Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermorePolarizedRayleighModel.cc (Version 9.2.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4LivermorePolarizedRayleighModel.cc,v 1.1 2008/10/30 14:16:35 sincerti Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-02-patch-03 $
 26 //                                                 28 //
 27 // Author: Sebastien Incerti                   << 
 28 //         30 October 2008                     << 
 29 //         on base of G4LowEnergyPolarizedRayl << 
 30 //                                             << 
 31 // History:                                    << 
 32 // --------                                    << 
 33 // 02 May 2009   S Incerti as V. Ivanchenko pr << 
 34 //                                             << 
 35 // Cleanup initialisation and generation of se << 
 36 //                  - apply internal high-ener << 
 37 //                  - do not apply low-energy  << 
 38 //                  - remove GetMeanFreePath m << 
 39 //                  - remove initialisation of << 
 40 //                  - use G4ElementSelector    << 
 41                                                    29 
 42 #include "G4LivermorePolarizedRayleighModel.hh     30 #include "G4LivermorePolarizedRayleighModel.hh"
 43 #include "G4PhysicalConstants.hh"              << 
 44 #include "G4SystemOfUnits.hh"                  << 
 45 #include "G4LogLogInterpolation.hh"            << 
 46 #include "G4CompositeEMDataSet.hh"             << 
 47 #include "G4AutoLock.hh"                       << 
 48                                                    31 
 49 //....oooOO0OOooo........oooOO0OOooo........oo     32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50                                                    33 
 51 using namespace std;                               34 using namespace std;
 52 namespace { G4Mutex LivermorePolarizedRayleigh << 
 53                                                    35 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     36 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 55                                                    37 
 56 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 57 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 
 58                                                << 
 59 G4LivermorePolarizedRayleighModel::G4Livermore     38 G4LivermorePolarizedRayleighModel::G4LivermorePolarizedRayleighModel(const G4ParticleDefinition*,
 60                    const G4String& nam)        <<  39                                              const G4String& nam)
 61   :G4VEmModel(nam),fParticleChange(nullptr),is <<  40 :G4VEmModel(nam),isInitialised(false)
 62 {                                                  41 {
 63   lowEnergyLimit = 250 * CLHEP::eV;            <<  42   lowEnergyLimit = 250 * eV; // SI - Could be 10 eV ?
                                                   >>  43   highEnergyLimit = 100 * GeV;
                                                   >>  44   
                                                   >>  45   SetLowEnergyLimit(lowEnergyLimit);
                                                   >>  46   SetHighEnergyLimit(highEnergyLimit);
 64   //                                               47   //
 65   verboseLevel= 0;                                 48   verboseLevel= 0;
 66   // Verbosity scale:                              49   // Verbosity scale:
 67   // 0 = nothing                                   50   // 0 = nothing 
 68   // 1 = warning for energy non-conservation       51   // 1 = warning for energy non-conservation 
 69   // 2 = details of energy budget                  52   // 2 = details of energy budget
 70   // 3 = calculation of cross sections, file o     53   // 3 = calculation of cross sections, file openings, sampling of atoms
 71   // 4 = entering in methods                       54   // 4 = entering in methods
 72                                                    55 
 73   if(verboseLevel > 0) {                       <<  56   G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl
 74     G4cout << "Livermore Polarized Rayleigh is <<  57          << "Energy range: "
 75            << "Energy range: " << LowEnergyLim <<  58          << lowEnergyLimit / keV << " keV - "
 76      << HighEnergyLimit() / CLHEP::GeV << " Ge <<  59          << highEnergyLimit / GeV << " GeV"
 77            << G4endl;                          <<  60          << G4endl;
 78   }                                            << 
 79 }                                                  61 }
 80                                                    62 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 82                                                    64 
 83 G4LivermorePolarizedRayleighModel::~G4Livermor     65 G4LivermorePolarizedRayleighModel::~G4LivermorePolarizedRayleighModel()
 84 {                                                  66 {  
 85   if(IsMaster()) {                             <<  67   delete crossSectionHandler;
 86     for(G4int i=0; i<maxZ; ++i) {              <<  68   delete formFactorData;
 87       if(dataCS[i]) {                          << 
 88   delete dataCS[i];                            << 
 89   dataCS[i] = nullptr;                         << 
 90   delete formFactorData[i];                    << 
 91   formFactorData[i] = nullptr;                 << 
 92       }                                        << 
 93     }                                          << 
 94   }                                            << 
 95 }                                                  69 }
 96                                                    70 
 97 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98                                                    72 
 99 void G4LivermorePolarizedRayleighModel::Initia     73 void G4LivermorePolarizedRayleighModel::Initialise(const G4ParticleDefinition* particle,
100                                        const G     74                                        const G4DataVector& cuts)
101 {                                                  75 {
102   // Rayleigh process:                      Th <<  76 // Rayleigh process:                      The Quantum Theory of Radiation
103   //                                        W. <<  77 //                                        W. Heitler,       Oxford at the Clarendon Press, Oxford (1954)                                                 
104   // Scattering function:                   A  <<  78 // Scattering function:                   A simple model of photon transport
105   //                                        D. <<  79 //                                        D.E. Cullen,      Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510                                       
106   // Polarization of the outcoming photon:  Be <<  80 // Polarization of the outcoming photon:  Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter
107   //                                        X- <<  81 //                                        T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168                                        
108   //                                        T. <<  82 
109   if (verboseLevel > 3)                            83   if (verboseLevel > 3)
110     G4cout << "Calling G4LivermorePolarizedRay     84     G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl;
111                                                    85 
112   if(IsMaster()) {                             <<  86   InitialiseElementSelectors(particle,cuts);
113                                                << 
114     // Initialise element selector             << 
115     InitialiseElementSelectors(particle, cuts) << 
116                                                << 
117     // Access to elements                      << 
118     const char* path = G4FindDataDir("G4LEDATA << 
119     auto elmTable = G4Element::GetElementTable << 
120     for (auto const & elm : *elmTable) {       << 
121       G4int Z = std::min(elm->GetZasInt(), max << 
122       if( nullptr == dataCS[Z] ) { ReadData(Z, << 
123     }                                          << 
124   }                                            << 
125                                                << 
126   if(isInitialised) { return; }                << 
127   fParticleChange = GetParticleChangeForGamma( << 
128   isInitialised = true;                        << 
129 }                                              << 
130                                                << 
131                                                << 
132 //....oooOO0OOooo........oooOO0OOooo........oo << 
133                                                << 
134 void G4LivermorePolarizedRayleighModel::Initia << 
135                 const G4ParticleDefinition*, G << 
136 {                                              << 
137   SetElementSelectors(masterModel->GetElementS << 
138 }                                              << 
139                                                    87 
140 //....oooOO0OOooo........oooOO0OOooo........oo <<  88   // Energy limits
141                                                << 
142 void G4LivermorePolarizedRayleighModel::ReadDa << 
143 {                                              << 
144   if (verboseLevel > 1) {                      << 
145     G4cout << "Calling ReadData() of G4Livermo << 
146      << G4endl;                                << 
147   }                                            << 
148                                                << 
149   if(nullptr != dataCS[Z]) { return; }         << 
150                                                << 
151   const char* datadir = path;                  << 
152                                                    89   
153   if(nullptr == datadir)                       <<  90   if (LowEnergyLimit() < lowEnergyLimit)
154     {                                              91     {
155       datadir = G4FindDataDir("G4LEDATA");     <<  92       G4cout << "G4LivermorePolarizedRayleighModel: low energy limit increased from " << 
156       if(nullptr == datadir)                   <<  93   LowEnergyLimit()/eV << " eV to " << lowEnergyLimit << " eV" << G4endl;
157   {                                            <<  94       SetLowEnergyLimit(lowEnergyLimit);
158     G4Exception("G4LivermoreRayleighModelModel << 
159           FatalException,                      << 
160           "Environment variable G4LEDATA not d << 
161     return;                                    << 
162   }                                            << 
163     }                                              95     }
164   dataCS[Z] = new G4PhysicsFreeVector();       <<  96   if (HighEnergyLimit() > highEnergyLimit)
165   formFactorData[Z] = new G4PhysicsFreeVector( <<  97     {
166                                                <<  98       G4cout << "G4LivermorePolarizedRayleighModel: high energy limit decreased from " << 
167   std::ostringstream ostCS;                    <<  99   HighEnergyLimit()/GeV << " GeV to " << highEnergyLimit << " GeV" << G4endl;
168   ostCS << datadir << "/livermore/rayl/re-cs-" << 100       SetHighEnergyLimit(highEnergyLimit);
169   std::ifstream finCS(ostCS.str().c_str());    << 
170                                                << 
171   if( !finCS .is_open() ) {                    << 
172     G4ExceptionDescription ed;                 << 
173     ed << "G4LivermorePolarizedRayleighModel d << 
174        << "> is not opened!" << G4endl;        << 
175     G4Exception("G4LivermorePolarizedRayleighM << 
176     FatalException,                            << 
177     ed,"G4LEDATA version should be G4EMLOW8.0  << 
178     return;                                    << 
179   } else {                                     << 
180     if(verboseLevel > 3) {                     << 
181       G4cout << "File " << ostCS.str()         << 
182        << " is opened by G4LivermoreRayleighMo << 
183     }                                             101     }
184     dataCS[Z]->Retrieve(finCS, true);          << 102     
185   }                                            << 103   // Read data files for all materials
186                                                   104 
187   std::ostringstream ostFF;                    << 105   crossSectionHandler = new G4CrossSectionHandler;
188   ostFF << datadir << "/livermore/rayl/re-ff-" << 106   crossSectionHandler->Clear();
189   std::ifstream finFF(ostFF.str().c_str());    << 107   G4String crossSectionFile = "rayl/re-cs-";
190                                                << 108   crossSectionHandler->LoadData(crossSectionFile);
191   if( !finFF.is_open() ) {                     << 109 
192     G4ExceptionDescription ed;                 << 110   G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
193     ed << "G4LivermorePolarizedRayleighModel d << 111   G4String formFactorFile = "rayl/re-ff-";
194        << "> is not opened!" << G4endl;        << 112   formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
195     G4Exception("G4LivermorePolarizedRayleighM << 113   formFactorData->LoadData(formFactorFile);
196     FatalException,                            << 114 
197     ed,"G4LEDATA version should be G4EMLOW8.0  << 115   //
198     return;                                    << 116   if (verboseLevel > 2) 
199   } else {                                     << 117     G4cout << "Loaded cross section files for Livermore Polarized Rayleigh model" << G4endl;
200     if(verboseLevel > 3) {                     << 118 
201       G4cout << "File " << ostFF.str()         << 119   G4cout << "Livermore Polarized Rayleigh model is initialized " << G4endl
202                << " is opened by G4LivermoreRa << 120          << "Energy range: "
203     }                                          << 121          << LowEnergyLimit() / keV << " keV - "
204     formFactorData[Z]->Retrieve(finFF, true);  << 122          << HighEnergyLimit() / GeV << " GeV"
205   }                                            << 123          << G4endl;
                                                   >> 124 
                                                   >> 125   if(isInitialised) return;
                                                   >> 126 
                                                   >> 127   if(pParticleChange)
                                                   >> 128     fParticleChange = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
                                                   >> 129   else
                                                   >> 130     fParticleChange = new G4ParticleChangeForGamma();
                                                   >> 131     
                                                   >> 132   isInitialised = true;
206 }                                                 133 }
207                                                << 134 
208 //....oooOO0OOooo........oooOO0OOooo........oo    135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
209                                                << 136 
210 G4double G4LivermorePolarizedRayleighModel::Co    137 G4double G4LivermorePolarizedRayleighModel::ComputeCrossSectionPerAtom(
211                                         const  << 138                                        const G4ParticleDefinition*,
212           G4double GammaEnergy,                << 139                                              G4double GammaEnergy,
213           G4double Z, G4double,                << 140                                              G4double Z, G4double,
214           G4double, G4double)                  << 141                                              G4double, G4double)
215 {                                                 142 {
216   if (verboseLevel > 1) {                      << 143   if (verboseLevel > 3)
217     G4cout << "G4LivermoreRayleighModel::Compu << 144     G4cout << "Calling CrossSectionPerAtom() of G4LivermorePolarizedRayleighModel" << G4endl;
218      << G4endl;                                << 145 
219   }                                            << 146   G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
220                                                << 147   return cs;
221   if(GammaEnergy < lowEnergyLimit) { return 0. << 
222                                                << 
223   G4double xs = 0.0;                           << 
224                                                << 
225   G4int intZ = G4lrint(Z);                     << 
226   if(intZ < 1 || intZ > maxZ) { return xs; }   << 
227                                                << 
228   G4PhysicsFreeVector* pv = dataCS[intZ];      << 
229                                                << 
230   // if element was not initialised            << 
231   // do initialisation safely for MT mode      << 
232   if(nullptr == pv) {                          << 
233     InitialiseForElement(0, intZ);             << 
234     pv = dataCS[intZ];                         << 
235     if(nullptr == pv) { return xs; }           << 
236   }                                            << 
237                                                << 
238   G4int n = G4int(pv->GetVectorLength() - 1);  << 
239   G4double e = GammaEnergy/MeV;                << 
240   if(e >= pv->Energy(n)) {                     << 
241     xs = (*pv)[n]/(e*e);                       << 
242   } else if(e >= pv->Energy(0)) {              << 
243     xs = pv->Value(e)/(e*e);                   << 
244   }                                            << 
245   return xs;                                   << 
246 }                                                 148 }
247                                                   149 
248 //....oooOO0OOooo........oooOO0OOooo........oo    150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249                                                   151 
250 void G4LivermorePolarizedRayleighModel::Sample << 152 void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
251                 std::vector<G4DynamicParticle* << 153                 const G4MaterialCutsCouple* couple,
252     const G4MaterialCutsCouple* couple,        << 154                 const G4DynamicParticle* aDynamicGamma,
253     const G4DynamicParticle* aDynamicGamma,    << 155                 G4double,
254     G4double, G4double)                        << 156                 G4double)
255 {                                                 157 {
256   if (verboseLevel > 3)                           158   if (verboseLevel > 3)
257     G4cout << "Calling SampleSecondaries() of     159     G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl;
258                                                   160 
259   G4double photonEnergy0 = aDynamicGamma->GetK    161   G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
260                                                   162   
261   if (photonEnergy0 <= lowEnergyLimit)            163   if (photonEnergy0 <= lowEnergyLimit)
262   {                                               164   {
263     fParticleChange->ProposeTrackStatus(fStopA << 165       fParticleChange->ProposeTrackStatus(fStopAndKill);
264     fParticleChange->SetProposedKineticEnergy( << 166       fParticleChange->SetProposedKineticEnergy(0.);
265     fParticleChange->ProposeLocalEnergyDeposit << 167       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
266     return;                                    << 168       // SI - IS THE FOLLOWING RETURN NECESSARY ?
                                                   >> 169       return ;
267   }                                               170   }
268                                                   171 
269   G4ParticleMomentum photonDirection0 = aDynam    172   G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
270                                                   173 
271   // Select randomly one element in the curren    174   // Select randomly one element in the current material
272   const G4ParticleDefinition* particle =  aDyn << 175   G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
273   const G4Element* elm = SelectRandomAtom(coup << 
274   G4int Z = elm->GetZasInt();                  << 
275                                                   176 
276   G4double outcomingPhotonCosTheta = GenerateC    177   G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z);
277   G4double outcomingPhotonPhi = GeneratePhi(ou    178   G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta);
278   G4double beta = GeneratePolarizationAngle(); << 179   G4double beta=GeneratePolarizationAngle();
279                                                   180  
280   // incomingPhoton reference frame:              181   // incomingPhoton reference frame:
281   // z = versor parallel to the incomingPhoton    182   // z = versor parallel to the incomingPhotonDirection
282   // x = versor parallel to the incomingPhoton    183   // x = versor parallel to the incomingPhotonPolarization
283   // y = defined as z^x                           184   // y = defined as z^x
284                                                   185  
285   // outgoingPhoton reference frame:              186   // outgoingPhoton reference frame:
286   // z' = versor parallel to the outgoingPhoto    187   // z' = versor parallel to the outgoingPhotonDirection
287   // x' = defined as x-x*z'z' normalized          188   // x' = defined as x-x*z'z' normalized
288   // y' = defined as z'^x'                     << 189   // y' = defined as z'^x'
                                                   >> 190  
289   G4ThreeVector z(aDynamicGamma->GetMomentumDi    191   G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit()); 
290   G4ThreeVector x(GetPhotonPolarization(*aDyna    192   G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma));
291   G4ThreeVector y(z.cross(x));                    193   G4ThreeVector y(z.cross(x));
292                                                   194  
293   // z' = std::cos(phi)*std::sin(theta)        << 195   // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z
294   // x + std::sin(phi)*std::sin(theta) y + std << 
295   G4double xDir;                                  196   G4double xDir;
296   G4double yDir;                                  197   G4double yDir;
297   G4double zDir;                                  198   G4double zDir;
298   zDir=outcomingPhotonCosTheta;                   199   zDir=outcomingPhotonCosTheta;
299   xDir=std::sqrt(1-outcomingPhotonCosTheta*out    200   xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta);
300   yDir=xDir;                                      201   yDir=xDir;
301   xDir*=std::cos(outcomingPhotonPhi);             202   xDir*=std::cos(outcomingPhotonPhi);
302   yDir*=std::sin(outcomingPhotonPhi);             203   yDir*=std::sin(outcomingPhotonPhi);
303                                                   204  
304   G4ThreeVector zPrime((xDir*x + yDir*y + zDir    205   G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit());
305   G4ThreeVector xPrime(x.perpPart(zPrime).unit    206   G4ThreeVector xPrime(x.perpPart(zPrime).unit());
306   G4ThreeVector yPrime(zPrime.cross(xPrime));     207   G4ThreeVector yPrime(zPrime.cross(xPrime));
307                                                   208  
308   // outgoingPhotonPolarization is directed as << 209   // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta)
309   // x' std::cos(beta) + y' std::sin(beta)     << 
310   G4ThreeVector outcomingPhotonPolarization(xP    210   G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta));
311                                                   211  
312   fParticleChange->ProposeMomentumDirection(zP    212   fParticleChange->ProposeMomentumDirection(zPrime);
313   fParticleChange->ProposePolarization(outcomi    213   fParticleChange->ProposePolarization(outcomingPhotonPolarization);
314   fParticleChange->SetProposedKineticEnergy(ph    214   fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
                                                   >> 215 
315 }                                                 216 }
316                                                   217 
317 //....oooOO0OOooo........oooOO0OOooo........oo    218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318                                                   219 
319 G4double G4LivermorePolarizedRayleighModel::Ge << 220 G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const
320 {                                                 221 {
321   //  d sigma                                     222   //  d sigma                                                                    k0
322   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2     223   // --------- =  r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2)
323   //  d theta                                     224   //  d theta                                                                    hc
324                                                   225  
325   //  d sigma                                     226   //  d sigma                                             k0          1 - y
326   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 +    227   // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta)
327   //    d y                                       228   //    d y                                               hc            2
328                                                   229 
329   //              Z                               230   //              Z
330   // F(x, Z) ~ --------                           231   // F(x, Z) ~ --------
331   //            a + bx                            232   //            a + bx
332   //                                              233   //
333   // The time to exit from the outer loop grow    234   // The time to exit from the outer loop grows as ~ k0
334   // On pcgeant2 the time is ~ 1 s for k0 ~ 1     235   // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV
335   // event will take ~ 10 hours.                  236   // event will take ~ 10 hours.
336   //                                              237   //
337   // On the avarage the inner loop does 1.5 it    238   // On the avarage the inner loop does 1.5 iterations before exiting
338   const G4double xxfact = CLHEP::cm/(CLHEP::h_ << 239  
339   const G4double xFactor = incomingPhotonEnerg << 240   const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light);
                                                   >> 241   //const G4VEMDataSet * formFactorData = GetScatterFunctionData();
340                                                   242 
341   G4double cosTheta;                              243   G4double cosTheta;
342   G4double fCosTheta;                             244   G4double fCosTheta;
343   G4double x;                                     245   G4double x;
344   G4double fValue;                                246   G4double fValue;
345                                                   247 
346   if (incomingPhotonEnergy > 5.*CLHEP::MeV)    << 248   do
347   {                                            << 
348     cosTheta = 1.;                             << 
349   }                                            << 
350   else                                         << 
351   {                                            << 
352     do                                         << 
353     {                                             249     {
354       do                                          250       do
355   {                                               251   {
356     cosTheta = 2.*G4UniformRand()-1.;             252     cosTheta = 2.*G4UniformRand()-1.;
357     fCosTheta = (1.+cosTheta*cosTheta)/2.;        253     fCosTheta = (1.+cosTheta*cosTheta)/2.;
358   }                                               254   }
359       while (fCosTheta < G4UniformRand());        255       while (fCosTheta < G4UniformRand());
360                                                   256   
361       x = xFactor*std::sqrt((1.-cosTheta)/2.);    257       x = xFactor*std::sqrt((1.-cosTheta)/2.);
362                                                   258   
363       if (x > 1.e+005)                            259       if (x > 1.e+005)
364   fValue = formFactorData[Z]->Value(x);        << 260   fValue = formFactorData->FindValue(x, zAtom-1);
365       else                                        261       else
366   fValue = formFactorData[Z]->Value(0.);       << 262   fValue = formFactorData->FindValue(0., zAtom-1);
367                                                   263    
368       fValue /= Z;                             << 264       fValue/=zAtom;
369       fValue *= fValue;                        << 265       fValue*=fValue;
370     }                                             266     }
371     while(fValue < G4UniformRand());           << 267   while(fValue < G4UniformRand());
372   }                                            << 
373                                                   268 
374   return cosTheta;                                269   return cosTheta;
375 }                                                 270 }
376                                                   271 
377 //....oooOO0OOooo........oooOO0OOooo........oo    272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
378                                                   273 
379 G4double G4LivermorePolarizedRayleighModel::Ge    274 G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const
380 {                                                 275 {
381   //  d sigma                                     276   //  d sigma
382   // --------- = alpha * ( 1 - sin^2 (theta) *    277   // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) )
383   //   d phi                                      278   //   d phi
384                                                   279  
385   // On the average the loop takes no more tha    280   // On the average the loop takes no more than 2 iterations before exiting 
386                                                   281 
387   G4double phi;                                   282   G4double phi;
388   G4double cosPhi;                                283   G4double cosPhi;
389   G4double phiProbability;                        284   G4double phiProbability;
390   G4double sin2Theta;                             285   G4double sin2Theta;
391                                                   286  
392   sin2Theta=1.-cosTheta*cosTheta;                 287   sin2Theta=1.-cosTheta*cosTheta;
393                                                   288  
394   do                                              289   do
395     {                                             290     {
396       phi = CLHEP::twopi * G4UniformRand();    << 291       phi = twopi * G4UniformRand();
397       cosPhi = std::cos(phi);                     292       cosPhi = std::cos(phi);
398       phiProbability= 1. - sin2Theta*cosPhi*co    293       phiProbability= 1. - sin2Theta*cosPhi*cosPhi;
399     }                                             294     }
400   while (phiProbability < G4UniformRand());       295   while (phiProbability < G4UniformRand());
401                                                   296  
402   return phi;                                     297   return phi;
403 }                                                 298 }
404                                                   299 
405 //....oooOO0OOooo........oooOO0OOooo........oo    300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
406                                                   301 
407 G4double G4LivermorePolarizedRayleighModel::Ge    302 G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const
408 {                                                 303 {
409   // Rayleigh polarization is always on the x'    304   // Rayleigh polarization is always on the x' direction
                                                   >> 305 
410   return 0;                                       306   return 0;
411 }                                                 307 }
412                                                   308 
413 //....oooOO0OOooo........oooOO0OOooo........oo    309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
414                                                   310 
415 G4ThreeVector G4LivermorePolarizedRayleighMode    311 G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle&  photon)
416 {                                                 312 {
417   // From G4VLowEnergyDiscretePhotonProcess.cc << 313 
                                                   >> 314 // SI - From G4VLowEnergyDiscretePhotonProcess.cc
                                                   >> 315  
418   G4ThreeVector photonMomentumDirection;          316   G4ThreeVector photonMomentumDirection;
419   G4ThreeVector photonPolarization;               317   G4ThreeVector photonPolarization;
420                                                   318 
421   photonPolarization = photon.GetPolarization(    319   photonPolarization = photon.GetPolarization(); 
422   photonMomentumDirection = photon.GetMomentum    320   photonMomentumDirection = photon.GetMomentumDirection();
423                                                   321 
424   if ((!photonPolarization.isOrthogonal(photon    322   if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.)
425     {                                             323     {
426       // if |photonPolarization|==0. or |photo    324       // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0|
427       // then polarization is choosen randomly << 325       // then polarization is choosen randomly.
                                                   >> 326   
428       G4ThreeVector e1(photonMomentumDirection    327       G4ThreeVector e1(photonMomentumDirection.orthogonal().unit());
429       G4ThreeVector e2(photonMomentumDirection    328       G4ThreeVector e2(photonMomentumDirection.cross(e1).unit());
430                                                   329   
431       G4double angle(G4UniformRand() * CLHEP:: << 330       G4double angle(G4UniformRand() * twopi);
432                                                   331   
433       e1*=std::cos(angle);                        332       e1*=std::cos(angle);
434       e2*=std::sin(angle);                        333       e2*=std::sin(angle);
435                                                   334   
436       photonPolarization=e1+e2;                   335       photonPolarization=e1+e2;
437     }                                             336     }
438   else if (photonPolarization.howOrthogonal(ph    337   else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.)
439     {                                             338     {
440       // if |photonPolarization * photonDirect    339       // if |photonPolarization * photonDirection0| != 0.
441       // then polarization is made orthonormal << 340       // then polarization is made orthonormal;
                                                   >> 341   
442       photonPolarization=photonPolarization.pe    342       photonPolarization=photonPolarization.perpPart(photonMomentumDirection);
443     }                                             343     }
444                                                   344  
445   return photonPolarization.unit();               345   return photonPolarization.unit();
446 }                                                 346 }
447                                                   347 
448 //....oooOO0OOooo........oooOO0OOooo........oo << 
449                                                << 
450 void G4LivermorePolarizedRayleighModel::Initia << 
451                 const G4ParticleDefinition*, G << 
452 {                                              << 
453   G4AutoLock l(&LivermorePolarizedRayleighMode << 
454   if(nullptr == dataCS[Z]) { ReadData(Z); }    << 
455   l.unlock();                                  << 
456 }                                              << 
457                                                   348