Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4LivermorePolarizedGammaConversionModel.hh,v 1.2 2010-11-23 16:42:15 flongo Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // Authors: G.Depaola & F.Longo 29 // Authors: G.Depaola & F.Longo 28 // 30 // 29 // 31 // 30 32 31 #include "G4LivermorePolarizedGammaConversionM 33 #include "G4LivermorePolarizedGammaConversionModel.hh" 32 #include "G4PhysicalConstants.hh" 34 #include "G4PhysicalConstants.hh" 33 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 34 #include "G4Electron.hh" << 35 #include "G4Positron.hh" << 36 #include "G4ParticleChangeForGamma.hh" << 37 #include "G4Log.hh" << 38 #include "G4AutoLock.hh" << 39 #include "G4Exp.hh" << 40 #include "G4ProductionCutsTable.hh" << 41 36 42 //....oooOO0OOooo........oooOO0OOooo........oo 37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 38 44 using namespace std; 39 using namespace std; 45 namespace { G4Mutex LivermorePolarizedGammaCon << 46 << 47 G4PhysicsFreeVector* G4LivermorePolarizedGamma << 48 40 49 //....oooOO0OOooo........oooOO0OOooo........oo 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 42 51 G4LivermorePolarizedGammaConversionModel::G4Li 43 G4LivermorePolarizedGammaConversionModel::G4LivermorePolarizedGammaConversionModel( 52 const G4ParticleDefinition*, const G4String 44 const G4ParticleDefinition*, const G4String& nam) 53 :G4VEmModel(nam), smallEnergy(2.*MeV), isIni << 45 :G4VEmModel(nam),fParticleChange(0), >> 46 isInitialised(false),meanFreePathTable(0),crossSectionHandler(0) 54 { 47 { 55 fParticleChange = nullptr; << 56 lowEnergyLimit = 2*electron_mass_c2; 48 lowEnergyLimit = 2*electron_mass_c2; 57 << 49 highEnergyLimit = 100 * GeV; >> 50 SetLowEnergyLimit(lowEnergyLimit); >> 51 SetHighEnergyLimit(highEnergyLimit); >> 52 smallEnergy = 2.*MeV; >> 53 58 Phi=0.; 54 Phi=0.; 59 Psi=0.; 55 Psi=0.; 60 56 61 verboseLevel= 0; 57 verboseLevel= 0; 62 // Verbosity scale: 58 // Verbosity scale: 63 // 0 = nothing 59 // 0 = nothing 64 // 1 = calculation of cross sections, file o << 60 // 1 = warning for energy non-conservation 65 // 2 = entering in methods << 61 // 2 = details of energy budget 66 << 62 // 3 = calculation of cross sections, file openings, samping of atoms >> 63 // 4 = entering in methods >> 64 67 if(verboseLevel > 0) { 65 if(verboseLevel > 0) { 68 G4cout << "Livermore Polarized GammaConver << 66 G4cout << "Livermore Polarized GammaConversion is constructed " << G4endl >> 67 << "Energy range: " >> 68 << lowEnergyLimit / keV << " keV - " >> 69 << highEnergyLimit / GeV << " GeV" 69 << G4endl; 70 << G4endl; 70 } 71 } 71 << 72 >> 73 crossSectionHandler = new G4CrossSectionHandler(); >> 74 crossSectionHandler->Initialise(0,lowEnergyLimit,highEnergyLimit,400); 72 } 75 } 73 76 74 //....oooOO0OOooo........oooOO0OOooo........oo 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 78 76 G4LivermorePolarizedGammaConversionModel::~G4L 79 G4LivermorePolarizedGammaConversionModel::~G4LivermorePolarizedGammaConversionModel() 77 { 80 { 78 if(IsMaster()) { << 81 delete crossSectionHandler; 79 for(G4int i=0; i<maxZ; ++i) { << 80 if(data[i]) { << 81 delete data[i]; << 82 data[i] = nullptr; << 83 } << 84 } << 85 } << 86 } 82 } 87 83 >> 84 >> 85 88 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 89 87 90 void G4LivermorePolarizedGammaConversionModel: 88 void G4LivermorePolarizedGammaConversionModel::Initialise(const G4ParticleDefinition* particle, 91 const G 89 const G4DataVector& cuts) 92 { 90 { 93 if (verboseLevel > 1) << 91 if (verboseLevel > 3) 94 { << 92 G4cout << "Calling G4LivermorePolarizedGammaConversionModel::Initialise()" << G4endl; 95 G4cout << "Calling1 G4LivermorePolarized << 96 << G4endl << 97 << "Energy range: " << 98 << LowEnergyLimit() / MeV << " MeV - " << 99 << HighEnergyLimit() / GeV << " G << 100 << G4endl; << 101 } << 102 << 103 if(IsMaster()) << 104 { << 105 // Initialise element selector << 106 InitialiseElementSelectors(particle, cut << 107 << 108 // Access to elements << 109 const char* path = G4FindDataDir("G4LEDA << 110 << 111 G4ProductionCutsTable* theCoupleTable = << 112 G4ProductionCutsTable::GetProductionCutsTabl << 113 << 114 G4int numOfCouples = (G4int)theCoupleTab << 115 << 116 for(G4int i=0; i<numOfCouples; ++i) << 117 { << 118 const G4Material* material = << 119 theCoupleTable->GetMaterialCutsCouple(i) << 120 const G4ElementVector* theElementVector = << 121 std::size_t nelm = material->GetNumberOfEl << 122 << 123 for (std::size_t j=0; j<nelm; ++j) << 124 { << 125 G4int Z = (G4int)(*theElementVector)[j << 126 if(Z < 1) { Z = 1; } << 127 else if(Z > maxZ) { Z = maxZ; } << 128 if(!data[Z]) { ReadData(Z, path); } << 129 } << 130 } << 131 } << 132 if(isInitialised) { return; } << 133 fParticleChange = GetParticleChangeForGamma( << 134 isInitialised = true; << 135 } << 136 << 137 //....oooOO0OOooo........oooOO0OOooo........oo << 138 93 139 void G4LivermorePolarizedGammaConversionModel: << 94 if (crossSectionHandler) 140 const G4ParticleDefinition*, G4VEmModel* << 95 { 141 { << 96 crossSectionHandler->Clear(); 142 SetElementSelectors(masterModel->GetElementS << 97 delete crossSectionHandler; 143 } << 98 } 144 99 145 //....oooOO0OOooo........oooOO0OOooo........oo << 100 // Energy limits >> 101 /* >> 102 // V.Ivanchenko: this was meanless check >> 103 if (LowEnergyLimit() < lowEnergyLimit) >> 104 { >> 105 G4cout << "G4LivermorePolarizedGammaConversionModel: low energy limit increased from " << >> 106 LowEnergyLimit()/eV << " eV to " << lowEnergyLimit << " eV" << G4endl; >> 107 // SetLowEnergyLimit(lowEnergyLimit); >> 108 } >> 109 */ >> 110 if (HighEnergyLimit() > highEnergyLimit) >> 111 { >> 112 G4cout << "G4LivermorePolarizedGammaConversionModel: high energy limit decreased from " << >> 113 HighEnergyLimit()/GeV << " GeV to " << highEnergyLimit << " GeV" << G4endl; >> 114 // V.Ivanchenko: this is forbidden >> 115 // SetHighEnergyLimit(highEnergyLimit); >> 116 } >> 117 >> 118 // Reading of data files - all materials are read >> 119 >> 120 crossSectionHandler = new G4CrossSectionHandler; >> 121 crossSectionHandler->Clear(); >> 122 G4String crossSectionFile = "pair/pp-cs-"; >> 123 crossSectionHandler->LoadData(crossSectionFile); 146 124 147 G4double G4LivermorePolarizedGammaConversionMo << 125 // 148 const G4ParticleDefinition*, G4doub << 126 if (verboseLevel > 2) { 149 { << 127 G4cout << "Loaded cross section files for Livermore Polarized GammaConversion model" 150 return lowEnergyLimit; << 128 << G4endl; 151 } << 129 } >> 130 InitialiseElementSelectors(particle,cuts); 152 131 153 //....oooOO0OOooo........oooOO0OOooo........oo << 132 if(verboseLevel > 0) { >> 133 G4cout << "Livermore Polarized GammaConversion model is initialized " << G4endl >> 134 << "Energy range: " >> 135 << LowEnergyLimit() / keV << " keV - " >> 136 << HighEnergyLimit() / GeV << " GeV" >> 137 << G4endl; >> 138 } 154 139 155 void G4LivermorePolarizedGammaConversionModel: << 140 // 156 { << 141 if(!isInitialised) { 157 if (verboseLevel > 1) << 142 isInitialised = true; 158 { << 143 fParticleChange = GetParticleChangeForGamma(); 159 G4cout << "Calling ReadData() of G4Liver << 144 } 160 << G4endl; << 161 } << 162 << 163 if(data[Z]) { return; } << 164 << 165 const char* datadir = path; << 166 << 167 if(!datadir) << 168 { << 169 datadir = G4FindDataDir("G4LEDATA"); << 170 if(!datadir) << 171 { << 172 G4Exception("G4LivermorePolarizedGammaConv << 173 "em0006",FatalException, << 174 "Environment variable G4LEDATA not d << 175 return; << 176 } << 177 } << 178 // << 179 data[Z] = new G4PhysicsFreeVector(0,/*spline << 180 // << 181 std::ostringstream ost; << 182 ost << datadir << "/livermore/pair/pp-cs-" < << 183 std::ifstream fin(ost.str().c_str()); << 184 << 185 if( !fin.is_open()) << 186 { << 187 G4ExceptionDescription ed; << 188 ed << "G4LivermorePolarizedGammaConversi << 189 << "> is not opened!" << G4endl; << 190 G4Exception("G4LivermorePolarizedGammaCo << 191 "em0003",FatalException, << 192 ed,"G4LEDATA version should be G4EMLOW6. << 193 return; << 194 } << 195 else << 196 { << 197 << 198 if(verboseLevel > 3) { G4cout << "File " << 199 << " is opened by G4LivermorePolar << 200 << 201 data[Z]->Retrieve(fin, true); << 202 } << 203 << 204 // Activation of spline interpolation << 205 data[Z]->FillSecondDerivatives(); << 206 << 207 } 145 } 208 146 209 //....oooOO0OOooo........oooOO0OOooo........oo 147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 210 148 211 G4double G4LivermorePolarizedGammaConversionMo 149 G4double G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom( 212 const G 150 const G4ParticleDefinition*, 213 G4double GammaEnergy, 151 G4double GammaEnergy, 214 G4double Z, G4double, 152 G4double Z, G4double, 215 G4double, G4double) 153 G4double, G4double) 216 { 154 { 217 if (verboseLevel > 1) { << 155 if (verboseLevel > 3) { 218 G4cout << "G4LivermorePolarizedGammaConver 156 G4cout << "G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom()" 219 << G4endl; 157 << G4endl; 220 } 158 } 221 if (GammaEnergy < lowEnergyLimit) { return 0 << 159 if(Z < 0.9 || GammaEnergy <= lowEnergyLimit) { return 0.0; } 222 << 160 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 223 G4double xs = 0.0; << 161 return cs; 224 << 225 G4int intZ=G4int(Z); << 226 << 227 if(intZ < 1 || intZ > maxZ) { return xs; } << 228 << 229 G4PhysicsFreeVector* pv = data[intZ]; << 230 << 231 // if element was not initialised << 232 // do initialisation safely for MT mode << 233 if(!pv) << 234 { << 235 InitialiseForElement(0, intZ); << 236 pv = data[intZ]; << 237 if(!pv) { return xs; } << 238 } << 239 // x-section is taken from the table << 240 xs = pv->Value(GammaEnergy); << 241 << 242 if(verboseLevel > 0) << 243 { << 244 G4int n = G4int(pv->GetVectorLength() - << 245 G4cout << "****** DEBUG: tcs value for << 246 << GammaEnergy/MeV << G4endl; << 247 G4cout << " cs (Geant4 internal unit) << 248 G4cout << " -> first cs value in EA << 249 G4cout << " -> last cs value in EA << 250 G4cout << "*************************** << 251 } << 252 << 253 return xs; << 254 } 162 } 255 163 256 //....oooOO0OOooo........oooOO0OOooo........oo 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 257 165 258 void 166 void 259 G4LivermorePolarizedGammaConversionModel::Samp 167 G4LivermorePolarizedGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 260 const G4MaterialCutsCouple* 168 const G4MaterialCutsCouple* couple, 261 const G4DynamicParticle* aDy 169 const G4DynamicParticle* aDynamicGamma, 262 G4double, 170 G4double, 263 G4double) 171 G4double) 264 { 172 { 265 173 266 // Fluorescence generated according to: 174 // Fluorescence generated according to: 267 // J. Stepanek ,"A program to determine the 175 // J. Stepanek ,"A program to determine the radiation spectra due to a single atomic 268 // subshell ionisation by a particle or due 176 // subshell ionisation by a particle or due to deexcitation or decay of radionuclides", 269 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) 177 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) >> 178 270 if (verboseLevel > 3) 179 if (verboseLevel > 3) 271 G4cout << "Calling SampleSecondaries() of 180 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedGammaConversionModel" << G4endl; 272 181 273 G4double photonEnergy = aDynamicGamma->GetKi 182 G4double photonEnergy = aDynamicGamma->GetKineticEnergy(); >> 183 // Within energy limit? 274 184 275 if(photonEnergy <= lowEnergyLimit) 185 if(photonEnergy <= lowEnergyLimit) 276 { 186 { 277 fParticleChange->ProposeTrackStatus(fSto 187 fParticleChange->ProposeTrackStatus(fStopAndKill); 278 fParticleChange->SetProposedKineticEnerg 188 fParticleChange->SetProposedKineticEnergy(0.); 279 return; 189 return; 280 } 190 } 281 191 >> 192 282 G4ThreeVector gammaPolarization0 = aDynamicG 193 G4ThreeVector gammaPolarization0 = aDynamicGamma->GetPolarization(); 283 G4ThreeVector gammaDirection0 = aDynamicGamm 194 G4ThreeVector gammaDirection0 = aDynamicGamma->GetMomentumDirection(); 284 195 285 // Make sure that the polarization vector is 196 // Make sure that the polarization vector is perpendicular to the 286 // gamma direction. If not 197 // gamma direction. If not >> 198 287 if(!(gammaPolarization0.isOrthogonal(gammaDi 199 if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0)) 288 { // only for testing now 200 { // only for testing now 289 gammaPolarization0 = GetRandomPolarizati 201 gammaPolarization0 = GetRandomPolarization(gammaDirection0); 290 } 202 } 291 else 203 else 292 { 204 { 293 if ( gammaPolarization0.howOrthogonal(ga 205 if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0) 294 { 206 { 295 gammaPolarization0 = GetPerpendicularPolar 207 gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0); 296 } 208 } 297 } 209 } 298 210 299 // End of Protection 211 // End of Protection 300 212 >> 213 301 G4double epsilon ; 214 G4double epsilon ; 302 G4double epsilon0Local = electron_mass_c2 / 215 G4double epsilon0Local = electron_mass_c2 / photonEnergy ; 303 216 304 // Do it fast if photon energy < 2. MeV 217 // Do it fast if photon energy < 2. MeV 305 218 306 if (photonEnergy < smallEnergy ) 219 if (photonEnergy < smallEnergy ) 307 { 220 { 308 epsilon = epsilon0Local + (0.5 - epsilon 221 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand(); 309 } 222 } 310 else 223 else 311 { 224 { 312 // Select randomly one element in the cu << 225 >> 226 // Select randomly one element in the current material >> 227 >> 228 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy); >> 229 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy); >> 230 313 const G4ParticleDefinition* particle = 231 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 314 const G4Element* element = SelectRandomA 232 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy); 315 << 233 316 if (element == nullptr) << 234 /* >> 235 if (element == 0) 317 { 236 { 318 G4cout << "G4LivermorePolarizedGamma << 237 G4cout << "G4LivermorePolarizedGammaConversionModel::PostStepDoIt - element = 0" << G4endl; 319 return; << 320 } 238 } >> 239 */ 321 240 >> 241 G4IonisParamElm* ionisation = element->GetIonisation(); 322 242 323 G4IonisParamElm* ionisation = element->G << 243 /* 324 if (ionisation == nullptr) << 244 if (ionisation == 0) 325 { 245 { 326 G4cout << "G4LivermorePolarizedGamma << 246 G4cout << "G4LivermorePolarizedGammaConversionModel::PostStepDoIt - ionisation = 0" << G4endl; 327 return; << 328 } 247 } 329 << 248 */ >> 249 >> 250 330 // Extract Coulomb factor for this Eleme 251 // Extract Coulomb factor for this Element >> 252 331 G4double fZ = 8. * (ionisation->GetlogZ3 253 G4double fZ = 8. * (ionisation->GetlogZ3()); 332 if (photonEnergy > 50. * MeV) fZ += 8. * 254 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb()); 333 255 334 // Limits of the screening variable 256 // Limits of the screening variable 335 G4double screenFactor = 136. * epsilon0L 257 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ; 336 G4double screenMax = G4Exp ((42.24 - fZ) << 258 G4double screenMax = exp ((42.24 - fZ)/8.368) - 0.952 ; 337 G4double screenMin = std::min(4.*screenF 259 G4double screenMin = std::min(4.*screenFactor,screenMax) ; 338 260 339 // Limits of the energy sampling 261 // Limits of the energy sampling 340 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. 262 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. - screenMin / screenMax) ; 341 G4double epsilonMin = std::max(epsilon0L 263 G4double epsilonMin = std::max(epsilon0Local,epsilon1); 342 G4double epsilonRange = 0.5 - epsilonMin 264 G4double epsilonRange = 0.5 - epsilonMin ; 343 265 344 // Sample the energy rate of the created 266 // Sample the energy rate of the created electron (or positron) 345 G4double screen; 267 G4double screen; 346 G4double gReject ; 268 G4double gReject ; 347 269 348 G4double f10 = ScreenFunction1(screenMin 270 G4double f10 = ScreenFunction1(screenMin) - fZ; 349 G4double f20 = ScreenFunction2(screenMin 271 G4double f20 = ScreenFunction2(screenMin) - fZ; 350 G4double normF1 = std::max(f10 * epsilon 272 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.); 351 G4double normF2 = std::max(1.5 * f20,0.) 273 G4double normF2 = std::max(1.5 * f20,0.); 352 274 353 do { 275 do { 354 if (normF1 / (normF1 + normF2) > G4Uni 276 if (normF1 / (normF1 + normF2) > G4UniformRand() ) 355 { 277 { 356 epsilon = 0.5 - epsilonRange * pow 278 epsilon = 0.5 - epsilonRange * pow(G4UniformRand(), 0.3333) ; 357 screen = screenFactor / (epsilon * 279 screen = screenFactor / (epsilon * (1. - epsilon)); 358 gReject = (ScreenFunction1(screen) 280 gReject = (ScreenFunction1(screen) - fZ) / f10 ; 359 } 281 } 360 else 282 else 361 { 283 { 362 epsilon = epsilonMin + epsilonRang 284 epsilon = epsilonMin + epsilonRange * G4UniformRand(); 363 screen = screenFactor / (epsilon * 285 screen = screenFactor / (epsilon * (1 - epsilon)); 364 gReject = (ScreenFunction2(screen) 286 gReject = (ScreenFunction2(screen) - fZ) / f20 ; >> 287 >> 288 365 } 289 } 366 } while ( gReject < G4UniformRand() ); 290 } while ( gReject < G4UniformRand() ); >> 291 367 } // End of epsilon sampling 292 } // End of epsilon sampling 368 293 369 // Fix charges randomly 294 // Fix charges randomly >> 295 370 G4double electronTotEnergy; 296 G4double electronTotEnergy; 371 G4double positronTotEnergy; 297 G4double positronTotEnergy; 372 298 373 if (G4UniformRand() > 0.5) << 299 >> 300 if (G4int(2*G4UniformRand())) 374 { 301 { 375 electronTotEnergy = (1. - epsilon) * pho 302 electronTotEnergy = (1. - epsilon) * photonEnergy; 376 positronTotEnergy = epsilon * photonEner 303 positronTotEnergy = epsilon * photonEnergy; 377 } 304 } 378 else 305 else 379 { 306 { 380 positronTotEnergy = (1. - epsilon) * pho 307 positronTotEnergy = (1. - epsilon) * photonEnergy; 381 electronTotEnergy = epsilon * photonEner 308 electronTotEnergy = epsilon * photonEnergy; 382 } 309 } 383 << 310 384 // Scattered electron (positron) angles. ( Z 311 // Scattered electron (positron) angles. ( Z - axis along the parent photon) 385 // Universal distribution suggested by L. Ur 312 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211), 386 // derived from Tsai distribution (Rev. Mod. 313 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977) >> 314 >> 315 /* >> 316 G4double u; >> 317 const G4double a1 = 0.625; >> 318 G4double a2 = 3. * a1; >> 319 >> 320 if (0.25 > G4UniformRand()) >> 321 { >> 322 u = - log(G4UniformRand() * G4UniformRand()) / a1 ; >> 323 } >> 324 else >> 325 { >> 326 u = - log(G4UniformRand() * G4UniformRand()) / a2 ; >> 327 } >> 328 */ >> 329 387 G4double Ene = electronTotEnergy/electron_ma 330 G4double Ene = electronTotEnergy/electron_mass_c2; // Normalized energy 388 331 389 G4double cosTheta = 0.; 332 G4double cosTheta = 0.; 390 G4double sinTheta = 0.; 333 G4double sinTheta = 0.; 391 334 392 SetTheta(&cosTheta,&sinTheta,Ene); 335 SetTheta(&cosTheta,&sinTheta,Ene); >> 336 >> 337 // G4double theta = u * electron_mass_c2 / photonEnergy ; >> 338 // G4double phi = twopi * G4UniformRand() ; >> 339 393 G4double phi,psi=0.; 340 G4double phi,psi=0.; 394 341 395 //corrected e+ e- angular angular distributi 342 //corrected e+ e- angular angular distribution //preliminary! >> 343 >> 344 // if(photonEnergy>50*MeV) >> 345 // { 396 phi = SetPhi(photonEnergy); 346 phi = SetPhi(photonEnergy); 397 psi = SetPsi(photonEnergy,phi); 347 psi = SetPsi(photonEnergy,phi); >> 348 // } >> 349 //else >> 350 // { >> 351 //psi = G4UniformRand()*2.*pi; >> 352 //phi = pi; // coplanar >> 353 // } >> 354 398 Psi = psi; 355 Psi = psi; 399 Phi = phi; 356 Phi = phi; >> 357 //G4cout << "PHI " << phi << G4endl; >> 358 //G4cout << "PSI " << psi << G4endl; 400 359 401 G4double phie, phip; << 360 G4double phie = psi; //azimuthal angle for the electron 402 G4double choice, choice2; << 403 choice = G4UniformRand(); << 404 choice2 = G4UniformRand(); << 405 361 406 if (choice2 <= 0.5) << 407 { << 408 // do nothing << 409 // phi = phi; << 410 } << 411 else << 412 { << 413 phi = -phi; << 414 } << 415 << 416 if (choice <= 0.5) << 417 { << 418 phie = psi; //azimuthal angle for the el << 419 phip = phie+phi; //azimuthal angle for t << 420 } << 421 else << 422 { << 423 // opzione 1 phie / phip equivalenti << 424 phip = psi; //azimuthal angle for the po << 425 phie = phip + phi; //azimuthal angle for << 426 } << 427 << 428 << 429 // Electron Kinematics << 430 G4double dirX = sinTheta*cos(phie); 362 G4double dirX = sinTheta*cos(phie); 431 G4double dirY = sinTheta*sin(phie); 363 G4double dirY = sinTheta*sin(phie); 432 G4double dirZ = cosTheta; 364 G4double dirZ = cosTheta; 433 G4ThreeVector electronDirection(dirX,dirY,di 365 G4ThreeVector electronDirection(dirX,dirY,dirZ); 434 << 435 // Kinematics of the created pair: 366 // Kinematics of the created pair: 436 // the electron and positron are assumed to 367 // the electron and positron are assumed to have a symetric angular 437 // distribution with respect to the Z axis a 368 // distribution with respect to the Z axis along the parent photon 438 369 >> 370 //G4double localEnergyDeposit = 0. ; >> 371 439 G4double electronKineEnergy = std::max(0.,el 372 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; 440 373 441 SystemOfRefChange(gammaDirection0,electronDi 374 SystemOfRefChange(gammaDirection0,electronDirection, 442 gammaPolarization0); 375 gammaPolarization0); 443 376 444 G4DynamicParticle* particle1 = new G4Dynamic 377 G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(), 445 electronDirection, 378 electronDirection, 446 electronKineEnergy); 379 electronKineEnergy); 447 380 448 // The e+ is always created (even with kinet 381 // The e+ is always created (even with kinetic energy = 0) for further annihilation >> 382 449 Ene = positronTotEnergy/electron_mass_c2; // 383 Ene = positronTotEnergy/electron_mass_c2; // Normalized energy 450 384 451 cosTheta = 0.; 385 cosTheta = 0.; 452 sinTheta = 0.; 386 sinTheta = 0.; 453 387 454 SetTheta(&cosTheta,&sinTheta,Ene); 388 SetTheta(&cosTheta,&sinTheta,Ene); >> 389 G4double phip = phie+phi; //azimuthal angle for the positron 455 390 456 // Positron Kinematics << 457 dirX = sinTheta*cos(phip); 391 dirX = sinTheta*cos(phip); 458 dirY = sinTheta*sin(phip); 392 dirY = sinTheta*sin(phip); 459 dirZ = cosTheta; 393 dirZ = cosTheta; 460 G4ThreeVector positronDirection(dirX,dirY,di 394 G4ThreeVector positronDirection(dirX,dirY,dirZ); 461 395 462 G4double positronKineEnergy = std::max(0.,po 396 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ; 463 SystemOfRefChange(gammaDirection0,positronDi 397 SystemOfRefChange(gammaDirection0,positronDirection, 464 gammaPolarization0); 398 gammaPolarization0); 465 399 466 // Create G4DynamicParticle object for the p 400 // Create G4DynamicParticle object for the particle2 467 G4DynamicParticle* particle2 = new G4Dynamic 401 G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(), 468 402 positronDirection, positronKineEnergy); >> 403 >> 404 469 fvect->push_back(particle1); 405 fvect->push_back(particle1); 470 fvect->push_back(particle2); 406 fvect->push_back(particle2); 471 407 >> 408 >> 409 472 // Kill the incident photon 410 // Kill the incident photon >> 411 >> 412 >> 413 >> 414 // Create lists of pointers to DynamicParticles (photons and electrons) >> 415 // (Is the electron vector necessary? To be checked) >> 416 // std::vector<G4DynamicParticle*>* photonVector = 0; >> 417 //std::vector<G4DynamicParticle*> electronVector; >> 418 >> 419 fParticleChange->ProposeMomentumDirection( 0., 0., 0. ); 473 fParticleChange->SetProposedKineticEnergy(0. 420 fParticleChange->SetProposedKineticEnergy(0.); 474 fParticleChange->ProposeTrackStatus(fStopAnd 421 fParticleChange->ProposeTrackStatus(fStopAndKill); >> 422 475 } 423 } 476 424 477 //....oooOO0OOooo........oooOO0OOooo........oo 425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 478 426 479 G4double G4LivermorePolarizedGammaConversionMo 427 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction1(G4double screenVariable) 480 { 428 { 481 // Compute the value of the screening functi 429 // Compute the value of the screening function 3*phi1 - phi2 >> 430 482 G4double value; 431 G4double value; >> 432 483 if (screenVariable > 1.) 433 if (screenVariable > 1.) 484 value = 42.24 - 8.368 * log(screenVariable 434 value = 42.24 - 8.368 * log(screenVariable + 0.952); 485 else 435 else 486 value = 42.392 - screenVariable * (7.796 - 436 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable); 487 437 488 return value; 438 return value; 489 } 439 } 490 440 491 441 492 442 493 G4double G4LivermorePolarizedGammaConversionMo 443 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction2(G4double screenVariable) 494 { 444 { 495 // Compute the value of the screening functi 445 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2 >> 446 496 G4double value; 447 G4double value; 497 448 498 if (screenVariable > 1.) 449 if (screenVariable > 1.) 499 value = 42.24 - 8.368 * log(screenVariable 450 value = 42.24 - 8.368 * log(screenVariable + 0.952); 500 else 451 else 501 value = 41.405 - screenVariable * (5.828 - 452 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable); 502 453 503 return value; 454 return value; 504 } 455 } 505 456 506 457 507 void G4LivermorePolarizedGammaConversionModel: 458 void G4LivermorePolarizedGammaConversionModel::SetTheta(G4double* p_cosTheta, G4double* p_sinTheta, G4double Energy) 508 { 459 { >> 460 509 // to avoid computational errors since Theta 461 // to avoid computational errors since Theta could be very small 510 // Energy in Normalized Units (!) 462 // Energy in Normalized Units (!) 511 463 512 G4double Momentum = sqrt(Energy*Energy -1); 464 G4double Momentum = sqrt(Energy*Energy -1); 513 G4double Rand = G4UniformRand(); 465 G4double Rand = G4UniformRand(); 514 466 515 *p_cosTheta = (Energy*((2*Rand)- 1) + Moment 467 *p_cosTheta = (Energy*((2*Rand)- 1) + Momentum)/((Momentum*(2*Rand-1))+Energy); 516 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momen 468 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momentum*(2*Rand-1)+Energy); 517 } 469 } 518 470 519 471 520 472 521 G4double G4LivermorePolarizedGammaConversionMo 473 G4double G4LivermorePolarizedGammaConversionModel::SetPhi(G4double Energy) 522 { 474 { >> 475 >> 476 523 G4double value = 0.; 477 G4double value = 0.; 524 G4double Ene = Energy/MeV; 478 G4double Ene = Energy/MeV; 525 479 526 G4double pl[4]; 480 G4double pl[4]; >> 481 >> 482 527 G4double pt[2]; 483 G4double pt[2]; 528 G4double xi = 0; 484 G4double xi = 0; 529 G4double xe = 0.; 485 G4double xe = 0.; 530 G4double n1=0.; 486 G4double n1=0.; 531 G4double n2=0.; 487 G4double n2=0.; 532 488 >> 489 533 if (Ene>=50.) 490 if (Ene>=50.) 534 { 491 { 535 const G4double ay0=5.6, by0=18.6, aa0=2. 492 const G4double ay0=5.6, by0=18.6, aa0=2.9, ba0 = 8.16E-3; 536 const G4double aw = 0.0151, bw = 10.7, c 493 const G4double aw = 0.0151, bw = 10.7, cw = -410.; 537 494 538 const G4double axc = 3.1455, bxc = -1.11 495 const G4double axc = 3.1455, bxc = -1.11, cxc = 310.; 539 496 540 pl[0] = Fln(ay0,by0,Ene); 497 pl[0] = Fln(ay0,by0,Ene); 541 pl[1] = aa0 + ba0*(Ene); 498 pl[1] = aa0 + ba0*(Ene); 542 pl[2] = Poli(aw,bw,cw,Ene); 499 pl[2] = Poli(aw,bw,cw,Ene); 543 pl[3] = Poli(axc,bxc,cxc,Ene); 500 pl[3] = Poli(axc,bxc,cxc,Ene); 544 501 545 const G4double abf = 3.1216, bbf = 2.68; 502 const G4double abf = 3.1216, bbf = 2.68; 546 pt[0] = -1.4; 503 pt[0] = -1.4; 547 pt[1] = abf + bbf/Ene; 504 pt[1] = abf + bbf/Ene; 548 505 >> 506 >> 507 >> 508 //G4cout << "PL > 50. "<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 509 549 xi = 3.0; 510 xi = 3.0; 550 xe = Encu(pl,pt,xi); 511 xe = Encu(pl,pt,xi); >> 512 //G4cout << "ENCU "<< xe << G4endl; 551 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 513 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 552 n2 = Finttan(pt,xe) - Finttan(pt,0.); 514 n2 = Finttan(pt,xe) - Finttan(pt,0.); 553 } 515 } 554 else 516 else 555 { 517 { 556 const G4double ay0=0.144, by0=0.11; 518 const G4double ay0=0.144, by0=0.11; 557 const G4double aa0=2.7, ba0 = 2.74; 519 const G4double aa0=2.7, ba0 = 2.74; 558 const G4double aw = 0.21, bw = 10.8, cw 520 const G4double aw = 0.21, bw = 10.8, cw = -58.; 559 const G4double axc = 3.17, bxc = -0.87, 521 const G4double axc = 3.17, bxc = -0.87, cxc = -6.; 560 522 561 pl[0] = Fln(ay0, by0, Ene); 523 pl[0] = Fln(ay0, by0, Ene); 562 pl[1] = Fln(aa0, ba0, Ene); 524 pl[1] = Fln(aa0, ba0, Ene); 563 pl[2] = Poli(aw,bw,cw,Ene); 525 pl[2] = Poli(aw,bw,cw,Ene); 564 pl[3] = Poli(axc,bxc,cxc,Ene); 526 pl[3] = Poli(axc,bxc,cxc,Ene); 565 527 >> 528 //G4cout << "PL < 50."<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 529 //G4cout << "ENCU "<< xe << G4endl; 566 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 530 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); >> 531 567 } 532 } 568 533 569 534 570 G4double n=0.; 535 G4double n=0.; 571 n = n1+n2; 536 n = n1+n2; 572 537 573 G4double c1 = 0.; 538 G4double c1 = 0.; 574 c1 = Glor(pl, xe); 539 c1 = Glor(pl, xe); 575 540 >> 541 /* >> 542 G4double xm = 0.; >> 543 xm = Flor(pl,pl[3])*Glor(pl,pl[3]); >> 544 */ >> 545 576 G4double r1,r2,r3; 546 G4double r1,r2,r3; 577 G4double xco=0.; 547 G4double xco=0.; 578 548 579 if (Ene>=50.) 549 if (Ene>=50.) 580 { 550 { 581 r1= G4UniformRand(); 551 r1= G4UniformRand(); 582 if( r1>=n2/n) 552 if( r1>=n2/n) 583 { 553 { 584 do 554 do 585 { 555 { 586 r2 = G4UniformRand(); 556 r2 = G4UniformRand(); 587 value = Finvlor(pl,xe,r2); 557 value = Finvlor(pl,xe,r2); 588 xco = Glor(pl,value)/c1; 558 xco = Glor(pl,value)/c1; 589 r3 = G4UniformRand(); 559 r3 = G4UniformRand(); 590 } while(r3>=xco); 560 } while(r3>=xco); 591 } 561 } 592 else 562 else 593 { 563 { 594 value = Finvtan(pt,n,r1); 564 value = Finvtan(pt,n,r1); 595 } 565 } 596 } 566 } 597 else 567 else 598 { 568 { 599 do 569 do 600 { 570 { 601 r2 = G4UniformRand(); 571 r2 = G4UniformRand(); 602 value = Finvlor(pl,xe,r2); 572 value = Finvlor(pl,xe,r2); 603 xco = Glor(pl,value)/c1; 573 xco = Glor(pl,value)/c1; 604 r3 = G4UniformRand(); 574 r3 = G4UniformRand(); 605 } while(r3>=xco); 575 } while(r3>=xco); 606 } 576 } >> 577 >> 578 // G4cout << "PHI = " <<value << G4endl; 607 return value; 579 return value; 608 } 580 } 609 << 610 //....oooOO0OOooo........oooOO0OOooo........oo << 611 << 612 G4double G4LivermorePolarizedGammaConversionMo 581 G4double G4LivermorePolarizedGammaConversionModel::SetPsi(G4double Energy, G4double PhiLocal) 613 { 582 { >> 583 614 G4double value = 0.; 584 G4double value = 0.; 615 G4double Ene = Energy/MeV; 585 G4double Ene = Energy/MeV; 616 586 617 G4double p0l[4]; 587 G4double p0l[4]; 618 G4double ppml[4]; 588 G4double ppml[4]; 619 G4double p0t[2]; 589 G4double p0t[2]; 620 G4double ppmt[2]; 590 G4double ppmt[2]; 621 591 622 G4double xi = 0.; 592 G4double xi = 0.; 623 G4double xe0 = 0.; 593 G4double xe0 = 0.; 624 G4double xepm = 0.; 594 G4double xepm = 0.; 625 595 626 if (Ene>=50.) 596 if (Ene>=50.) 627 { 597 { 628 const G4double ay00 = 3.4, by00 = 9.8, a 598 const G4double ay00 = 3.4, by00 = 9.8, aa00 = 1.34, ba00 = 5.3; 629 const G4double aw0 = 0.014, bw0 = 9.7, c 599 const G4double aw0 = 0.014, bw0 = 9.7, cw0 = -2.E4; 630 const G4double axc0 = 3.1423, bxc0 = -2. 600 const G4double axc0 = 3.1423, bxc0 = -2.35, cxc0 = 0.; 631 const G4double ay0p = 1.53, by0p = 3.2, 601 const G4double ay0p = 1.53, by0p = 3.2, aap = 0.67, bap = 8.5E-3; 632 const G4double awp = 6.9E-3, bwp = 12.6, 602 const G4double awp = 6.9E-3, bwp = 12.6, cwp = -3.8E4; 633 const G4double axcp = 2.8E-3,bxcp = -3.1 603 const G4double axcp = 2.8E-3,bxcp = -3.133; 634 const G4double abf0 = 3.1213, bbf0 = 2.6 604 const G4double abf0 = 3.1213, bbf0 = 2.61; 635 const G4double abfpm = 3.1231, bbfpm = 2 605 const G4double abfpm = 3.1231, bbfpm = 2.84; 636 606 637 p0l[0] = Fln(ay00, by00, Ene); 607 p0l[0] = Fln(ay00, by00, Ene); 638 p0l[1] = Fln(aa00, ba00, Ene); 608 p0l[1] = Fln(aa00, ba00, Ene); 639 p0l[2] = Poli(aw0, bw0, cw0, Ene); 609 p0l[2] = Poli(aw0, bw0, cw0, Ene); 640 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 610 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 641 611 642 ppml[0] = Fln(ay0p, by0p, Ene); 612 ppml[0] = Fln(ay0p, by0p, Ene); 643 ppml[1] = aap + bap*(Ene); 613 ppml[1] = aap + bap*(Ene); 644 ppml[2] = Poli(awp, bwp, cwp, Ene); 614 ppml[2] = Poli(awp, bwp, cwp, Ene); 645 ppml[3] = Fln(axcp,bxcp,Ene); 615 ppml[3] = Fln(axcp,bxcp,Ene); 646 616 647 p0t[0] = -0.81; 617 p0t[0] = -0.81; 648 p0t[1] = abf0 + bbf0/Ene; 618 p0t[1] = abf0 + bbf0/Ene; 649 ppmt[0] = -0.6; 619 ppmt[0] = -0.6; 650 ppmt[1] = abfpm + bbfpm/Ene; 620 ppmt[1] = abfpm + bbfpm/Ene; 651 621 >> 622 //G4cout << "P0L > 50"<< p0l[0] << " " << p0l[1] << " " << p0l[2] << " " <<p0l[3] << " " << G4endl; >> 623 //G4cout << "PPML > 50"<< ppml[0] << " " << ppml[1] << " " << ppml[2] << " " <<ppml[3] << " " << G4endl; >> 624 652 xi = 3.0; 625 xi = 3.0; 653 xe0 = Encu(p0l, p0t, xi); 626 xe0 = Encu(p0l, p0t, xi); >> 627 //G4cout << "ENCU1 "<< xe0 << G4endl; 654 xepm = Encu(ppml, ppmt, xi); 628 xepm = Encu(ppml, ppmt, xi); >> 629 //G4cout << "ENCU2 "<< xepm << G4endl; 655 } 630 } 656 else 631 else 657 { 632 { 658 const G4double ay00 = 2.82, by00 = 6.35; 633 const G4double ay00 = 2.82, by00 = 6.35; 659 const G4double aa00 = -1.75, ba00 = 0.25 634 const G4double aa00 = -1.75, ba00 = 0.25; 660 635 661 const G4double aw0 = 0.028, bw0 = 5., cw 636 const G4double aw0 = 0.028, bw0 = 5., cw0 = -50.; 662 const G4double axc0 = 3.14213, bxc0 = -2 637 const G4double axc0 = 3.14213, bxc0 = -2.3, cxc0 = 5.7; 663 const G4double ay0p = 1.56, by0p = 3.6; 638 const G4double ay0p = 1.56, by0p = 3.6; 664 const G4double aap = 0.86, bap = 8.3E-3; 639 const G4double aap = 0.86, bap = 8.3E-3; 665 const G4double awp = 0.022, bwp = 7.4, c 640 const G4double awp = 0.022, bwp = 7.4, cwp = -51.; 666 const G4double xcp = 3.1486; 641 const G4double xcp = 3.1486; 667 642 668 p0l[0] = Fln(ay00, by00, Ene); 643 p0l[0] = Fln(ay00, by00, Ene); 669 p0l[1] = aa00+pow(Ene, ba00); 644 p0l[1] = aa00+pow(Ene, ba00); 670 p0l[2] = Poli(aw0, bw0, cw0, Ene); 645 p0l[2] = Poli(aw0, bw0, cw0, Ene); 671 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 646 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 672 ppml[0] = Fln(ay0p, by0p, Ene); 647 ppml[0] = Fln(ay0p, by0p, Ene); 673 ppml[1] = aap + bap*(Ene); 648 ppml[1] = aap + bap*(Ene); 674 ppml[2] = Poli(awp, bwp, cwp, Ene); 649 ppml[2] = Poli(awp, bwp, cwp, Ene); 675 ppml[3] = xcp; 650 ppml[3] = xcp; >> 651 676 } 652 } 677 653 678 G4double a,b=0.; 654 G4double a,b=0.; 679 655 680 if (Ene>=50.) 656 if (Ene>=50.) 681 { 657 { 682 if (PhiLocal>xepm) 658 if (PhiLocal>xepm) 683 { 659 { 684 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor( 660 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 685 } 661 } 686 else 662 else 687 { 663 { 688 b = Ftan(ppmt,PhiLocal); 664 b = Ftan(ppmt,PhiLocal); 689 } 665 } 690 if (PhiLocal>xe0) 666 if (PhiLocal>xe0) 691 { 667 { 692 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l 668 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 693 } 669 } 694 else 670 else 695 { 671 { 696 a = Ftan(p0t,PhiLocal); 672 a = Ftan(p0t,PhiLocal); 697 } 673 } 698 } 674 } 699 else 675 else 700 { 676 { 701 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml 677 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 702 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,Phi 678 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 703 } 679 } 704 G4double nr =0.; 680 G4double nr =0.; 705 681 706 if (b>a) 682 if (b>a) 707 { 683 { 708 nr = 1./b; 684 nr = 1./b; 709 } 685 } 710 else 686 else 711 { 687 { 712 nr = 1./a; 688 nr = 1./a; 713 } 689 } 714 690 715 G4double r1,r2=0.; 691 G4double r1,r2=0.; 716 G4double r3 =-1.; 692 G4double r3 =-1.; 717 do 693 do 718 { 694 { 719 r1 = G4UniformRand(); 695 r1 = G4UniformRand(); 720 r2 = G4UniformRand(); 696 r2 = G4UniformRand(); 721 //value = r2*pi; << 697 value = r2*pi; 722 value = 2.*r2*pi; << 723 r3 = nr*(a*cos(value)*cos(value) + b*sin 698 r3 = nr*(a*cos(value)*cos(value) + b*sin(value)*sin(value)); 724 }while(r1>r3); 699 }while(r1>r3); 725 700 726 return value; 701 return value; 727 } 702 } 728 703 729 //....oooOO0OOooo........oooOO0OOooo........oo << 730 704 731 G4double G4LivermorePolarizedGammaConversionMo 705 G4double G4LivermorePolarizedGammaConversionModel::Poli 732 (G4double a, G4double b, G4double c, G4double 706 (G4double a, G4double b, G4double c, G4double x) 733 { 707 { 734 G4double value=0.; 708 G4double value=0.; 735 if(x>0.) 709 if(x>0.) 736 { 710 { 737 value =(a + b/x + c/(x*x*x)); 711 value =(a + b/x + c/(x*x*x)); 738 } 712 } 739 else 713 else 740 { 714 { 741 //G4cout << "ERROR in Poli! " << G4endl; 715 //G4cout << "ERROR in Poli! " << G4endl; 742 } 716 } 743 return value; 717 return value; 744 } 718 } 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 G4double G4LivermorePolarizedGammaConversionMo 719 G4double G4LivermorePolarizedGammaConversionModel::Fln 749 (G4double a, G4double b, G4double x) 720 (G4double a, G4double b, G4double x) 750 { 721 { 751 G4double value=0.; 722 G4double value=0.; 752 if(x>0.) 723 if(x>0.) 753 { 724 { 754 value =(a*log(x)-b); 725 value =(a*log(x)-b); 755 } 726 } 756 else 727 else 757 { 728 { 758 //G4cout << "ERROR in Fln! " << G4endl; 729 //G4cout << "ERROR in Fln! " << G4endl; 759 } 730 } 760 return value; 731 return value; 761 } 732 } 762 733 763 //....oooOO0OOooo........oooOO0OOooo........oo << 764 734 765 G4double G4LivermorePolarizedGammaConversionMo 735 G4double G4LivermorePolarizedGammaConversionModel::Encu 766 (G4double* p_p1, G4double* p_p2, G4double x0) 736 (G4double* p_p1, G4double* p_p2, G4double x0) 767 { 737 { 768 G4int i=0; 738 G4int i=0; 769 G4double fx = 1.; 739 G4double fx = 1.; 770 G4double x = x0; 740 G4double x = x0; 771 const G4double xmax = 3.0; 741 const G4double xmax = 3.0; 772 742 773 for(i=0; i<100; ++i) 743 for(i=0; i<100; ++i) 774 { 744 { 775 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p 745 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x))/ 776 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 746 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 777 x -= fx; 747 x -= fx; 778 if(x > xmax) { return xmax; } 748 if(x > xmax) { return xmax; } >> 749 // x -= (Flor(p_p1, x)*Glor(p_p1,x) - Ftan(p_p2, x))/ >> 750 // (Fdlor(p_p1,x) - Fdtan(p_p2,x)); >> 751 // fx = Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x); >> 752 // G4cout << std::fabs(fx) << " " << i << " " << x << "dentro ENCU " << G4endl; 779 if(std::fabs(fx) <= x*1.0e-6) { break; } 753 if(std::fabs(fx) <= x*1.0e-6) { break; } 780 } 754 } 781 755 782 if(x < 0.0) { x = 0.0; } 756 if(x < 0.0) { x = 0.0; } 783 return x; 757 return x; 784 } 758 } 785 759 786 //....oooOO0OOooo........oooOO0OOooo........oo << 787 760 788 G4double G4LivermorePolarizedGammaConversionMo 761 G4double G4LivermorePolarizedGammaConversionModel::Flor(G4double* p_p1, G4double x) 789 { 762 { 790 G4double value =0.; 763 G4double value =0.; >> 764 // G4double y0 = p_p1[0]; >> 765 // G4double A = p_p1[1]; 791 G4double w = p_p1[2]; 766 G4double w = p_p1[2]; 792 G4double xc = p_p1[3]; 767 G4double xc = p_p1[3]; 793 768 794 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 769 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 795 return value; 770 return value; 796 } 771 } 797 772 798 //....oooOO0OOooo........oooOO0OOooo........oo << 799 773 800 G4double G4LivermorePolarizedGammaConversionMo 774 G4double G4LivermorePolarizedGammaConversionModel::Glor(G4double* p_p1, G4double x) 801 { 775 { 802 G4double value =0.; 776 G4double value =0.; 803 G4double y0 = p_p1[0]; 777 G4double y0 = p_p1[0]; 804 G4double A = p_p1[1]; 778 G4double A = p_p1[1]; 805 G4double w = p_p1[2]; 779 G4double w = p_p1[2]; 806 G4double xc = p_p1[3]; 780 G4double xc = p_p1[3]; 807 781 808 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 782 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 2.*A*w); 809 return value; 783 return value; 810 } 784 } 811 785 812 //....oooOO0OOooo........oooOO0OOooo........oo << 813 786 814 G4double G4LivermorePolarizedGammaConversionMo 787 G4double G4LivermorePolarizedGammaConversionModel::Fdlor(G4double* p_p1, G4double x) 815 { 788 { 816 G4double value =0.; 789 G4double value =0.; >> 790 //G4double y0 = p_p1[0]; 817 G4double A = p_p1[1]; 791 G4double A = p_p1[1]; 818 G4double w = p_p1[2]; 792 G4double w = p_p1[2]; 819 G4double xc = p_p1[3]; 793 G4double xc = p_p1[3]; 820 794 821 value = (-16.*A*w*(x-xc))/ 795 value = (-16.*A*w*(x-xc))/ 822 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)* 796 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)*(x-xc))); 823 return value; 797 return value; 824 } 798 } 825 799 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 800 828 G4double G4LivermorePolarizedGammaConversionMo 801 G4double G4LivermorePolarizedGammaConversionModel::Fintlor(G4double* p_p1, G4double x) 829 { 802 { 830 G4double value =0.; 803 G4double value =0.; 831 G4double y0 = p_p1[0]; 804 G4double y0 = p_p1[0]; 832 G4double A = p_p1[1]; 805 G4double A = p_p1[1]; 833 G4double w = p_p1[2]; 806 G4double w = p_p1[2]; 834 G4double xc = p_p1[3]; 807 G4double xc = p_p1[3]; 835 808 836 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 809 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 837 return value; 810 return value; 838 } 811 } 839 812 840 813 841 G4double G4LivermorePolarizedGammaConversionMo 814 G4double G4LivermorePolarizedGammaConversionModel::Finvlor(G4double* p_p1, G4double x, G4double r) 842 { 815 { 843 G4double value = 0.; 816 G4double value = 0.; 844 G4double nor = 0.; 817 G4double nor = 0.; >> 818 //G4double y0 = p_p1[0]; >> 819 // G4double A = p_p1[1]; 845 G4double w = p_p1[2]; 820 G4double w = p_p1[2]; 846 G4double xc = p_p1[3]; 821 G4double xc = p_p1[3]; 847 822 848 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2. 823 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2.*(x-xc)/w)/(2.*pi*w); 849 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan( 824 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan(2*(xc-x)/w)); 850 825 851 return value; 826 return value; 852 } 827 } 853 828 854 //....oooOO0OOooo........oooOO0OOooo........oo << 855 829 856 G4double G4LivermorePolarizedGammaConversionMo 830 G4double G4LivermorePolarizedGammaConversionModel::Ftan(G4double* p_p1, G4double x) 857 { 831 { 858 G4double value =0.; 832 G4double value =0.; 859 G4double a = p_p1[0]; 833 G4double a = p_p1[0]; 860 G4double b = p_p1[1]; 834 G4double b = p_p1[1]; 861 835 862 value = a /(x-b); 836 value = a /(x-b); 863 return value; 837 return value; 864 } 838 } 865 839 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 840 868 G4double G4LivermorePolarizedGammaConversionMo 841 G4double G4LivermorePolarizedGammaConversionModel::Fdtan(G4double* p_p1, G4double x) 869 { 842 { 870 G4double value =0.; 843 G4double value =0.; 871 G4double a = p_p1[0]; 844 G4double a = p_p1[0]; 872 G4double b = p_p1[1]; 845 G4double b = p_p1[1]; 873 846 874 value = -1.*a / ((x-b)*(x-b)); 847 value = -1.*a / ((x-b)*(x-b)); 875 return value; 848 return value; 876 } 849 } 877 850 878 //....oooOO0OOooo........oooOO0OOooo........oo << 879 851 880 G4double G4LivermorePolarizedGammaConversionMo 852 G4double G4LivermorePolarizedGammaConversionModel::Finttan(G4double* p_p1, G4double x) 881 { 853 { 882 G4double value =0.; 854 G4double value =0.; 883 G4double a = p_p1[0]; 855 G4double a = p_p1[0]; 884 G4double b = p_p1[1]; 856 G4double b = p_p1[1]; 885 857 >> 858 886 value = a*log(b-x); 859 value = a*log(b-x); 887 return value; 860 return value; 888 } 861 } 889 862 890 //....oooOO0OOooo........oooOO0OOooo........oo << 891 863 892 G4double G4LivermorePolarizedGammaConversionMo 864 G4double G4LivermorePolarizedGammaConversionModel::Finvtan(G4double* p_p1, G4double cnor, G4double r) 893 { 865 { 894 G4double value =0.; 866 G4double value =0.; 895 G4double a = p_p1[0]; 867 G4double a = p_p1[0]; 896 G4double b = p_p1[1]; 868 G4double b = p_p1[1]; 897 869 898 value = b*(1-G4Exp(r*cnor/a)); << 870 value = b*(1-exp(r*cnor/a)); 899 871 900 return value; 872 return value; 901 } 873 } 902 874 >> 875 >> 876 >> 877 903 //....oooOO0OOooo........oooOO0OOooo........oo 878 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 879 905 G4ThreeVector G4LivermorePolarizedGammaConvers 880 G4ThreeVector G4LivermorePolarizedGammaConversionModel::SetPerpendicularVector(G4ThreeVector& a) 906 { 881 { 907 G4double dx = a.x(); 882 G4double dx = a.x(); 908 G4double dy = a.y(); 883 G4double dy = a.y(); 909 G4double dz = a.z(); 884 G4double dz = a.z(); 910 G4double x = dx < 0.0 ? -dx : dx; 885 G4double x = dx < 0.0 ? -dx : dx; 911 G4double y = dy < 0.0 ? -dy : dy; 886 G4double y = dy < 0.0 ? -dy : dy; 912 G4double z = dz < 0.0 ? -dz : dz; 887 G4double z = dz < 0.0 ? -dz : dz; 913 if (x < y) { 888 if (x < y) { 914 return x < z ? G4ThreeVector(-dy,dx,0) : G 889 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy); 915 }else{ 890 }else{ 916 return y < z ? G4ThreeVector(dz,0,-dx) : G 891 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0); 917 } 892 } 918 } 893 } 919 894 920 //....oooOO0OOooo........oooOO0OOooo........oo 895 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 921 896 922 G4ThreeVector G4LivermorePolarizedGammaConvers 897 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetRandomPolarization(G4ThreeVector& direction0) 923 { 898 { 924 G4ThreeVector d0 = direction0.unit(); 899 G4ThreeVector d0 = direction0.unit(); 925 G4ThreeVector a1 = SetPerpendicularVector(d0 900 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal 926 G4ThreeVector a0 = a1.unit(); // unit vector 901 G4ThreeVector a0 = a1.unit(); // unit vector 927 902 928 G4double rand1 = G4UniformRand(); 903 G4double rand1 = G4UniformRand(); 929 904 930 G4double angle = twopi*rand1; // random pola 905 G4double angle = twopi*rand1; // random polar angle 931 G4ThreeVector b0 = d0.cross(a0); // cross pr 906 G4ThreeVector b0 = d0.cross(a0); // cross product 932 907 933 G4ThreeVector c; 908 G4ThreeVector c; 934 909 935 c.setX(std::cos(angle)*(a0.x())+std::sin(ang 910 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x()); 936 c.setY(std::cos(angle)*(a0.y())+std::sin(ang 911 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y()); 937 c.setZ(std::cos(angle)*(a0.z())+std::sin(ang 912 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z()); 938 913 939 G4ThreeVector c0 = c.unit(); 914 G4ThreeVector c0 = c.unit(); 940 915 941 return c0; << 916 return c0; >> 917 942 } 918 } 943 919 944 //....oooOO0OOooo........oooOO0OOooo........oo 920 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 945 921 946 G4ThreeVector G4LivermorePolarizedGammaConvers 922 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetPerpendicularPolarization 947 (const G4ThreeVector& gammaDirection, const G4 923 (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const 948 { 924 { >> 925 949 // 926 // 950 // The polarization of a photon is always pe 927 // The polarization of a photon is always perpendicular to its momentum direction. 951 // Therefore this function removes those vec 928 // Therefore this function removes those vector component of gammaPolarization, which 952 // points in direction of gammaDirection 929 // points in direction of gammaDirection 953 // 930 // 954 // Mathematically we search the projection o 931 // Mathematically we search the projection of the vector a on the plane E, where n is the 955 // plains normal vector. 932 // plains normal vector. 956 // The basic equation can be found in each g 933 // The basic equation can be found in each geometry book (e.g. Bronstein): 957 // p = a - (a o n)/(n o n)*n 934 // p = a - (a o n)/(n o n)*n 958 935 959 return gammaPolarization - gammaPolarization 936 return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection; 960 } 937 } 961 938 962 //....oooOO0OOooo........oooOO0OOooo........oo 939 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 963 940 >> 941 964 void G4LivermorePolarizedGammaConversionModel: 942 void G4LivermorePolarizedGammaConversionModel::SystemOfRefChange 965 (G4ThreeVector& direction0,G4ThreeVector& 943 (G4ThreeVector& direction0,G4ThreeVector& direction1, 966 G4ThreeVector& polarization0) 944 G4ThreeVector& polarization0) 967 { 945 { 968 // direction0 is the original photon directi 946 // direction0 is the original photon direction ---> z 969 // polarization0 is the original photon pola 947 // polarization0 is the original photon polarization ---> x 970 // need to specify y axis in the real refere 948 // need to specify y axis in the real reference frame ---> y 971 G4ThreeVector Axis_Z0 = direction0.unit(); 949 G4ThreeVector Axis_Z0 = direction0.unit(); 972 G4ThreeVector Axis_X0 = polarization0.unit() 950 G4ThreeVector Axis_X0 = polarization0.unit(); 973 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_ 951 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed; 974 952 975 G4double direction_x = direction1.getX(); 953 G4double direction_x = direction1.getX(); 976 G4double direction_y = direction1.getY(); 954 G4double direction_y = direction1.getY(); 977 G4double direction_z = direction1.getZ(); 955 G4double direction_z = direction1.getZ(); 978 956 979 direction1 = (direction_x*Axis_X0 + directio << 957 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit(); >> 958 980 } 959 } 981 960 982 //....oooOO0OOooo........oooOO0OOooo........oo << 983 961 984 void G4LivermorePolarizedGammaConversionModel: << 962 985 const G4ParticleDefiniti << 963 986 G4int Z) << 987 { << 988 G4AutoLock l(&LivermorePolarizedGammaConvers << 989 if(!data[Z]) { ReadData(Z); } << 990 l.unlock(); << 991 } << 992 964