Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4LivermorePolarizedRayleighModel.cc 66241 2012-12-13 18:34:42Z gunter $ 26 // 27 // 27 // Author: Sebastien Incerti 28 // Author: Sebastien Incerti 28 // 30 October 2008 29 // 30 October 2008 29 // on base of G4LowEnergyPolarizedRayl 30 // on base of G4LowEnergyPolarizedRayleigh developed by R. Capra 30 // 31 // 31 // History: 32 // History: 32 // -------- 33 // -------- 33 // 02 May 2009 S Incerti as V. Ivanchenko pr 34 // 02 May 2009 S Incerti as V. Ivanchenko proposed in G4LivermoreRayleighModel.cc 34 // 35 // 35 // Cleanup initialisation and generation of se 36 // Cleanup initialisation and generation of secondaries: 36 // - apply internal high-ener 37 // - apply internal high-energy limit only in constructor 37 // - do not apply low-energy 38 // - do not apply low-energy limit (default is 0) 38 // - remove GetMeanFreePath m 39 // - remove GetMeanFreePath method and table 39 // - remove initialisation of 40 // - remove initialisation of element selector 40 // - use G4ElementSelector 41 // - use G4ElementSelector 41 42 42 #include "G4LivermorePolarizedRayleighModel.hh 43 #include "G4LivermorePolarizedRayleighModel.hh" 43 #include "G4PhysicalConstants.hh" 44 #include "G4PhysicalConstants.hh" 44 #include "G4SystemOfUnits.hh" 45 #include "G4SystemOfUnits.hh" 45 #include "G4LogLogInterpolation.hh" << 46 #include "G4CompositeEMDataSet.hh" << 47 #include "G4AutoLock.hh" << 48 46 49 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 48 51 using namespace std; 49 using namespace std; 52 namespace { G4Mutex LivermorePolarizedRayleigh << 53 50 54 //....oooOO0OOooo........oooOO0OOooo........oo 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 52 56 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 57 G4PhysicsFreeVector* G4LivermorePolarizedRayle << 58 << 59 G4LivermorePolarizedRayleighModel::G4Livermore 53 G4LivermorePolarizedRayleighModel::G4LivermorePolarizedRayleighModel(const G4ParticleDefinition*, 60 const G4String& nam) << 54 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),is << 55 :G4VEmModel(nam),fParticleChange(0),isInitialised(false), >> 56 crossSectionHandler(0),formFactorData(0) 62 { 57 { 63 lowEnergyLimit = 250 * CLHEP::eV; << 58 lowEnergyLimit = 250 * eV; >> 59 highEnergyLimit = 100 * GeV; >> 60 >> 61 //SetLowEnergyLimit(lowEnergyLimit); >> 62 SetHighEnergyLimit(highEnergyLimit); 64 // 63 // 65 verboseLevel= 0; 64 verboseLevel= 0; 66 // Verbosity scale: 65 // Verbosity scale: 67 // 0 = nothing 66 // 0 = nothing 68 // 1 = warning for energy non-conservation 67 // 1 = warning for energy non-conservation 69 // 2 = details of energy budget 68 // 2 = details of energy budget 70 // 3 = calculation of cross sections, file o 69 // 3 = calculation of cross sections, file openings, sampling of atoms 71 // 4 = entering in methods 70 // 4 = entering in methods 72 71 73 if(verboseLevel > 0) { 72 if(verboseLevel > 0) { 74 G4cout << "Livermore Polarized Rayleigh is 73 G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl 75 << "Energy range: " << LowEnergyLim << 74 << "Energy range: " 76 << HighEnergyLimit() / CLHEP::GeV << " Ge << 75 << lowEnergyLimit / eV << " eV - " 77 << G4endl; << 76 << highEnergyLimit / GeV << " GeV" >> 77 << G4endl; 78 } 78 } 79 } 79 } 80 80 81 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 82 82 83 G4LivermorePolarizedRayleighModel::~G4Livermor 83 G4LivermorePolarizedRayleighModel::~G4LivermorePolarizedRayleighModel() 84 { 84 { 85 if(IsMaster()) { << 85 if (crossSectionHandler) delete crossSectionHandler; 86 for(G4int i=0; i<maxZ; ++i) { << 86 if (formFactorData) delete formFactorData; 87 if(dataCS[i]) { << 88 delete dataCS[i]; << 89 dataCS[i] = nullptr; << 90 delete formFactorData[i]; << 91 formFactorData[i] = nullptr; << 92 } << 93 } << 94 } << 95 } 87 } 96 88 97 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 98 90 99 void G4LivermorePolarizedRayleighModel::Initia 91 void G4LivermorePolarizedRayleighModel::Initialise(const G4ParticleDefinition* particle, 100 const G 92 const G4DataVector& cuts) 101 { 93 { 102 // Rayleigh process: Th << 94 // Rayleigh process: The Quantum Theory of Radiation 103 // W. << 95 // W. Heitler, Oxford at the Clarendon Press, Oxford (1954) 104 // Scattering function: A << 96 // Scattering function: A simple model of photon transport 105 // D. << 97 // D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510 106 // Polarization of the outcoming photon: Be << 98 // Polarization of the outcoming photon: Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter 107 // X- << 99 // T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168 108 // T. << 100 109 if (verboseLevel > 3) 101 if (verboseLevel > 3) 110 G4cout << "Calling G4LivermorePolarizedRay 102 G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl; 111 103 112 if(IsMaster()) { << 104 if (crossSectionHandler) 113 << 105 { 114 // Initialise element selector << 106 crossSectionHandler->Clear(); 115 InitialiseElementSelectors(particle, cuts) << 107 delete crossSectionHandler; 116 << 117 // Access to elements << 118 const char* path = G4FindDataDir("G4LEDATA << 119 auto elmTable = G4Element::GetElementTable << 120 for (auto const & elm : *elmTable) { << 121 G4int Z = std::min(elm->GetZasInt(), max << 122 if( nullptr == dataCS[Z] ) { ReadData(Z, << 123 } << 124 } 108 } 125 109 126 if(isInitialised) { return; } << 110 // Read data files for all materials 127 fParticleChange = GetParticleChangeForGamma( << 128 isInitialised = true; << 129 } << 130 111 >> 112 crossSectionHandler = new G4CrossSectionHandler; >> 113 crossSectionHandler->Clear(); >> 114 G4String crossSectionFile = "rayl/re-cs-"; >> 115 crossSectionHandler->LoadData(crossSectionFile); 131 116 132 //....oooOO0OOooo........oooOO0OOooo........oo << 117 G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation; >> 118 G4String formFactorFile = "rayl/re-ff-"; >> 119 formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.); >> 120 formFactorData->LoadData(formFactorFile); 133 121 134 void G4LivermorePolarizedRayleighModel::Initia << 122 InitialiseElementSelectors(particle,cuts); 135 const G4ParticleDefinition*, G << 136 { << 137 SetElementSelectors(masterModel->GetElementS << 138 } << 139 123 140 //....oooOO0OOooo........oooOO0OOooo........oo << 124 // >> 125 if (verboseLevel > 2) >> 126 G4cout << "Loaded cross section files for Livermore Polarized Rayleigh model" << G4endl; 141 127 142 void G4LivermorePolarizedRayleighModel::ReadDa << 128 InitialiseElementSelectors(particle,cuts); 143 { << 144 if (verboseLevel > 1) { << 145 G4cout << "Calling ReadData() of G4Livermo << 146 << G4endl; << 147 } << 148 << 149 if(nullptr != dataCS[Z]) { return; } << 150 << 151 const char* datadir = path; << 152 << 153 if(nullptr == datadir) << 154 { << 155 datadir = G4FindDataDir("G4LEDATA"); << 156 if(nullptr == datadir) << 157 { << 158 G4Exception("G4LivermoreRayleighModelModel << 159 FatalException, << 160 "Environment variable G4LEDATA not d << 161 return; << 162 } << 163 } << 164 dataCS[Z] = new G4PhysicsFreeVector(); << 165 formFactorData[Z] = new G4PhysicsFreeVector( << 166 << 167 std::ostringstream ostCS; << 168 ostCS << datadir << "/livermore/rayl/re-cs-" << 169 std::ifstream finCS(ostCS.str().c_str()); << 170 << 171 if( !finCS .is_open() ) { << 172 G4ExceptionDescription ed; << 173 ed << "G4LivermorePolarizedRayleighModel d << 174 << "> is not opened!" << G4endl; << 175 G4Exception("G4LivermorePolarizedRayleighM << 176 FatalException, << 177 ed,"G4LEDATA version should be G4EMLOW8.0 << 178 return; << 179 } else { << 180 if(verboseLevel > 3) { << 181 G4cout << "File " << ostCS.str() << 182 << " is opened by G4LivermoreRayleighMo << 183 } << 184 dataCS[Z]->Retrieve(finCS, true); << 185 } << 186 129 187 std::ostringstream ostFF; << 130 if (verboseLevel > 0) { 188 ostFF << datadir << "/livermore/rayl/re-ff-" << 131 G4cout << "Livermore Polarized Rayleigh model is initialized " << G4endl 189 std::ifstream finFF(ostFF.str().c_str()); << 132 << "Energy range: " 190 << 133 << LowEnergyLimit() / eV << " eV - " 191 if( !finFF.is_open() ) { << 134 << HighEnergyLimit() / GeV << " GeV" 192 G4ExceptionDescription ed; << 135 << G4endl; 193 ed << "G4LivermorePolarizedRayleighModel d << 136 } 194 << "> is not opened!" << G4endl; << 137 195 G4Exception("G4LivermorePolarizedRayleighM << 138 if(isInitialised) return; 196 FatalException, << 139 fParticleChange = GetParticleChangeForGamma(); 197 ed,"G4LEDATA version should be G4EMLOW8.0 << 140 isInitialised = true; 198 return; << 199 } else { << 200 if(verboseLevel > 3) { << 201 G4cout << "File " << ostFF.str() << 202 << " is opened by G4LivermoreRa << 203 } << 204 formFactorData[Z]->Retrieve(finFF, true); << 205 } << 206 } 141 } 207 << 142 208 //....oooOO0OOooo........oooOO0OOooo........oo 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 209 << 144 210 G4double G4LivermorePolarizedRayleighModel::Co 145 G4double G4LivermorePolarizedRayleighModel::ComputeCrossSectionPerAtom( 211 const << 146 const G4ParticleDefinition*, 212 G4double GammaEnergy, << 147 G4double GammaEnergy, 213 G4double Z, G4double, << 148 G4double Z, G4double, 214 G4double, G4double) << 149 G4double, G4double) 215 { 150 { 216 if (verboseLevel > 1) { << 151 if (verboseLevel > 3) 217 G4cout << "G4LivermoreRayleighModel::Compu << 152 G4cout << "Calling CrossSectionPerAtom() of G4LivermorePolarizedRayleighModel" << G4endl; 218 << G4endl; << 153 219 } << 154 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0; 220 << 155 221 if(GammaEnergy < lowEnergyLimit) { return 0. << 156 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 222 << 157 return cs; 223 G4double xs = 0.0; << 224 << 225 G4int intZ = G4lrint(Z); << 226 if(intZ < 1 || intZ > maxZ) { return xs; } << 227 << 228 G4PhysicsFreeVector* pv = dataCS[intZ]; << 229 << 230 // if element was not initialised << 231 // do initialisation safely for MT mode << 232 if(nullptr == pv) { << 233 InitialiseForElement(0, intZ); << 234 pv = dataCS[intZ]; << 235 if(nullptr == pv) { return xs; } << 236 } << 237 << 238 G4int n = G4int(pv->GetVectorLength() - 1); << 239 G4double e = GammaEnergy/MeV; << 240 if(e >= pv->Energy(n)) { << 241 xs = (*pv)[n]/(e*e); << 242 } else if(e >= pv->Energy(0)) { << 243 xs = pv->Value(e)/(e*e); << 244 } << 245 return xs; << 246 } 158 } 247 159 248 //....oooOO0OOooo........oooOO0OOooo........oo 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 249 161 250 void G4LivermorePolarizedRayleighModel::Sample << 162 void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/, 251 std::vector<G4DynamicParticle* << 163 const G4MaterialCutsCouple* couple, 252 const G4MaterialCutsCouple* couple, << 164 const G4DynamicParticle* aDynamicGamma, 253 const G4DynamicParticle* aDynamicGamma, << 165 G4double, 254 G4double, G4double) << 166 G4double) 255 { 167 { 256 if (verboseLevel > 3) 168 if (verboseLevel > 3) 257 G4cout << "Calling SampleSecondaries() of 169 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl; 258 170 259 G4double photonEnergy0 = aDynamicGamma->GetK 171 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 260 172 261 if (photonEnergy0 <= lowEnergyLimit) 173 if (photonEnergy0 <= lowEnergyLimit) 262 { 174 { 263 fParticleChange->ProposeTrackStatus(fStopA << 175 fParticleChange->ProposeTrackStatus(fStopAndKill); 264 fParticleChange->SetProposedKineticEnergy( << 176 fParticleChange->SetProposedKineticEnergy(0.); 265 fParticleChange->ProposeLocalEnergyDeposit << 177 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 266 return; << 178 return ; 267 } 179 } 268 180 269 G4ParticleMomentum photonDirection0 = aDynam 181 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 270 182 271 // Select randomly one element in the curren 183 // Select randomly one element in the current material >> 184 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0); 272 const G4ParticleDefinition* particle = aDyn 185 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 273 const G4Element* elm = SelectRandomAtom(coup 186 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0); 274 G4int Z = elm->GetZasInt(); << 187 G4int Z = (G4int)elm->GetZ(); 275 188 276 G4double outcomingPhotonCosTheta = GenerateC 189 G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z); 277 G4double outcomingPhotonPhi = GeneratePhi(ou 190 G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta); 278 G4double beta = GeneratePolarizationAngle(); << 191 G4double beta=GeneratePolarizationAngle(); 279 192 280 // incomingPhoton reference frame: 193 // incomingPhoton reference frame: 281 // z = versor parallel to the incomingPhoton 194 // z = versor parallel to the incomingPhotonDirection 282 // x = versor parallel to the incomingPhoton 195 // x = versor parallel to the incomingPhotonPolarization 283 // y = defined as z^x 196 // y = defined as z^x 284 197 285 // outgoingPhoton reference frame: 198 // outgoingPhoton reference frame: 286 // z' = versor parallel to the outgoingPhoto 199 // z' = versor parallel to the outgoingPhotonDirection 287 // x' = defined as x-x*z'z' normalized 200 // x' = defined as x-x*z'z' normalized 288 // y' = defined as z'^x' << 201 // y' = defined as z'^x' >> 202 289 G4ThreeVector z(aDynamicGamma->GetMomentumDi 203 G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit()); 290 G4ThreeVector x(GetPhotonPolarization(*aDyna 204 G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma)); 291 G4ThreeVector y(z.cross(x)); 205 G4ThreeVector y(z.cross(x)); 292 206 293 // z' = std::cos(phi)*std::sin(theta) << 207 // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z 294 // x + std::sin(phi)*std::sin(theta) y + std << 295 G4double xDir; 208 G4double xDir; 296 G4double yDir; 209 G4double yDir; 297 G4double zDir; 210 G4double zDir; 298 zDir=outcomingPhotonCosTheta; 211 zDir=outcomingPhotonCosTheta; 299 xDir=std::sqrt(1-outcomingPhotonCosTheta*out 212 xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta); 300 yDir=xDir; 213 yDir=xDir; 301 xDir*=std::cos(outcomingPhotonPhi); 214 xDir*=std::cos(outcomingPhotonPhi); 302 yDir*=std::sin(outcomingPhotonPhi); 215 yDir*=std::sin(outcomingPhotonPhi); 303 216 304 G4ThreeVector zPrime((xDir*x + yDir*y + zDir 217 G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit()); 305 G4ThreeVector xPrime(x.perpPart(zPrime).unit 218 G4ThreeVector xPrime(x.perpPart(zPrime).unit()); 306 G4ThreeVector yPrime(zPrime.cross(xPrime)); 219 G4ThreeVector yPrime(zPrime.cross(xPrime)); 307 220 308 // outgoingPhotonPolarization is directed as << 221 // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta) 309 // x' std::cos(beta) + y' std::sin(beta) << 310 G4ThreeVector outcomingPhotonPolarization(xP 222 G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta)); 311 223 312 fParticleChange->ProposeMomentumDirection(zP 224 fParticleChange->ProposeMomentumDirection(zPrime); 313 fParticleChange->ProposePolarization(outcomi 225 fParticleChange->ProposePolarization(outcomingPhotonPolarization); 314 fParticleChange->SetProposedKineticEnergy(ph 226 fParticleChange->SetProposedKineticEnergy(photonEnergy0); >> 227 315 } 228 } 316 229 317 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 318 231 319 G4double G4LivermorePolarizedRayleighModel::Ge << 232 G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const 320 { 233 { 321 // d sigma 234 // d sigma k0 322 // --------- = r0^2 * pi * F^2(x, Z) * ( 2 235 // --------- = r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2) 323 // d theta 236 // d theta hc 324 237 325 // d sigma 238 // d sigma k0 1 - y 326 // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + 239 // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta) 327 // d y 240 // d y hc 2 328 241 329 // Z 242 // Z 330 // F(x, Z) ~ -------- 243 // F(x, Z) ~ -------- 331 // a + bx 244 // a + bx 332 // 245 // 333 // The time to exit from the outer loop grow 246 // The time to exit from the outer loop grows as ~ k0 334 // On pcgeant2 the time is ~ 1 s for k0 ~ 1 247 // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV 335 // event will take ~ 10 hours. 248 // event will take ~ 10 hours. 336 // 249 // 337 // On the avarage the inner loop does 1.5 it 250 // On the avarage the inner loop does 1.5 iterations before exiting 338 const G4double xxfact = CLHEP::cm/(CLHEP::h_ << 251 339 const G4double xFactor = incomingPhotonEnerg << 252 const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light); >> 253 //const G4VEMDataSet * formFactorData = GetScatterFunctionData(); 340 254 341 G4double cosTheta; 255 G4double cosTheta; 342 G4double fCosTheta; 256 G4double fCosTheta; 343 G4double x; 257 G4double x; 344 G4double fValue; 258 G4double fValue; 345 259 346 if (incomingPhotonEnergy > 5.*CLHEP::MeV) << 260 if (incomingPhotonEnergy > 5.*MeV) 347 { 261 { 348 cosTheta = 1.; 262 cosTheta = 1.; 349 } 263 } 350 else 264 else 351 { 265 { 352 do 266 do 353 { 267 { 354 do 268 do 355 { 269 { 356 cosTheta = 2.*G4UniformRand()-1.; 270 cosTheta = 2.*G4UniformRand()-1.; 357 fCosTheta = (1.+cosTheta*cosTheta)/2.; 271 fCosTheta = (1.+cosTheta*cosTheta)/2.; 358 } 272 } 359 while (fCosTheta < G4UniformRand()); 273 while (fCosTheta < G4UniformRand()); 360 274 361 x = xFactor*std::sqrt((1.-cosTheta)/2.); 275 x = xFactor*std::sqrt((1.-cosTheta)/2.); 362 276 363 if (x > 1.e+005) 277 if (x > 1.e+005) 364 fValue = formFactorData[Z]->Value(x); << 278 fValue = formFactorData->FindValue(x, zAtom-1); 365 else 279 else 366 fValue = formFactorData[Z]->Value(0.); << 280 fValue = formFactorData->FindValue(0., zAtom-1); 367 281 368 fValue /= Z; << 282 fValue/=zAtom; 369 fValue *= fValue; << 283 fValue*=fValue; 370 } 284 } 371 while(fValue < G4UniformRand()); 285 while(fValue < G4UniformRand()); 372 } 286 } 373 287 374 return cosTheta; 288 return cosTheta; 375 } 289 } 376 290 377 //....oooOO0OOooo........oooOO0OOooo........oo 291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 378 292 379 G4double G4LivermorePolarizedRayleighModel::Ge 293 G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const 380 { 294 { 381 // d sigma 295 // d sigma 382 // --------- = alpha * ( 1 - sin^2 (theta) * 296 // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) ) 383 // d phi 297 // d phi 384 298 385 // On the average the loop takes no more tha 299 // On the average the loop takes no more than 2 iterations before exiting 386 300 387 G4double phi; 301 G4double phi; 388 G4double cosPhi; 302 G4double cosPhi; 389 G4double phiProbability; 303 G4double phiProbability; 390 G4double sin2Theta; 304 G4double sin2Theta; 391 305 392 sin2Theta=1.-cosTheta*cosTheta; 306 sin2Theta=1.-cosTheta*cosTheta; 393 307 394 do 308 do 395 { 309 { 396 phi = CLHEP::twopi * G4UniformRand(); << 310 phi = twopi * G4UniformRand(); 397 cosPhi = std::cos(phi); 311 cosPhi = std::cos(phi); 398 phiProbability= 1. - sin2Theta*cosPhi*co 312 phiProbability= 1. - sin2Theta*cosPhi*cosPhi; 399 } 313 } 400 while (phiProbability < G4UniformRand()); 314 while (phiProbability < G4UniformRand()); 401 315 402 return phi; 316 return phi; 403 } 317 } 404 318 405 //....oooOO0OOooo........oooOO0OOooo........oo 319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 406 320 407 G4double G4LivermorePolarizedRayleighModel::Ge 321 G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const 408 { 322 { 409 // Rayleigh polarization is always on the x' 323 // Rayleigh polarization is always on the x' direction >> 324 410 return 0; 325 return 0; 411 } 326 } 412 327 413 //....oooOO0OOooo........oooOO0OOooo........oo 328 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 414 329 415 G4ThreeVector G4LivermorePolarizedRayleighMode 330 G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle& photon) 416 { 331 { 417 // From G4VLowEnergyDiscretePhotonProcess.cc << 332 >> 333 // SI - From G4VLowEnergyDiscretePhotonProcess.cc >> 334 418 G4ThreeVector photonMomentumDirection; 335 G4ThreeVector photonMomentumDirection; 419 G4ThreeVector photonPolarization; 336 G4ThreeVector photonPolarization; 420 337 421 photonPolarization = photon.GetPolarization( 338 photonPolarization = photon.GetPolarization(); 422 photonMomentumDirection = photon.GetMomentum 339 photonMomentumDirection = photon.GetMomentumDirection(); 423 340 424 if ((!photonPolarization.isOrthogonal(photon 341 if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.) 425 { 342 { 426 // if |photonPolarization|==0. or |photo 343 // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0| 427 // then polarization is choosen randomly << 344 // then polarization is choosen randomly. >> 345 428 G4ThreeVector e1(photonMomentumDirection 346 G4ThreeVector e1(photonMomentumDirection.orthogonal().unit()); 429 G4ThreeVector e2(photonMomentumDirection 347 G4ThreeVector e2(photonMomentumDirection.cross(e1).unit()); 430 348 431 G4double angle(G4UniformRand() * CLHEP:: << 349 G4double angle(G4UniformRand() * twopi); 432 350 433 e1*=std::cos(angle); 351 e1*=std::cos(angle); 434 e2*=std::sin(angle); 352 e2*=std::sin(angle); 435 353 436 photonPolarization=e1+e2; 354 photonPolarization=e1+e2; 437 } 355 } 438 else if (photonPolarization.howOrthogonal(ph 356 else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.) 439 { 357 { 440 // if |photonPolarization * photonDirect 358 // if |photonPolarization * photonDirection0| != 0. 441 // then polarization is made orthonormal << 359 // then polarization is made orthonormal; >> 360 442 photonPolarization=photonPolarization.pe 361 photonPolarization=photonPolarization.perpPart(photonMomentumDirection); 443 } 362 } 444 363 445 return photonPolarization.unit(); 364 return photonPolarization.unit(); 446 } 365 } 447 366 448 //....oooOO0OOooo........oooOO0OOooo........oo << 449 << 450 void G4LivermorePolarizedRayleighModel::Initia << 451 const G4ParticleDefinition*, G << 452 { << 453 G4AutoLock l(&LivermorePolarizedRayleighMode << 454 if(nullptr == dataCS[Z]) { ReadData(Z); } << 455 l.unlock(); << 456 } << 457 367