Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 9.4.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                             <<  26 // $Id: G4LivermorePolarizedRayleighModel.cc,v 1.5 2009-05-02 15:20:53 sincerti Exp $
 27 // Author: Sebastien Incerti                   <<  27 // GEANT4 tag $Name: not supported by cvs2svn $
 28 //         30 October 2008                     << 
 29 //         on base of G4LowEnergyPolarizedRayl << 
 30 //                                                 28 //
 31 // History:                                        29 // History:
 32 // --------                                        30 // --------
 33 // 02 May 2009   S Incerti as V. Ivanchenko pr     31 // 02 May 2009   S Incerti as V. Ivanchenko proposed in G4LivermoreRayleighModel.cc
 34 //                                                 32 //
 35 // Cleanup initialisation and generation of se     33 // Cleanup initialisation and generation of secondaries:
 36 //                  - apply internal high-ener     34 //                  - apply internal high-energy limit only in constructor 
 37 //                  - do not apply low-energy      35 //                  - do not apply low-energy limit (default is 0)
 38 //                  - remove GetMeanFreePath m     36 //                  - remove GetMeanFreePath method and table
 39 //                  - remove initialisation of     37 //                  - remove initialisation of element selector 
 40 //                  - use G4ElementSelector        38 //                  - use G4ElementSelector
 41                                                    39 
 42 #include "G4LivermorePolarizedRayleighModel.hh     40 #include "G4LivermorePolarizedRayleighModel.hh"
 43 #include "G4PhysicalConstants.hh"              << 
 44 #include "G4SystemOfUnits.hh"                  << 
 45 #include "G4LogLogInterpolation.hh"            << 
 46 #include "G4CompositeEMDataSet.hh"             << 
 47 #include "G4AutoLock.hh"                       << 
 48                                                    41 
 49 //....oooOO0OOooo........oooOO0OOooo........oo     42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50                                                    43 
 51 using namespace std;                               44 using namespace std;
 52 namespace { G4Mutex LivermorePolarizedRayleigh << 
 53                                                    45 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 55                                                    47 
 56 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 57 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 58                                                << 
 59 G4LivermorePolarizedRayleighModel::G4Livermore     48 G4LivermorePolarizedRayleighModel::G4LivermorePolarizedRayleighModel(const G4ParticleDefinition*,
 60                    const G4String& nam)        <<  49                                              const G4String& nam)
 61   :G4VEmModel(nam),fParticleChange(nullptr),is <<  50 :G4VEmModel(nam),isInitialised(false),crossSectionHandler(0),formFactorData(0)
 62 {                                                  51 {
 63   lowEnergyLimit = 250 * CLHEP::eV;            <<  52   lowEnergyLimit = 250 * eV; 
                                                   >>  53   highEnergyLimit = 100 * GeV;
                                                   >>  54   
                                                   >>  55   //SetLowEnergyLimit(lowEnergyLimit);
                                                   >>  56   SetHighEnergyLimit(highEnergyLimit);
 64   //                                               57   //
 65   verboseLevel= 0;                                 58   verboseLevel= 0;
 66   // Verbosity scale:                              59   // Verbosity scale:
 67   // 0 = nothing                                   60   // 0 = nothing 
 68   // 1 = warning for energy non-conservation       61   // 1 = warning for energy non-conservation 
 69   // 2 = details of energy budget                  62   // 2 = details of energy budget
 70   // 3 = calculation of cross sections, file o     63   // 3 = calculation of cross sections, file openings, sampling of atoms
 71   // 4 = entering in methods                       64   // 4 = entering in methods
 72                                                    65 
 73   if(verboseLevel > 0) {                           66   if(verboseLevel > 0) {
 74     G4cout << "Livermore Polarized Rayleigh is     67     G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl
 75            << "Energy range: " << LowEnergyLim <<  68          << "Energy range: "
 76      << HighEnergyLimit() / CLHEP::GeV << " Ge <<  69          << lowEnergyLimit / eV << " eV - "
 77            << G4endl;                          <<  70          << highEnergyLimit / GeV << " GeV"
                                                   >>  71          << G4endl;
 78   }                                                72   }
 79 }                                                  73 }
 80                                                    74 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 82                                                    76 
 83 G4LivermorePolarizedRayleighModel::~G4Livermor     77 G4LivermorePolarizedRayleighModel::~G4LivermorePolarizedRayleighModel()
 84 {                                                  78 {  
 85   if(IsMaster()) {                             <<  79   if (crossSectionHandler) delete crossSectionHandler;
 86     for(G4int i=0; i<maxZ; ++i) {              <<  80   if (formFactorData) delete formFactorData;
 87       if(dataCS[i]) {                          << 
 88   delete dataCS[i];                            << 
 89   dataCS[i] = nullptr;                         << 
 90   delete formFactorData[i];                    << 
 91   formFactorData[i] = nullptr;                 << 
 92       }                                        << 
 93     }                                          << 
 94   }                                            << 
 95 }                                                  81 }
 96                                                    82 
 97 //....oooOO0OOooo........oooOO0OOooo........oo     83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98                                                    84 
 99 void G4LivermorePolarizedRayleighModel::Initia     85 void G4LivermorePolarizedRayleighModel::Initialise(const G4ParticleDefinition* particle,
100                                        const G     86                                        const G4DataVector& cuts)
101 {                                                  87 {
102   // Rayleigh process:                      Th <<  88 // Rayleigh process:                      The Quantum Theory of Radiation
103   //                                        W. <<  89 //                                        W. Heitler,       Oxford at the Clarendon Press, Oxford (1954)                                                 
104   // Scattering function:                   A  <<  90 // Scattering function:                   A simple model of photon transport
105   //                                        D. <<  91 //                                        D.E. Cullen,      Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510                                       
106   // Polarization of the outcoming photon:  Be <<  92 // Polarization of the outcoming photon:  Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter
107   //                                        X- <<  93 //                                        T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168                                        
108   //                                        T. <<  94 
109   if (verboseLevel > 3)                            95   if (verboseLevel > 3)
110     G4cout << "Calling G4LivermorePolarizedRay     96     G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl;
111                                                    97 
112   if(IsMaster()) {                             <<  98   if (crossSectionHandler)
113                                                <<  99   {
114     // Initialise element selector             << 100     crossSectionHandler->Clear();
115     InitialiseElementSelectors(particle, cuts) << 101     delete crossSectionHandler;
116                                                << 
117     // Access to elements                      << 
118     const char* path = G4FindDataDir("G4LEDATA << 
119     auto elmTable = G4Element::GetElementTable << 
120     for (auto const & elm : *elmTable) {       << 
121       G4int Z = std::min(elm->GetZasInt(), max << 
122       if( nullptr == dataCS[Z] ) { ReadData(Z, << 
123     }                                          << 
124   }                                               102   }
125                                                   103   
126   if(isInitialised) { return; }                << 104   // Read data files for all materials
127   fParticleChange = GetParticleChangeForGamma( << 
128   isInitialised = true;                        << 
129 }                                              << 
130                                                   105 
                                                   >> 106   crossSectionHandler = new G4CrossSectionHandler;
                                                   >> 107   crossSectionHandler->Clear();
                                                   >> 108   G4String crossSectionFile = "rayl/re-cs-";
                                                   >> 109   crossSectionHandler->LoadData(crossSectionFile);
131                                                   110 
132 //....oooOO0OOooo........oooOO0OOooo........oo << 111   G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
                                                   >> 112   G4String formFactorFile = "rayl/re-ff-";
                                                   >> 113   formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
                                                   >> 114   formFactorData->LoadData(formFactorFile);
133                                                   115 
134 void G4LivermorePolarizedRayleighModel::Initia << 116   InitialiseElementSelectors(particle,cuts);
135                 const G4ParticleDefinition*, G << 
136 {                                              << 
137   SetElementSelectors(masterModel->GetElementS << 
138 }                                              << 
139                                                   117 
140 //....oooOO0OOooo........oooOO0OOooo........oo << 118   //
                                                   >> 119   if (verboseLevel > 2) 
                                                   >> 120     G4cout << "Loaded cross section files for Livermore Polarized Rayleigh model" << G4endl;
141                                                   121 
142 void G4LivermorePolarizedRayleighModel::ReadDa << 122   InitialiseElementSelectors(particle,cuts);
143 {                                              << 
144   if (verboseLevel > 1) {                      << 
145     G4cout << "Calling ReadData() of G4Livermo << 
146      << G4endl;                                << 
147   }                                            << 
148                                                << 
149   if(nullptr != dataCS[Z]) { return; }         << 
150                                                << 
151   const char* datadir = path;                  << 
152                                                << 
153   if(nullptr == datadir)                       << 
154     {                                          << 
155       datadir = G4FindDataDir("G4LEDATA");     << 
156       if(nullptr == datadir)                   << 
157   {                                            << 
158     G4Exception("G4LivermoreRayleighModelModel << 
159           FatalException,                      << 
160           "Environment variable G4LEDATA not d << 
161     return;                                    << 
162   }                                            << 
163     }                                          << 
164   dataCS[Z] = new G4PhysicsFreeVector();       << 
165   formFactorData[Z] = new G4PhysicsFreeVector( << 
166                                                << 
167   std::ostringstream ostCS;                    << 
168   ostCS << datadir << "/livermore/rayl/re-cs-" << 
169   std::ifstream finCS(ostCS.str().c_str());    << 
170                                                << 
171   if( !finCS .is_open() ) {                    << 
172     G4ExceptionDescription ed;                 << 
173     ed << "G4LivermorePolarizedRayleighModel d << 
174        << "> is not opened!" << G4endl;        << 
175     G4Exception("G4LivermorePolarizedRayleighM << 
176     FatalException,                            << 
177     ed,"G4LEDATA version should be G4EMLOW8.0  << 
178     return;                                    << 
179   } else {                                     << 
180     if(verboseLevel > 3) {                     << 
181       G4cout << "File " << ostCS.str()         << 
182        << " is opened by G4LivermoreRayleighMo << 
183     }                                          << 
184     dataCS[Z]->Retrieve(finCS, true);          << 
185   }                                            << 
186                                                   123 
187   std::ostringstream ostFF;                    << 124   if (verboseLevel > 0) { 
188   ostFF << datadir << "/livermore/rayl/re-ff-" << 125     G4cout << "Livermore Polarized Rayleigh model is initialized " << G4endl
189   std::ifstream finFF(ostFF.str().c_str());    << 126          << "Energy range: "
190                                                << 127          << LowEnergyLimit() / eV << " eV - "
191   if( !finFF.is_open() ) {                     << 128          << HighEnergyLimit() / GeV << " GeV"
192     G4ExceptionDescription ed;                 << 129          << G4endl;
193     ed << "G4LivermorePolarizedRayleighModel d << 130    }
194        << "> is not opened!" << G4endl;        << 131 
195     G4Exception("G4LivermorePolarizedRayleighM << 132   if(isInitialised) return;
196     FatalException,                            << 133   fParticleChange = GetParticleChangeForGamma();
197     ed,"G4LEDATA version should be G4EMLOW8.0  << 134   isInitialised = true;
198     return;                                    << 
199   } else {                                     << 
200     if(verboseLevel > 3) {                     << 
201       G4cout << "File " << ostFF.str()         << 
202                << " is opened by G4LivermoreRa << 
203     }                                          << 
204     formFactorData[Z]->Retrieve(finFF, true);  << 
205   }                                            << 
206 }                                                 135 }
207                                                << 136 
208 //....oooOO0OOooo........oooOO0OOooo........oo    137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
209                                                << 138 
210 G4double G4LivermorePolarizedRayleighModel::Co    139 G4double G4LivermorePolarizedRayleighModel::ComputeCrossSectionPerAtom(
211                                         const  << 140                                        const G4ParticleDefinition*,
212           G4double GammaEnergy,                << 141                                              G4double GammaEnergy,
213           G4double Z, G4double,                << 142                                              G4double Z, G4double,
214           G4double, G4double)                  << 143                                              G4double, G4double)
215 {                                                 144 {
216   if (verboseLevel > 1) {                      << 145   if (verboseLevel > 3)
217     G4cout << "G4LivermoreRayleighModel::Compu << 146     G4cout << "Calling CrossSectionPerAtom() of G4LivermorePolarizedRayleighModel" << G4endl;
218      << G4endl;                                << 147 
219   }                                            << 148   if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0;
220                                                << 149 
221   if(GammaEnergy < lowEnergyLimit) { return 0. << 150   G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
222                                                << 151   return cs;
223   G4double xs = 0.0;                           << 
224                                                << 
225   G4int intZ = G4lrint(Z);                     << 
226   if(intZ < 1 || intZ > maxZ) { return xs; }   << 
227                                                << 
228   G4PhysicsFreeVector* pv = dataCS[intZ];      << 
229                                                << 
230   // if element was not initialised            << 
231   // do initialisation safely for MT mode      << 
232   if(nullptr == pv) {                          << 
233     InitialiseForElement(0, intZ);             << 
234     pv = dataCS[intZ];                         << 
235     if(nullptr == pv) { return xs; }           << 
236   }                                            << 
237                                                << 
238   G4int n = G4int(pv->GetVectorLength() - 1);  << 
239   G4double e = GammaEnergy/MeV;                << 
240   if(e >= pv->Energy(n)) {                     << 
241     xs = (*pv)[n]/(e*e);                       << 
242   } else if(e >= pv->Energy(0)) {              << 
243     xs = pv->Value(e)/(e*e);                   << 
244   }                                            << 
245   return xs;                                   << 
246 }                                                 152 }
247                                                   153 
248 //....oooOO0OOooo........oooOO0OOooo........oo    154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249                                                   155 
250 void G4LivermorePolarizedRayleighModel::Sample << 156 void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
251                 std::vector<G4DynamicParticle* << 157                 const G4MaterialCutsCouple* couple,
252     const G4MaterialCutsCouple* couple,        << 158                 const G4DynamicParticle* aDynamicGamma,
253     const G4DynamicParticle* aDynamicGamma,    << 159                 G4double,
254     G4double, G4double)                        << 160                 G4double)
255 {                                                 161 {
256   if (verboseLevel > 3)                           162   if (verboseLevel > 3)
257     G4cout << "Calling SampleSecondaries() of     163     G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl;
258                                                   164 
259   G4double photonEnergy0 = aDynamicGamma->GetK    165   G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
260                                                   166   
261   if (photonEnergy0 <= lowEnergyLimit)            167   if (photonEnergy0 <= lowEnergyLimit)
262   {                                               168   {
263     fParticleChange->ProposeTrackStatus(fStopA << 169       fParticleChange->ProposeTrackStatus(fStopAndKill);
264     fParticleChange->SetProposedKineticEnergy( << 170       fParticleChange->SetProposedKineticEnergy(0.);
265     fParticleChange->ProposeLocalEnergyDeposit << 171       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
266     return;                                    << 172       return ;
267   }                                               173   }
268                                                   174 
269   G4ParticleMomentum photonDirection0 = aDynam    175   G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
270                                                   176 
271   // Select randomly one element in the curren    177   // Select randomly one element in the current material
                                                   >> 178   // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
272   const G4ParticleDefinition* particle =  aDyn    179   const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
273   const G4Element* elm = SelectRandomAtom(coup    180   const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
274   G4int Z = elm->GetZasInt();                  << 181   G4int Z = (G4int)elm->GetZ();
275                                                   182 
276   G4double outcomingPhotonCosTheta = GenerateC    183   G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z);
277   G4double outcomingPhotonPhi = GeneratePhi(ou    184   G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta);
278   G4double beta = GeneratePolarizationAngle(); << 185   G4double beta=GeneratePolarizationAngle();
279                                                   186  
280   // incomingPhoton reference frame:              187   // incomingPhoton reference frame:
281   // z = versor parallel to the incomingPhoton    188   // z = versor parallel to the incomingPhotonDirection
282   // x = versor parallel to the incomingPhoton    189   // x = versor parallel to the incomingPhotonPolarization
283   // y = defined as z^x                           190   // y = defined as z^x
284                                                   191  
285   // outgoingPhoton reference frame:              192   // outgoingPhoton reference frame:
286   // z' = versor parallel to the outgoingPhoto    193   // z' = versor parallel to the outgoingPhotonDirection
287   // x' = defined as x-x*z'z' normalized          194   // x' = defined as x-x*z'z' normalized
288   // y' = defined as z'^x'                     << 195   // y' = defined as z'^x'
                                                   >> 196  
289   G4ThreeVector z(aDynamicGamma->GetMomentumDi    197   G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit()); 
290   G4ThreeVector x(GetPhotonPolarization(*aDyna    198   G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma));
291   G4ThreeVector y(z.cross(x));                    199   G4ThreeVector y(z.cross(x));
292                                                   200  
293   // z' = std::cos(phi)*std::sin(theta)        << 201   // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z
294   // x + std::sin(phi)*std::sin(theta) y + std << 
295   G4double xDir;                                  202   G4double xDir;
296   G4double yDir;                                  203   G4double yDir;
297   G4double zDir;                                  204   G4double zDir;
298   zDir=outcomingPhotonCosTheta;                   205   zDir=outcomingPhotonCosTheta;
299   xDir=std::sqrt(1-outcomingPhotonCosTheta*out    206   xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta);
300   yDir=xDir;                                      207   yDir=xDir;
301   xDir*=std::cos(outcomingPhotonPhi);             208   xDir*=std::cos(outcomingPhotonPhi);
302   yDir*=std::sin(outcomingPhotonPhi);             209   yDir*=std::sin(outcomingPhotonPhi);
303                                                   210  
304   G4ThreeVector zPrime((xDir*x + yDir*y + zDir    211   G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit());
305   G4ThreeVector xPrime(x.perpPart(zPrime).unit    212   G4ThreeVector xPrime(x.perpPart(zPrime).unit());
306   G4ThreeVector yPrime(zPrime.cross(xPrime));     213   G4ThreeVector yPrime(zPrime.cross(xPrime));
307                                                   214  
308   // outgoingPhotonPolarization is directed as << 215   // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta)
309   // x' std::cos(beta) + y' std::sin(beta)     << 
310   G4ThreeVector outcomingPhotonPolarization(xP    216   G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta));
311                                                   217  
312   fParticleChange->ProposeMomentumDirection(zP    218   fParticleChange->ProposeMomentumDirection(zPrime);
313   fParticleChange->ProposePolarization(outcomi    219   fParticleChange->ProposePolarization(outcomingPhotonPolarization);
314   fParticleChange->SetProposedKineticEnergy(ph    220   fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
                                                   >> 221 
315 }                                                 222 }
316                                                   223 
317 //....oooOO0OOooo........oooOO0OOooo........oo    224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318                                                   225 
319 G4double G4LivermorePolarizedRayleighModel::Ge << 226 G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const
320 {                                                 227 {
321   //  d sigma                                     228   //  d sigma                                                                    k0
322   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2     229   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2)
323   //  d theta                                     230   //  d theta                                                                    hc
324                                                   231  
325   //  d sigma                                     232   //  d sigma                                             k0          1 - y
326   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 +    233   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta)
327   //    d y                                       234   //    d y                                               hc            2
328                                                   235 
329   //              Z                               236   //              Z
330   // F(x, Z) ~ --------                           237   // F(x, Z) ~ --------
331   //            a + bx                            238   //            a + bx
332   //                                              239   //
333   // The time to exit from the outer loop grow    240   // The time to exit from the outer loop grows as ~ k0
334   // On pcgeant2 the time is ~ 1 s for k0 ~ 1     241   // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV
335   // event will take ~ 10 hours.                  242   // event will take ~ 10 hours.
336   //                                              243   //
337   // On the avarage the inner loop does 1.5 it    244   // On the avarage the inner loop does 1.5 iterations before exiting
338   const G4double xxfact = CLHEP::cm/(CLHEP::h_ << 245  
339   const G4double xFactor = incomingPhotonEnerg << 246   const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light);
                                                   >> 247   //const G4VEMDataSet * formFactorData = GetScatterFunctionData();
340                                                   248 
341   G4double cosTheta;                              249   G4double cosTheta;
342   G4double fCosTheta;                             250   G4double fCosTheta;
343   G4double x;                                     251   G4double x;
344   G4double fValue;                                252   G4double fValue;
345                                                   253 
346   if (incomingPhotonEnergy > 5.*CLHEP::MeV)    << 254   do
347   {                                            << 
348     cosTheta = 1.;                             << 
349   }                                            << 
350   else                                         << 
351   {                                            << 
352     do                                         << 
353     {                                             255     {
354       do                                          256       do
355   {                                               257   {
356     cosTheta = 2.*G4UniformRand()-1.;             258     cosTheta = 2.*G4UniformRand()-1.;
357     fCosTheta = (1.+cosTheta*cosTheta)/2.;        259     fCosTheta = (1.+cosTheta*cosTheta)/2.;
358   }                                               260   }
359       while (fCosTheta < G4UniformRand());        261       while (fCosTheta < G4UniformRand());
360                                                   262   
361       x = xFactor*std::sqrt((1.-cosTheta)/2.);    263       x = xFactor*std::sqrt((1.-cosTheta)/2.);
362                                                   264   
363       if (x > 1.e+005)                            265       if (x > 1.e+005)
364   fValue = formFactorData[Z]->Value(x);        << 266   fValue = formFactorData->FindValue(x, zAtom-1);
365       else                                        267       else
366   fValue = formFactorData[Z]->Value(0.);       << 268   fValue = formFactorData->FindValue(0., zAtom-1);
367                                                   269    
368       fValue /= Z;                             << 270       fValue/=zAtom;
369       fValue *= fValue;                        << 271       fValue*=fValue;
370     }                                             272     }
371     while(fValue < G4UniformRand());           << 273   while(fValue < G4UniformRand());
372   }                                            << 
373                                                   274 
374   return cosTheta;                                275   return cosTheta;
375 }                                                 276 }
376                                                   277 
377 //....oooOO0OOooo........oooOO0OOooo........oo    278 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
378                                                   279 
379 G4double G4LivermorePolarizedRayleighModel::Ge    280 G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const
380 {                                                 281 {
381   //  d sigma                                     282   //  d sigma
382   // --------- = alpha * ( 1 - sin^2 (theta) *    283   // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) )
383   //   d phi                                      284   //   d phi
384                                                   285  
385   // On the average the loop takes no more tha    286   // On the average the loop takes no more than 2 iterations before exiting 
386                                                   287 
387   G4double phi;                                   288   G4double phi;
388   G4double cosPhi;                                289   G4double cosPhi;
389   G4double phiProbability;                        290   G4double phiProbability;
390   G4double sin2Theta;                             291   G4double sin2Theta;
391                                                   292  
392   sin2Theta=1.-cosTheta*cosTheta;                 293   sin2Theta=1.-cosTheta*cosTheta;
393                                                   294  
394   do                                              295   do
395     {                                             296     {
396       phi = CLHEP::twopi * G4UniformRand();    << 297       phi = twopi * G4UniformRand();
397       cosPhi = std::cos(phi);                     298       cosPhi = std::cos(phi);
398       phiProbability= 1. - sin2Theta*cosPhi*co    299       phiProbability= 1. - sin2Theta*cosPhi*cosPhi;
399     }                                             300     }
400   while (phiProbability < G4UniformRand());       301   while (phiProbability < G4UniformRand());
401                                                   302  
402   return phi;                                     303   return phi;
403 }                                                 304 }
404                                                   305 
405 //....oooOO0OOooo........oooOO0OOooo........oo    306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
406                                                   307 
407 G4double G4LivermorePolarizedRayleighModel::Ge    308 G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const
408 {                                                 309 {
409   // Rayleigh polarization is always on the x'    310   // Rayleigh polarization is always on the x' direction
                                                   >> 311 
410   return 0;                                       312   return 0;
411 }                                                 313 }
412                                                   314 
413 //....oooOO0OOooo........oooOO0OOooo........oo    315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   316 
415 G4ThreeVector G4LivermorePolarizedRayleighMode    317 G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle&  photon)
416 {                                                 318 {
417   // From G4VLowEnergyDiscretePhotonProcess.cc << 319 
                                                   >> 320 // SI - From G4VLowEnergyDiscretePhotonProcess.cc
                                                   >> 321  
418   G4ThreeVector photonMomentumDirection;          322   G4ThreeVector photonMomentumDirection;
419   G4ThreeVector photonPolarization;               323   G4ThreeVector photonPolarization;
420                                                   324 
421   photonPolarization = photon.GetPolarization(    325   photonPolarization = photon.GetPolarization(); 
422   photonMomentumDirection = photon.GetMomentum    326   photonMomentumDirection = photon.GetMomentumDirection();
423                                                   327 
424   if ((!photonPolarization.isOrthogonal(photon    328   if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.)
425     {                                             329     {
426       // if |photonPolarization|==0. or |photo    330       // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0|
427       // then polarization is choosen randomly << 331       // then polarization is choosen randomly.
                                                   >> 332   
428       G4ThreeVector e1(photonMomentumDirection    333       G4ThreeVector e1(photonMomentumDirection.orthogonal().unit());
429       G4ThreeVector e2(photonMomentumDirection    334       G4ThreeVector e2(photonMomentumDirection.cross(e1).unit());
430                                                   335   
431       G4double angle(G4UniformRand() * CLHEP:: << 336       G4double angle(G4UniformRand() * twopi);
432                                                   337   
433       e1*=std::cos(angle);                        338       e1*=std::cos(angle);
434       e2*=std::sin(angle);                        339       e2*=std::sin(angle);
435                                                   340   
436       photonPolarization=e1+e2;                   341       photonPolarization=e1+e2;
437     }                                             342     }
438   else if (photonPolarization.howOrthogonal(ph    343   else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.)
439     {                                             344     {
440       // if |photonPolarization * photonDirect    345       // if |photonPolarization * photonDirection0| != 0.
441       // then polarization is made orthonormal << 346       // then polarization is made orthonormal;
                                                   >> 347   
442       photonPolarization=photonPolarization.pe    348       photonPolarization=photonPolarization.perpPart(photonMomentumDirection);
443     }                                             349     }
444                                                   350  
445   return photonPolarization.unit();               351   return photonPolarization.unit();
446 }                                                 352 }
447                                                   353 
448 //....oooOO0OOooo........oooOO0OOooo........oo << 
449                                                << 
450 void G4LivermorePolarizedRayleighModel::Initia << 
451                 const G4ParticleDefinition*, G << 
452 {                                              << 
453   G4AutoLock l(&LivermorePolarizedRayleighMode << 
454   if(nullptr == dataCS[Z]) { ReadData(Z); }    << 
455   l.unlock();                                  << 
456 }                                              << 
457                                                   354