selector 40 // - use G4ElementSelector 42 // - use G4ElementSelector 41 43 42 #include "G4LivermorePolarizedRayleighModel.hh 44 #include "G4LivermorePolarizedRayleighModel.hh" 43 #include "G4PhysicalConstants.hh" << 44 #include "G4SystemOfUnits.hh" << 45 #include "G4LogLogInterpolation.hh" << 46 #include "G4CompositeEMDataSet.hh" << 47 #include "G4AutoLock.hh" << 48 45 49 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 47 51 using namespace std; 48 using namespace std; 52 namespace { G4Mutex LivermorePolarizedRayleigh << 53 49 54 //....oooOO0OOooo........oooOO0OOooo........oo 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 51 56 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 57 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 58 << 59 G4LivermorePolarizedRayleighModel::G4Livermore 52 G4LivermorePolarizedRayleighModel::G4LivermorePolarizedRayleighModel(const G4ParticleDefinition*, 60 const G4String& nam) << 53 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),is << 54 :G4VEmModel(nam),fParticleChange(0),isInitialised(false), >> 55 crossSectionHandler(0),formFactorData(0) 62 { 56 { 63 lowEnergyLimit = 250 * CLHEP::eV; << 57 lowEnergyLimit = 250 * eV; >> 58 highEnergyLimit = 100 * GeV; >> 59 >> 60 //SetLowEnergyLimit(lowEnergyLimit); >> 61 SetHighEnergyLimit(highEnergyLimit); 64 // 62 // 65 verboseLevel= 0; 63 verboseLevel= 0; 66 // Verbosity scale: 64 // Verbosity scale: 67 // 0 = nothing 65 // 0 = nothing 68 // 1 = warning for energy non-conservation 66 // 1 = warning for energy non-conservation 69 // 2 = details of energy budget 67 // 2 = details of energy budget 70 // 3 = calculation of cross sections, file o 68 // 3 = calculation of cross sections, file openings, sampling of atoms 71 // 4 = entering in methods 69 // 4 = entering in methods 72 70 73 if(verboseLevel > 0) { 71 if(verboseLevel > 0) { 74 G4cout << "Livermore Polarized Rayleigh is 72 G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl 75 << "Energy range: " << LowEnergyLim << 73 << "Energy range: " 76 << HighEnergyLimit() / CLHEP::GeV << " Ge << 74 << lowEnergyLimit / eV << " eV - " 77 << G4endl; << 75 << highEnergyLimit / GeV << " GeV" >> 76 << G4endl; 78 } 77 } 79 } 78 } 80 79 81 //....oooOO0OOooo........oooOO0OOooo........oo 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 82 81 83 G4LivermorePolarizedRayleighModel::~G4Livermor 82 G4LivermorePolarizedRayleighModel::~G4LivermorePolarizedRayleighModel() 84 { 83 { 85 if(IsMaster()) { << 84 if (crossSectionHandler) delete crossSectionHandler; 86 for(G4int i=0; i<maxZ; ++i) { << 85 if (formFactorData) delete formFactorData; 87 if(dataCS[i]) { << 88 delete dataCS[i]; << 89 dataCS[i] = nullptr; << 90 delete formFactorData[i]; << 91 formFactorData[i] = nullptr; << 92 } << 93 } << 94 } << 95 } 86 } 96 87 97 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 98 89 99 void G4LivermorePolarizedRayleighModel::Initia 90 void G4LivermorePolarizedRayleighModel::Initialise(const G4ParticleDefinition* particle, 100 const G 91 const G4DataVector& cuts) 101 { 92 { 102 // Rayleigh process: Th << 93 // Rayleigh process: The Quantum Theory of Radiation 103 // W. << 94 // W. Heitler, Oxford at the Clarendon Press, Oxford (1954) 104 // Scattering function: A << 95 // Scattering function: A simple model of photon transport 105 // D. << 96 // D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510 106 // Polarization of the outcoming photon: Be << 97 // Polarization of the outcoming photon: Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter 107 // X- << 98 // T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168 108 // T. << 99 109 if (verboseLevel > 3) 100 if (verboseLevel > 3) 110 G4cout << "Calling G4LivermorePolarizedRay 101 G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl; 111 102 112 if(IsMaster()) { << 103 if (crossSectionHandler) 113 << 104 { 114 // Initialise element selector << 105 crossSectionHandler->Clear(); 115 InitialiseElementSelectors(particle, cuts) << 106 delete crossSectionHandler; 116 << 117 // Access to elements << 118 const char* path = G4FindDataDir("G4LEDATA << 119 auto elmTable = G4Element::GetElementTable << 120 for (auto const & elm : *elmTable) { << 121 G4int Z = std::min(elm->GetZasInt(), max << 122 if( nullptr == dataCS[Z] ) { ReadData(Z, << 123 } << 124 } 107 } 125 108 126 if(isInitialised) { return; } << 109 // Read data files for all materials 127 fParticleChange = GetParticleChangeForGamma( << 128 isInitialised = true; << 129 } << 130 110 >> 111 crossSectionHandler = new G4CrossSectionHandler; >> 112 crossSectionHandler->Clear(); >> 113 G4String crossSectionFile = "rayl/re-cs-"; >> 114 crossSectionHandler->LoadData(crossSectionFile); 131 115 132 //....oooOO0OOooo........oooOO0OOooo........oo << 116 G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation; >> 117 G4String formFactorFile = "rayl/re-ff-"; >> 118 formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.); >> 119 formFactorData->LoadData(formFactorFile); 133 120 134 void G4LivermorePolarizedRayleighModel::Initia << 121 InitialiseElementSelectors(particle,cuts); 135 const G4ParticleDefinition*, G << 136 { << 137 SetElementSelectors(masterModel->GetElementS << 138 } << 139 122 140 //....oooOO0OOooo........oooOO0OOooo........oo << 123 // >> 124 if (verboseLevel > 2) >> 125 G4cout << "Loaded cross section files for Livermore Polarized Rayleigh model" << G4endl; 141 126 142 void G4LivermorePolarizedRayleighModel::ReadDa << 127 InitialiseElementSelectors(particle,cuts); 143 { << 144 if (verboseLevel > 1) { << 145 G4cout << "Calling ReadData() of G4Livermo << 146 << G4endl; << 147 } << 148 << 149 if(nullptr != dataCS[Z]) { return; } << 150 << 151 const char* datadir = path; << 152 << 153 if(nullptr == datadir) << 154 { << 155 datadir = G4FindDataDir("G4LEDATA"); << 156 if(nullptr == datadir) << 157 { << 158 G4Exception("G4LivermoreRayleighModelModel << 159 FatalException, << 160 "Environment variable G4LEDATA not d << 161 return; << 162 } << 163 } << 164 dataCS[Z] = new G4PhysicsFreeVector(); << 165 formFactorData[Z] = new G4PhysicsFreeVector( << 166 << 167 std::ostringstream ostCS; << 168 ostCS << datadir << "/livermore/rayl/re-cs-" << 169 std::ifstream finCS(ostCS.str().c_str()); << 170 << 171 if( !finCS .is_open() ) { << 172 G4ExceptionDescription ed; << 173 ed << "G4LivermorePolarizedRayleighModel d << 174 << "> is not opened!" << G4endl; << 175 G4Exception("G4LivermorePolarizedRayleighM << 176 FatalException, << 177 ed,"G4LEDATA version should be G4EMLOW8.0 << 178 return; << 179 } else { << 180 if(verboseLevel > 3) { << 181 G4cout << "File " << ostCS.str() << 182 << " is opened by G4LivermoreRayleighMo << 183 } << 184 dataCS[Z]->Retrieve(finCS, true); << 185 } << 186 128 187 std::ostringstream ostFF; << 129 if (verboseLevel > 0) { 188 ostFF << datadir << "/livermore/rayl/re-ff-" << 130 G4cout << "Livermore Polarized Rayleigh model is initialized " << G4endl 189 std::ifstream finFF(ostFF.str().c_str()); << 131 << "Energy range: " 190 << 132 << LowEnergyLimit() / eV << " eV - " 191 if( !finFF.is_open() ) { << 133 << HighEnergyLimit() / GeV << " GeV" 192 G4ExceptionDescription ed; << 134 << G4endl; 193 ed << "G4LivermorePolarizedRayleighModel d << 135 } 194 << "> is not opened!" << G4endl; << 136 195 G4Exception("G4LivermorePolarizedRayleighM << 137 if(isInitialised) return; 196 FatalException, << 138 fParticleChange = GetParticleChangeForGamma(); 197 ed,"G4LEDATA version should be G4EMLOW8.0 << 139 isInitialised = true; 198 return; << 199 } else { << 200 if(verboseLevel > 3) { << 201 G4cout << "File " << ostFF.str() << 202 << " is opened by G4LivermoreRa << 203 } << 204 formFactorData[Z]->Retrieve(finFF, true); << 205 } << 206 } 140 } 207 << 141 208 //....oooOO0OOooo........oooOO0OOooo........oo 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 209 << 143 210 G4double G4LivermorePolarizedRayleighModel::Co 144 G4double G4LivermorePolarizedRayleighModel::ComputeCrossSectionPerAtom( 211 const << 145 const G4ParticleDefinition*, 212 G4double GammaEnergy, << 146 G4double GammaEnergy, 213 G4double Z, G4double, << 147 G4double Z, G4double, 214 G4double, G4double) << 148 G4double, G4double) 215 { 149 { 216 if (verboseLevel > 1) { << 150 if (verboseLevel > 3) 217 G4cout << "G4LivermoreRayleighModel::Compu << 151 G4cout << "Calling CrossSectionPerAtom() of G4LivermorePolarizedRayleighModel" << G4endl; 218 << G4endl; << 152 219 } << 153 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0; 220 << 154 221 if(GammaEnergy < lowEnergyLimit) { return 0. << 155 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 222 << 156 return cs; 223 G4double xs = 0.0; << 224 << 225 G4int intZ = G4lrint(Z); << 226 if(intZ < 1 || intZ > maxZ) { return xs; } << 227 << 228 G4PhysicsFreeVector* pv = dataCS[intZ]; << 229 << 230 // if element was not initialised << 231 // do initialisation safely for MT mode << 232 if(nullptr == pv) { << 233 InitialiseForElement(0, intZ); << 234 pv = dataCS[intZ]; << 235 if(nullptr == pv) { return xs; } << 236 } << 237 << 238 G4int n = G4int(pv->GetVectorLength() - 1); << 239 G4double e = GammaEnergy/MeV; << 240 if(e >= pv->Energy(n)) { << 241 xs = (*pv)[n]/(e*e); << 242 } else if(e >= pv->Energy(0)) { << 243 xs = pv->Value(e)/(e*e); << 244 } << 245 return xs; << 246 } 157 } 247 158 248 //....oooOO0OOooo........oooOO0OOooo........oo 159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 249 160 250 void G4LivermorePolarizedRayleighModel::Sample << 161 void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/, 251 std::vector<G4DynamicParticle* << 162 const G4MaterialCutsCouple* couple, 252 const G4MaterialCutsCouple* couple, << 163 const G4DynamicParticle* aDynamicGamma, 253 const G4DynamicParticle* aDynamicGamma, << 164 G4double, 254 G4double, G4double) << 165 G4double) 255 { 166 { 256 if (verboseLevel > 3) 167 if (verboseLevel > 3) 257 G4cout << "Calling SampleSecondaries() of 168 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl; 258 169 259 G4double photonEnergy0 = aDynamicGamma->GetK 170 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 260 171 261 if (photonEnergy0 <= lowEnergyLimit) 172 if (photonEnergy0 <= lowEnergyLimit) 262 { 173 { 263 fParticleChange->ProposeTrackStatus(fStopA << 174 fParticleChange->ProposeTrackStatus(fStopAndKill); 264 fParticleChange->SetProposedKineticEnergy( << 175 fParticleChange->SetProposedKineticEnergy(0.); 265 fParticleChange->ProposeLocalEnergyDeposit << 176 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 266 return; << 177 return ; 267 } 178 } 268 179 269 G4ParticleMomentum photonDirection0 = aDynam 180 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 270 181 271 // Select randomly one element in the curren 182 // Select randomly one element in the current material >> 183 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0); 272 const G4ParticleDefinition* particle = aDyn 184 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 273 const G4Element* elm = SelectRandomAtom(coup 185 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0); 274 G4int Z = elm->GetZasInt(); << 186 G4int Z = (G4int)elm->GetZ(); 275 187 276 G4double outcomingPhotonCosTheta = GenerateC 188 G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z); 277 G4double outcomingPhotonPhi = GeneratePhi(ou 189 G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta); 278 G4double beta = GeneratePolarizationAngle(); << 190 G4double beta=GeneratePolarizationAngle(); 279 191 280 // incomingPhoton reference frame: 192 // incomingPhoton reference frame: 281 // z = versor parallel to the incomingPhoton 193 // z = versor parallel to the incomingPhotonDirection 282 // x = versor parallel to the incomingPhoton 194 // x = versor parallel to the incomingPhotonPolarization 283 // y = defined as z^x 195 // y = defined as z^x 284 196 285 // outgoingPhoton reference frame: 197 // outgoingPhoton reference frame: 286 // z' = versor parallel to the outgoingPhoto 198 // z' = versor parallel to the outgoingPhotonDirection 287 // x' = defined as x-x*z'z' normalized 199 // x' = defined as x-x*z'z' normalized 288 // y' = defined as z'^x' << 200 // y' = defined as z'^x' >> 201 289 G4ThreeVector z(aDynamicGamma->GetMomentumDi 202 G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit()); 290 G4ThreeVector x(GetPhotonPolarization(*aDyna 203 G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma)); 291 G4ThreeVector y(z.cross(x)); 204 G4ThreeVector y(z.cross(x)); 292 205 293 // z' = std::cos(phi)*std::sin(theta) << 206 // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z 294 // x + std::sin(phi)*std::sin(theta) y + std << 295 G4double xDir; 207 G4double xDir; 296 G4double yDir; 208 G4double yDir; 297 G4double zDir; 209 G4double zDir; 298 zDir=outcomingPhotonCosTheta; 210 zDir=outcomingPhotonCosTheta; 299 xDir=std::sqrt(1-outcomingPhotonCosTheta*out 211 xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta); 300 yDir=xDir; 212 yDir=xDir; 301 xDir*=std::cos(outcomingPhotonPhi); 213 xDir*=std::cos(outcomingPhotonPhi); 302 yDir*=std::sin(outcomingPhotonPhi); 214 yDir*=std::sin(outcomingPhotonPhi); 303 215 304 G4ThreeVector zPrime((xDir*x + yDir*y + zDir 216 G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit()); 305 G4ThreeVector xPrime(x.perpPart(zPrime).unit 217 G4ThreeVector xPrime(x.perpPart(zPrime).unit()); 306 G4ThreeVector yPrime(zPrime.cross(xPrime)); 218 G4ThreeVector yPrime(zPrime.cross(xPrime)); 307 219 308 // outgoingPhotonPolarization is directed as << 220 // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta) 309 // x' std::cos(beta) + y' std::sin(beta) << 310 G4ThreeVector outcomingPhotonPolarization(xP 221 G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta)); 311 222 312 fParticleChange->ProposeMomentumDirection(zP 223 fParticleChange->ProposeMomentumDirection(zPrime); 313 fParticleChange->ProposePolarization(outcomi 224 fParticleChange->ProposePolarization(outcomingPhotonPolarization); 314 fParticleChange->SetProposedKineticEnergy(ph 225 fParticleChange->SetProposedKineticEnergy(photonEnergy0); >> 226 315 } 227 } 316 228 317 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 318 230 319 G4double G4LivermorePolarizedRayleighModel::Ge << 231 G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const 320 { 232 { 321 // d sigma 233 // d sigma k0 322 // --------- = r0^2 * pi * F^2(x, Z) * ( 2 234 // --------- = r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2) 323 // d theta 235 // d theta hc 324 236 325 // d sigma 237 // d sigma k0 1 - y 326 // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + 238 // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta) 327 // d y 239 // d y hc 2 328 240 329 // Z 241 // Z 330 // F(x, Z) ~ -------- 242 // F(x, Z) ~ -------- 331 // a + bx 243 // a + bx 332 // 244 // 333 // The time to exit from the outer loop grow 245 // The time to exit from the outer loop grows as ~ k0 334 // On pcgeant2 the time is ~ 1 s for k0 ~ 1 246 // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV 335 // event will take ~ 10 hours. 247 // event will take ~ 10 hours. 336 // 248 // 337 // On the avarage the inner loop does 1.5 it 249 // On the avarage the inner loop does 1.5 iterations before exiting 338 const G4double xxfact = CLHEP::cm/(CLHEP::h_ << 250 339 const G4double xFactor = incomingPhotonEnerg << 251 const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light); >> 252 //const G4VEMDataSet * formFactorData = GetScatterFunctionData(); 340 253 341 G4double cosTheta; 254 G4double cosTheta; 342 G4double fCosTheta; 255 G4double fCosTheta; 343 G4double x; 256 G4double x; 344 G4double fValue; 257 G4double fValue; 345 258 346 if (incomingPhotonEnergy > 5.*CLHEP::MeV) << 259 if (incomingPhotonEnergy > 5.*MeV) 347 { 260 { 348 cosTheta = 1.; 261 cosTheta = 1.; 349 } 262 } 350 else 263 else 351 { 264 { 352 do 265 do 353 { 266 { 354 do 267 do 355 { 268 { 356 cosTheta = 2.*G4UniformRand()-1.; 269 cosTheta = 2.*G4UniformRand()-1.; 357 fCosTheta = (1.+cosTheta*cosTheta)/2.; 270 fCosTheta = (1.+cosTheta*cosTheta)/2.; 358 } 271 } 359 while (fCosTheta < G4UniformRand()); 272 while (fCosTheta < G4UniformRand()); 360 273 361 x = xFactor*std::sqrt((1.-cosTheta)/2.); 274 x = xFactor*std::sqrt((1.-cosTheta)/2.); 362 275 363 if (x > 1.e+005) 276 if (x > 1.e+005) 364 fValue = formFactorData[Z]->Value(x); << 277 fValue = formFactorData->FindValue(x, zAtom-1); 365 else 278 else 366 fValue = formFactorData[Z]->Value(0.); << 279 fValue = formFactorData->FindValue(0., zAtom-1); 367 280 368 fValue /= Z; << 281 fValue/=zAtom; 369 fValue *= fValue; << 282 fValue*=fValue; 370 } 283 } 371 while(fValue < G4UniformRand()); 284 while(fValue < G4UniformRand()); 372 } 285 } 373 286 374 return cosTheta; 287 return cosTheta; 375 } 288 } 376 289 377 //....oooOO0OOooo........oooOO0OOooo........oo 290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 378 291 379 G4double G4LivermorePolarizedRayleighModel::Ge 292 G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const 380 { 293 { 381 // d sigma 294 // d sigma 382 // --------- = alpha * ( 1 - sin^2 (theta) * 295 // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) ) 383 // d phi 296 // d phi 384 297 385 // On the average the loop takes no more tha 298 // On the average the loop takes no more than 2 iterations before exiting 386 299 387 G4double phi; 300 G4double phi; 388 G4double cosPhi; 301 G4double cosPhi; 389 G4double phiProbability; 302 G4double phiProbability; 390 G4double sin2Theta; 303 G4double sin2Theta; 391 304 392 sin2Theta=1.-cosTheta*cosTheta; 305 sin2Theta=1.-cosTheta*cosTheta; 393 306 394 do 307 do 395 { 308 { 396 phi = CLHEP::twopi * G4UniformRand(); << 309 phi = twopi * G4UniformRand(); 397 cosPhi = std::cos(phi); 310 cosPhi = std::cos(phi); 398 phiProbability= 1. - sin2Theta*cosPhi*co 311 phiProbability= 1. - sin2Theta*cosPhi*cosPhi; 399 } 312 } 400 while (phiProbability < G4UniformRand()); 313 while (phiProbability < G4UniformRand()); 401 314 402 return phi; 315 return phi; 403 } 316 } 404 317 405 //....oooOO0OOooo........oooOO0OOooo........oo 318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 406 319 407 G4double G4LivermorePolarizedRayleighModel::Ge 320 G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const 408 { 321 { 409 // Rayleigh polarization is always on the x' 322 // Rayleigh polarization is always on the x' direction >> 323 410 return 0; 324 return 0; 411 } 325 } 412 326 413 //....oooOO0OOooo........oooOO0OOooo........oo 327 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 328 415 G4ThreeVector G4LivermorePolarizedRayleighMode 329 G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle& photon) 416 { 330 { 417 // From G4VLowEnergyDiscretePhotonProcess.cc << 331 >> 332 // SI - From G4VLowEnergyDiscretePhotonProcess.cc >> 333 418 G4ThreeVector photonMomentumDirection; 334 G4ThreeVector photonMomentumDirection; 419 G4ThreeVector photonPolarization; 335 G4ThreeVector photonPolarization; 420 336 421 photonPolarization = photon.GetPolarization( 337 photonPolarization = photon.GetPolarization(); 422 photonMomentumDirection = photon.GetMomentum 338 photonMomentumDirection = photon.GetMomentumDirection(); 423 339 424 if ((!photonPolarization.isOrthogonal(photon 340 if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.) 425 { 341 { 426 // if |photonPolarization|==0. or |photo 342 // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0| 427 // then polarization is choosen randomly << 343 // then polarization is choosen randomly. >> 344 428 G4ThreeVector e1(photonMomentumDirection 345 G4ThreeVector e1(photonMomentumDirection.orthogonal().unit()); 429 G4ThreeVector e2(photonMomentumDirection 346 G4ThreeVector e2(photonMomentumDirection.cross(e1).unit()); 430 347 431 G4double angle(G4UniformRand() * CLHEP:: << 348 G4double angle(G4UniformRand() * twopi); 432 349 433 e1*=std::cos(angle); 350 e1*=std::cos(angle); 434 e2*=std::sin(angle); 351 e2*=std::sin(angle); 435 352 436 photonPolarization=e1+e2; 353 photonPolarization=e1+e2; 437 } 354 } 438 else if (photonPolarization.howOrthogonal(ph 355 else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.) 439 { 356 { 440 // if |photonPolarization * photonDirect 357 // if |photonPolarization * photonDirection0| != 0. 441 // then polarization is made orthonormal << 358 // then polarization is made orthonormal; >> 359 442 photonPolarization=photonPolarization.pe 360 photonPolarization=photonPolarization.perpPart(photonMomentumDirection); 443 } 361 } 444 362 445 return photonPolarization.unit(); 363 return photonPolarization.unit(); 446 } 364 } 447 365 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 << 450 void G4LivermorePolarizedRayleighModel::Initia << 451 const G4ParticleDefinition*, G << 452 { << 453 G4AutoLock l(&LivermorePolarizedRayleighMode << 454 if(nullptr == dataCS[Z]) { ReadData(Z); } << 455 l.unlock(); << 456 } << 457 366