Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Authors: G.Depaola & F.Longo 27 // Authors: G.Depaola & F.Longo 28 // 28 // 29 // 29 // 30 30 31 #include "G4LivermorePolarizedGammaConversionM 31 #include "G4LivermorePolarizedGammaConversionModel.hh" 32 #include "G4PhysicalConstants.hh" 32 #include "G4PhysicalConstants.hh" 33 #include "G4SystemOfUnits.hh" 33 #include "G4SystemOfUnits.hh" 34 #include "G4Electron.hh" 34 #include "G4Electron.hh" 35 #include "G4Positron.hh" 35 #include "G4Positron.hh" 36 #include "G4ParticleChangeForGamma.hh" 36 #include "G4ParticleChangeForGamma.hh" 37 #include "G4Log.hh" 37 #include "G4Log.hh" 38 #include "G4AutoLock.hh" << 39 #include "G4Exp.hh" 38 #include "G4Exp.hh" 40 #include "G4ProductionCutsTable.hh" 39 #include "G4ProductionCutsTable.hh" 41 40 42 //....oooOO0OOooo........oooOO0OOooo........oo 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 42 44 using namespace std; 43 using namespace std; 45 namespace { G4Mutex LivermorePolarizedGammaCon << 46 44 47 G4PhysicsFreeVector* G4LivermorePolarizedGamma << 45 G4int G4LivermorePolarizedGammaConversionModel::maxZ = 99; >> 46 G4LPhysicsFreeVector* G4LivermorePolarizedGammaConversionModel::data[] = {0}; 48 47 49 //....oooOO0OOooo........oooOO0OOooo........oo 48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 49 51 G4LivermorePolarizedGammaConversionModel::G4Li 50 G4LivermorePolarizedGammaConversionModel::G4LivermorePolarizedGammaConversionModel( 52 const G4ParticleDefinition*, const G4String 51 const G4ParticleDefinition*, const G4String& nam) 53 :G4VEmModel(nam), smallEnergy(2.*MeV), isIni << 52 :G4VEmModel(nam), isInitialised(false),smallEnergy(2.*MeV) 54 { 53 { 55 fParticleChange = nullptr; 54 fParticleChange = nullptr; 56 lowEnergyLimit = 2*electron_mass_c2; 55 lowEnergyLimit = 2*electron_mass_c2; 57 56 58 Phi=0.; 57 Phi=0.; 59 Psi=0.; 58 Psi=0.; 60 59 61 verboseLevel= 0; 60 verboseLevel= 0; 62 // Verbosity scale: 61 // Verbosity scale: 63 // 0 = nothing 62 // 0 = nothing 64 // 1 = calculation of cross sections, file o 63 // 1 = calculation of cross sections, file openings, samping of atoms 65 // 2 = entering in methods 64 // 2 = entering in methods 66 65 67 if(verboseLevel > 0) { 66 if(verboseLevel > 0) { 68 G4cout << "Livermore Polarized GammaConver 67 G4cout << "Livermore Polarized GammaConversion is constructed " 69 << G4endl; 68 << G4endl; 70 } 69 } 71 70 72 } 71 } 73 72 74 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 74 76 G4LivermorePolarizedGammaConversionModel::~G4L 75 G4LivermorePolarizedGammaConversionModel::~G4LivermorePolarizedGammaConversionModel() 77 { 76 { 78 if(IsMaster()) { 77 if(IsMaster()) { 79 for(G4int i=0; i<maxZ; ++i) { 78 for(G4int i=0; i<maxZ; ++i) { 80 if(data[i]) { 79 if(data[i]) { 81 delete data[i]; 80 delete data[i]; 82 data[i] = nullptr; << 81 data[i] = 0; 83 } 82 } 84 } 83 } 85 } 84 } 86 } 85 } 87 86 88 //....oooOO0OOooo........oooOO0OOooo........oo 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 89 88 90 void G4LivermorePolarizedGammaConversionModel: 89 void G4LivermorePolarizedGammaConversionModel::Initialise(const G4ParticleDefinition* particle, 91 const G 90 const G4DataVector& cuts) 92 { 91 { 93 if (verboseLevel > 1) 92 if (verboseLevel > 1) 94 { 93 { 95 G4cout << "Calling1 G4LivermorePolarized 94 G4cout << "Calling1 G4LivermorePolarizedGammaConversionModel::Initialise()" 96 << G4endl 95 << G4endl 97 << "Energy range: " 96 << "Energy range: " 98 << LowEnergyLimit() / MeV << " MeV - " 97 << LowEnergyLimit() / MeV << " MeV - " 99 << HighEnergyLimit() / GeV << " G 98 << HighEnergyLimit() / GeV << " GeV" 100 << G4endl; 99 << G4endl; 101 } 100 } 102 101 >> 102 103 if(IsMaster()) 103 if(IsMaster()) 104 { 104 { 105 // Initialise element selector << 105 >> 106 // Initialise element selector >> 107 106 InitialiseElementSelectors(particle, cut 108 InitialiseElementSelectors(particle, cuts); 107 109 108 // Access to elements 110 // Access to elements 109 const char* path = G4FindDataDir("G4LEDA << 111 >> 112 char* path = std::getenv("G4LEDATA"); 110 113 111 G4ProductionCutsTable* theCoupleTable = 114 G4ProductionCutsTable* theCoupleTable = 112 G4ProductionCutsTable::GetProductionCutsTabl 115 G4ProductionCutsTable::GetProductionCutsTable(); 113 116 114 G4int numOfCouples = (G4int)theCoupleTab << 117 G4int numOfCouples = theCoupleTable->GetTableSize(); 115 118 116 for(G4int i=0; i<numOfCouples; ++i) 119 for(G4int i=0; i<numOfCouples; ++i) 117 { 120 { 118 const G4Material* material = 121 const G4Material* material = 119 theCoupleTable->GetMaterialCutsCouple(i) 122 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 120 const G4ElementVector* theElementVector = 123 const G4ElementVector* theElementVector = material->GetElementVector(); 121 std::size_t nelm = material->GetNumberOfEl << 124 G4int nelm = material->GetNumberOfElements(); 122 125 123 for (std::size_t j=0; j<nelm; ++j) << 126 for (G4int j=0; j<nelm; ++j) 124 { 127 { 125 G4int Z = (G4int)(*theElementVector)[j 128 G4int Z = (G4int)(*theElementVector)[j]->GetZ(); 126 if(Z < 1) { Z = 1; } 129 if(Z < 1) { Z = 1; } 127 else if(Z > maxZ) { Z = maxZ; } 130 else if(Z > maxZ) { Z = maxZ; } 128 if(!data[Z]) { ReadData(Z, path); } 131 if(!data[Z]) { ReadData(Z, path); } 129 } 132 } 130 } 133 } 131 } 134 } 132 if(isInitialised) { return; } 135 if(isInitialised) { return; } 133 fParticleChange = GetParticleChangeForGamma( 136 fParticleChange = GetParticleChangeForGamma(); 134 isInitialised = true; 137 isInitialised = true; >> 138 135 } 139 } 136 140 >> 141 137 //....oooOO0OOooo........oooOO0OOooo........oo 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 143 139 void G4LivermorePolarizedGammaConversionModel: 144 void G4LivermorePolarizedGammaConversionModel::InitialiseLocal( 140 const G4ParticleDefinition*, G4VEmModel* 145 const G4ParticleDefinition*, G4VEmModel* masterModel) 141 { 146 { 142 SetElementSelectors(masterModel->GetElementS 147 SetElementSelectors(masterModel->GetElementSelectors()); 143 } 148 } 144 149 145 //....oooOO0OOooo........oooOO0OOooo........oo 150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 151 147 G4double G4LivermorePolarizedGammaConversionMo 152 G4double G4LivermorePolarizedGammaConversionModel::MinPrimaryEnergy(const G4Material*, 148 const G4ParticleDefinition*, G4doub 153 const G4ParticleDefinition*, G4double) 149 { 154 { 150 return lowEnergyLimit; 155 return lowEnergyLimit; 151 } 156 } 152 157 153 //....oooOO0OOooo........oooOO0OOooo........oo 158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 154 159 155 void G4LivermorePolarizedGammaConversionModel: << 160 void G4LivermorePolarizedGammaConversionModel::ReadData(size_t Z, const char* path) 156 { 161 { 157 if (verboseLevel > 1) 162 if (verboseLevel > 1) 158 { 163 { 159 G4cout << "Calling ReadData() of G4Liver 164 G4cout << "Calling ReadData() of G4LivermorePolarizedGammaConversionModel" 160 << G4endl; 165 << G4endl; 161 } 166 } 162 167 163 if(data[Z]) { return; } 168 if(data[Z]) { return; } 164 169 165 const char* datadir = path; 170 const char* datadir = path; 166 171 167 if(!datadir) 172 if(!datadir) 168 { 173 { 169 datadir = G4FindDataDir("G4LEDATA"); << 174 datadir = std::getenv("G4LEDATA"); 170 if(!datadir) 175 if(!datadir) 171 { 176 { 172 G4Exception("G4LivermorePolarizedGammaConv 177 G4Exception("G4LivermorePolarizedGammaConversionModel::ReadData()", 173 "em0006",FatalException, 178 "em0006",FatalException, 174 "Environment variable G4LEDATA not d 179 "Environment variable G4LEDATA not defined"); 175 return; 180 return; 176 } 181 } 177 } 182 } 178 // << 183 179 data[Z] = new G4PhysicsFreeVector(0,/*spline << 184 // >> 185 >> 186 data[Z] = new G4LPhysicsFreeVector(); >> 187 180 // 188 // >> 189 181 std::ostringstream ost; 190 std::ostringstream ost; 182 ost << datadir << "/livermore/pair/pp-cs-" < 191 ost << datadir << "/livermore/pair/pp-cs-" << Z <<".dat"; 183 std::ifstream fin(ost.str().c_str()); 192 std::ifstream fin(ost.str().c_str()); 184 193 185 if( !fin.is_open()) 194 if( !fin.is_open()) 186 { 195 { 187 G4ExceptionDescription ed; 196 G4ExceptionDescription ed; 188 ed << "G4LivermorePolarizedGammaConversi 197 ed << "G4LivermorePolarizedGammaConversionModel data file <" << ost.str().c_str() 189 << "> is not opened!" << G4endl; 198 << "> is not opened!" << G4endl; 190 G4Exception("G4LivermorePolarizedGammaCo 199 G4Exception("G4LivermorePolarizedGammaConversionModel::ReadData()", 191 "em0003",FatalException, 200 "em0003",FatalException, 192 ed,"G4LEDATA version should be G4EMLOW6. 201 ed,"G4LEDATA version should be G4EMLOW6.27 or later."); 193 return; 202 return; 194 } 203 } 195 else 204 else 196 { 205 { 197 206 198 if(verboseLevel > 3) { G4cout << "File " 207 if(verboseLevel > 3) { G4cout << "File " << ost.str() 199 << " is opened by G4LivermorePolar 208 << " is opened by G4LivermorePolarizedGammaConversionModel" << G4endl;} 200 209 201 data[Z]->Retrieve(fin, true); 210 data[Z]->Retrieve(fin, true); 202 } 211 } 203 212 204 // Activation of spline interpolation 213 // Activation of spline interpolation 205 data[Z]->FillSecondDerivatives(); << 214 data[Z] ->SetSpline(true); 206 215 207 } 216 } 208 217 209 //....oooOO0OOooo........oooOO0OOooo........oo 218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 210 219 211 G4double G4LivermorePolarizedGammaConversionMo 220 G4double G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom( 212 const G 221 const G4ParticleDefinition*, 213 G4double GammaEnergy, 222 G4double GammaEnergy, 214 G4double Z, G4double, 223 G4double Z, G4double, 215 G4double, G4double) 224 G4double, G4double) 216 { 225 { 217 if (verboseLevel > 1) { 226 if (verboseLevel > 1) { 218 G4cout << "G4LivermorePolarizedGammaConver 227 G4cout << "G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom()" 219 << G4endl; 228 << G4endl; 220 } 229 } 221 if (GammaEnergy < lowEnergyLimit) { return 0 230 if (GammaEnergy < lowEnergyLimit) { return 0.0; } 222 231 223 G4double xs = 0.0; 232 G4double xs = 0.0; 224 233 225 G4int intZ=G4int(Z); 234 G4int intZ=G4int(Z); 226 235 227 if(intZ < 1 || intZ > maxZ) { return xs; } 236 if(intZ < 1 || intZ > maxZ) { return xs; } 228 237 229 G4PhysicsFreeVector* pv = data[intZ]; << 238 G4LPhysicsFreeVector* pv = data[intZ]; 230 239 231 // if element was not initialised 240 // if element was not initialised 232 // do initialisation safely for MT mode 241 // do initialisation safely for MT mode 233 if(!pv) 242 if(!pv) 234 { 243 { 235 InitialiseForElement(0, intZ); 244 InitialiseForElement(0, intZ); 236 pv = data[intZ]; 245 pv = data[intZ]; 237 if(!pv) { return xs; } 246 if(!pv) { return xs; } 238 } 247 } 239 // x-section is taken from the table 248 // x-section is taken from the table 240 xs = pv->Value(GammaEnergy); 249 xs = pv->Value(GammaEnergy); 241 250 242 if(verboseLevel > 0) 251 if(verboseLevel > 0) 243 { 252 { 244 G4int n = G4int(pv->GetVectorLength() - << 253 G4int n = pv->GetVectorLength() - 1; 245 G4cout << "****** DEBUG: tcs value for 254 G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)=" 246 << GammaEnergy/MeV << G4endl; 255 << GammaEnergy/MeV << G4endl; 247 G4cout << " cs (Geant4 internal unit) 256 G4cout << " cs (Geant4 internal unit)=" << xs << G4endl; 248 G4cout << " -> first cs value in EA 257 G4cout << " -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl; 249 G4cout << " -> last cs value in EA 258 G4cout << " -> last cs value in EADL data file (iu) =" << (*pv)[n] << G4endl; 250 G4cout << "*************************** 259 G4cout << "*********************************************************" << G4endl; 251 } 260 } 252 261 253 return xs; 262 return xs; 254 } 263 } 255 264 256 //....oooOO0OOooo........oooOO0OOooo........oo 265 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 257 266 258 void 267 void 259 G4LivermorePolarizedGammaConversionModel::Samp 268 G4LivermorePolarizedGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 260 const G4MaterialCutsCouple* 269 const G4MaterialCutsCouple* couple, 261 const G4DynamicParticle* aDy 270 const G4DynamicParticle* aDynamicGamma, 262 G4double, 271 G4double, 263 G4double) 272 G4double) 264 { 273 { 265 274 266 // Fluorescence generated according to: 275 // Fluorescence generated according to: 267 // J. Stepanek ,"A program to determine the 276 // J. Stepanek ,"A program to determine the radiation spectra due to a single atomic 268 // subshell ionisation by a particle or due 277 // subshell ionisation by a particle or due to deexcitation or decay of radionuclides", 269 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) 278 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) >> 279 270 if (verboseLevel > 3) 280 if (verboseLevel > 3) 271 G4cout << "Calling SampleSecondaries() of 281 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedGammaConversionModel" << G4endl; 272 282 273 G4double photonEnergy = aDynamicGamma->GetKi 283 G4double photonEnergy = aDynamicGamma->GetKineticEnergy(); >> 284 // Within energy limit? 274 285 275 if(photonEnergy <= lowEnergyLimit) 286 if(photonEnergy <= lowEnergyLimit) 276 { 287 { 277 fParticleChange->ProposeTrackStatus(fSto 288 fParticleChange->ProposeTrackStatus(fStopAndKill); 278 fParticleChange->SetProposedKineticEnerg 289 fParticleChange->SetProposedKineticEnergy(0.); 279 return; 290 return; 280 } 291 } 281 292 >> 293 282 G4ThreeVector gammaPolarization0 = aDynamicG 294 G4ThreeVector gammaPolarization0 = aDynamicGamma->GetPolarization(); 283 G4ThreeVector gammaDirection0 = aDynamicGamm 295 G4ThreeVector gammaDirection0 = aDynamicGamma->GetMomentumDirection(); 284 296 285 // Make sure that the polarization vector is 297 // Make sure that the polarization vector is perpendicular to the 286 // gamma direction. If not 298 // gamma direction. If not >> 299 287 if(!(gammaPolarization0.isOrthogonal(gammaDi 300 if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0)) 288 { // only for testing now 301 { // only for testing now 289 gammaPolarization0 = GetRandomPolarizati 302 gammaPolarization0 = GetRandomPolarization(gammaDirection0); 290 } 303 } 291 else 304 else 292 { 305 { 293 if ( gammaPolarization0.howOrthogonal(ga 306 if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0) 294 { 307 { 295 gammaPolarization0 = GetPerpendicularPolar 308 gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0); 296 } 309 } 297 } 310 } 298 311 299 // End of Protection 312 // End of Protection 300 313 >> 314 301 G4double epsilon ; 315 G4double epsilon ; 302 G4double epsilon0Local = electron_mass_c2 / 316 G4double epsilon0Local = electron_mass_c2 / photonEnergy ; 303 317 304 // Do it fast if photon energy < 2. MeV 318 // Do it fast if photon energy < 2. MeV 305 319 306 if (photonEnergy < smallEnergy ) 320 if (photonEnergy < smallEnergy ) 307 { 321 { 308 epsilon = epsilon0Local + (0.5 - epsilon 322 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand(); 309 } 323 } 310 else 324 else 311 { 325 { 312 // Select randomly one element in the cu << 326 >> 327 // Select randomly one element in the current material >> 328 313 const G4ParticleDefinition* particle = 329 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 314 const G4Element* element = SelectRandomA 330 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy); 315 331 316 if (element == nullptr) << 332 >> 333 if (element == 0) 317 { 334 { 318 G4cout << "G4LivermorePolarizedGamma 335 G4cout << "G4LivermorePolarizedGammaConversionModel::SampleSecondaries - element = 0" << G4endl; 319 return; 336 return; 320 } 337 } 321 338 322 339 323 G4IonisParamElm* ionisation = element->G << 340 G4IonisParamElm* ionisation = element->GetIonisation(); 324 if (ionisation == nullptr) << 341 >> 342 if (ionisation == 0) 325 { 343 { 326 G4cout << "G4LivermorePolarizedGamma 344 G4cout << "G4LivermorePolarizedGammaConversionModel::SampleSecondaries - ionisation = 0" << G4endl; 327 return; 345 return; 328 } 346 } 329 347 330 // Extract Coulomb factor for this Eleme 348 // Extract Coulomb factor for this Element >> 349 331 G4double fZ = 8. * (ionisation->GetlogZ3 350 G4double fZ = 8. * (ionisation->GetlogZ3()); 332 if (photonEnergy > 50. * MeV) fZ += 8. * 351 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb()); 333 352 334 // Limits of the screening variable 353 // Limits of the screening variable 335 G4double screenFactor = 136. * epsilon0L 354 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ; 336 G4double screenMax = G4Exp ((42.24 - fZ) 355 G4double screenMax = G4Exp ((42.24 - fZ)/8.368) - 0.952 ; 337 G4double screenMin = std::min(4.*screenF 356 G4double screenMin = std::min(4.*screenFactor,screenMax) ; 338 357 339 // Limits of the energy sampling 358 // Limits of the energy sampling 340 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. 359 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. - screenMin / screenMax) ; 341 G4double epsilonMin = std::max(epsilon0L 360 G4double epsilonMin = std::max(epsilon0Local,epsilon1); 342 G4double epsilonRange = 0.5 - epsilonMin 361 G4double epsilonRange = 0.5 - epsilonMin ; 343 362 344 // Sample the energy rate of the created 363 // Sample the energy rate of the created electron (or positron) 345 G4double screen; 364 G4double screen; 346 G4double gReject ; 365 G4double gReject ; 347 366 348 G4double f10 = ScreenFunction1(screenMin 367 G4double f10 = ScreenFunction1(screenMin) - fZ; 349 G4double f20 = ScreenFunction2(screenMin 368 G4double f20 = ScreenFunction2(screenMin) - fZ; 350 G4double normF1 = std::max(f10 * epsilon 369 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.); 351 G4double normF2 = std::max(1.5 * f20,0.) 370 G4double normF2 = std::max(1.5 * f20,0.); 352 371 353 do { 372 do { 354 if (normF1 / (normF1 + normF2) > G4Uni 373 if (normF1 / (normF1 + normF2) > G4UniformRand() ) 355 { 374 { 356 epsilon = 0.5 - epsilonRange * pow 375 epsilon = 0.5 - epsilonRange * pow(G4UniformRand(), 0.3333) ; 357 screen = screenFactor / (epsilon * 376 screen = screenFactor / (epsilon * (1. - epsilon)); 358 gReject = (ScreenFunction1(screen) 377 gReject = (ScreenFunction1(screen) - fZ) / f10 ; 359 } 378 } 360 else 379 else 361 { 380 { 362 epsilon = epsilonMin + epsilonRang 381 epsilon = epsilonMin + epsilonRange * G4UniformRand(); 363 screen = screenFactor / (epsilon * 382 screen = screenFactor / (epsilon * (1 - epsilon)); 364 gReject = (ScreenFunction2(screen) 383 gReject = (ScreenFunction2(screen) - fZ) / f20 ; >> 384 >> 385 365 } 386 } 366 } while ( gReject < G4UniformRand() ); 387 } while ( gReject < G4UniformRand() ); >> 388 367 } // End of epsilon sampling 389 } // End of epsilon sampling 368 390 369 // Fix charges randomly 391 // Fix charges randomly >> 392 370 G4double electronTotEnergy; 393 G4double electronTotEnergy; 371 G4double positronTotEnergy; 394 G4double positronTotEnergy; 372 395 >> 396 >> 397 // if (G4int(2*G4UniformRand())) 373 if (G4UniformRand() > 0.5) 398 if (G4UniformRand() > 0.5) 374 { 399 { 375 electronTotEnergy = (1. - epsilon) * pho 400 electronTotEnergy = (1. - epsilon) * photonEnergy; 376 positronTotEnergy = epsilon * photonEner 401 positronTotEnergy = epsilon * photonEnergy; 377 } 402 } 378 else 403 else 379 { 404 { 380 positronTotEnergy = (1. - epsilon) * pho 405 positronTotEnergy = (1. - epsilon) * photonEnergy; 381 electronTotEnergy = epsilon * photonEner 406 electronTotEnergy = epsilon * photonEnergy; 382 } 407 } 383 408 384 // Scattered electron (positron) angles. ( Z 409 // Scattered electron (positron) angles. ( Z - axis along the parent photon) 385 // Universal distribution suggested by L. Ur 410 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211), 386 // derived from Tsai distribution (Rev. Mod. 411 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977) >> 412 >> 413 /* >> 414 G4double u; >> 415 const G4double a1 = 0.625; >> 416 G4double a2 = 3. * a1; >> 417 >> 418 if (0.25 > G4UniformRand()) >> 419 { >> 420 u = - log(G4UniformRand() * G4UniformRand()) / a1 ; >> 421 } >> 422 else >> 423 { >> 424 u = - log(G4UniformRand() * G4UniformRand()) / a2 ; >> 425 } >> 426 */ >> 427 387 G4double Ene = electronTotEnergy/electron_ma 428 G4double Ene = electronTotEnergy/electron_mass_c2; // Normalized energy 388 429 389 G4double cosTheta = 0.; 430 G4double cosTheta = 0.; 390 G4double sinTheta = 0.; 431 G4double sinTheta = 0.; 391 432 392 SetTheta(&cosTheta,&sinTheta,Ene); 433 SetTheta(&cosTheta,&sinTheta,Ene); >> 434 >> 435 // G4double theta = u * electron_mass_c2 / photonEnergy ; >> 436 // G4double phi = twopi * G4UniformRand() ; >> 437 393 G4double phi,psi=0.; 438 G4double phi,psi=0.; 394 439 395 //corrected e+ e- angular angular distributi 440 //corrected e+ e- angular angular distribution //preliminary! >> 441 >> 442 // if(photonEnergy>50*MeV) >> 443 // { 396 phi = SetPhi(photonEnergy); 444 phi = SetPhi(photonEnergy); 397 psi = SetPsi(photonEnergy,phi); 445 psi = SetPsi(photonEnergy,phi); >> 446 // } >> 447 //else >> 448 // { >> 449 //psi = G4UniformRand()*2.*pi; >> 450 //phi = pi; // coplanar >> 451 // } >> 452 398 Psi = psi; 453 Psi = psi; 399 Phi = phi; 454 Phi = phi; >> 455 //G4cout << "PHI " << phi << G4endl; >> 456 //G4cout << "PSI " << psi << G4endl; 400 457 401 G4double phie, phip; 458 G4double phie, phip; 402 G4double choice, choice2; 459 G4double choice, choice2; 403 choice = G4UniformRand(); 460 choice = G4UniformRand(); 404 choice2 = G4UniformRand(); 461 choice2 = G4UniformRand(); 405 462 406 if (choice2 <= 0.5) 463 if (choice2 <= 0.5) 407 { 464 { 408 // do nothing 465 // do nothing 409 // phi = phi; 466 // phi = phi; 410 } 467 } 411 else 468 else 412 { 469 { 413 phi = -phi; 470 phi = -phi; 414 } 471 } 415 472 416 if (choice <= 0.5) 473 if (choice <= 0.5) 417 { 474 { 418 phie = psi; //azimuthal angle for the el 475 phie = psi; //azimuthal angle for the electron 419 phip = phie+phi; //azimuthal angle for t 476 phip = phie+phi; //azimuthal angle for the positron 420 } 477 } 421 else 478 else 422 { 479 { 423 // opzione 1 phie / phip equivalenti 480 // opzione 1 phie / phip equivalenti >> 481 424 phip = psi; //azimuthal angle for the po 482 phip = psi; //azimuthal angle for the positron 425 phie = phip + phi; //azimuthal angle for 483 phie = phip + phi; //azimuthal angle for the electron 426 } 484 } 427 485 428 486 429 // Electron Kinematics 487 // Electron Kinematics >> 488 430 G4double dirX = sinTheta*cos(phie); 489 G4double dirX = sinTheta*cos(phie); 431 G4double dirY = sinTheta*sin(phie); 490 G4double dirY = sinTheta*sin(phie); 432 G4double dirZ = cosTheta; 491 G4double dirZ = cosTheta; 433 G4ThreeVector electronDirection(dirX,dirY,di 492 G4ThreeVector electronDirection(dirX,dirY,dirZ); 434 493 435 // Kinematics of the created pair: 494 // Kinematics of the created pair: 436 // the electron and positron are assumed to 495 // the electron and positron are assumed to have a symetric angular 437 // distribution with respect to the Z axis a 496 // distribution with respect to the Z axis along the parent photon 438 497 >> 498 //G4double localEnergyDeposit = 0. ; >> 499 439 G4double electronKineEnergy = std::max(0.,el 500 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; 440 501 441 SystemOfRefChange(gammaDirection0,electronDi 502 SystemOfRefChange(gammaDirection0,electronDirection, 442 gammaPolarization0); 503 gammaPolarization0); 443 504 444 G4DynamicParticle* particle1 = new G4Dynamic 505 G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(), 445 electronDirection, 506 electronDirection, 446 electronKineEnergy); 507 electronKineEnergy); 447 508 448 // The e+ is always created (even with kinet 509 // The e+ is always created (even with kinetic energy = 0) for further annihilation >> 510 449 Ene = positronTotEnergy/electron_mass_c2; // 511 Ene = positronTotEnergy/electron_mass_c2; // Normalized energy 450 512 451 cosTheta = 0.; 513 cosTheta = 0.; 452 sinTheta = 0.; 514 sinTheta = 0.; 453 515 454 SetTheta(&cosTheta,&sinTheta,Ene); 516 SetTheta(&cosTheta,&sinTheta,Ene); 455 517 456 // Positron Kinematics 518 // Positron Kinematics >> 519 457 dirX = sinTheta*cos(phip); 520 dirX = sinTheta*cos(phip); 458 dirY = sinTheta*sin(phip); 521 dirY = sinTheta*sin(phip); 459 dirZ = cosTheta; 522 dirZ = cosTheta; 460 G4ThreeVector positronDirection(dirX,dirY,di 523 G4ThreeVector positronDirection(dirX,dirY,dirZ); 461 524 462 G4double positronKineEnergy = std::max(0.,po 525 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ; 463 SystemOfRefChange(gammaDirection0,positronDi 526 SystemOfRefChange(gammaDirection0,positronDirection, 464 gammaPolarization0); 527 gammaPolarization0); 465 528 466 // Create G4DynamicParticle object for the p 529 // Create G4DynamicParticle object for the particle2 467 G4DynamicParticle* particle2 = new G4Dynamic 530 G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(), 468 531 positronDirection, positronKineEnergy); >> 532 >> 533 469 fvect->push_back(particle1); 534 fvect->push_back(particle1); 470 fvect->push_back(particle2); 535 fvect->push_back(particle2); 471 536 472 // Kill the incident photon 537 // Kill the incident photon 473 fParticleChange->SetProposedKineticEnergy(0. 538 fParticleChange->SetProposedKineticEnergy(0.); 474 fParticleChange->ProposeTrackStatus(fStopAnd 539 fParticleChange->ProposeTrackStatus(fStopAndKill); >> 540 475 } 541 } 476 542 477 //....oooOO0OOooo........oooOO0OOooo........oo 543 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 478 544 479 G4double G4LivermorePolarizedGammaConversionMo 545 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction1(G4double screenVariable) 480 { 546 { 481 // Compute the value of the screening functi 547 // Compute the value of the screening function 3*phi1 - phi2 >> 548 482 G4double value; 549 G4double value; >> 550 483 if (screenVariable > 1.) 551 if (screenVariable > 1.) 484 value = 42.24 - 8.368 * log(screenVariable 552 value = 42.24 - 8.368 * log(screenVariable + 0.952); 485 else 553 else 486 value = 42.392 - screenVariable * (7.796 - 554 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable); 487 555 488 return value; 556 return value; 489 } 557 } 490 558 491 559 492 560 493 G4double G4LivermorePolarizedGammaConversionMo 561 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction2(G4double screenVariable) 494 { 562 { 495 // Compute the value of the screening functi 563 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2 >> 564 496 G4double value; 565 G4double value; 497 566 498 if (screenVariable > 1.) 567 if (screenVariable > 1.) 499 value = 42.24 - 8.368 * log(screenVariable 568 value = 42.24 - 8.368 * log(screenVariable + 0.952); 500 else 569 else 501 value = 41.405 - screenVariable * (5.828 - 570 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable); 502 571 503 return value; 572 return value; 504 } 573 } 505 574 506 575 507 void G4LivermorePolarizedGammaConversionModel: 576 void G4LivermorePolarizedGammaConversionModel::SetTheta(G4double* p_cosTheta, G4double* p_sinTheta, G4double Energy) 508 { 577 { >> 578 509 // to avoid computational errors since Theta 579 // to avoid computational errors since Theta could be very small 510 // Energy in Normalized Units (!) 580 // Energy in Normalized Units (!) 511 581 512 G4double Momentum = sqrt(Energy*Energy -1); 582 G4double Momentum = sqrt(Energy*Energy -1); 513 G4double Rand = G4UniformRand(); 583 G4double Rand = G4UniformRand(); 514 584 515 *p_cosTheta = (Energy*((2*Rand)- 1) + Moment 585 *p_cosTheta = (Energy*((2*Rand)- 1) + Momentum)/((Momentum*(2*Rand-1))+Energy); 516 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momen 586 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momentum*(2*Rand-1)+Energy); 517 } 587 } 518 588 519 589 520 590 521 G4double G4LivermorePolarizedGammaConversionMo 591 G4double G4LivermorePolarizedGammaConversionModel::SetPhi(G4double Energy) 522 { 592 { >> 593 >> 594 523 G4double value = 0.; 595 G4double value = 0.; 524 G4double Ene = Energy/MeV; 596 G4double Ene = Energy/MeV; 525 597 526 G4double pl[4]; 598 G4double pl[4]; >> 599 >> 600 527 G4double pt[2]; 601 G4double pt[2]; 528 G4double xi = 0; 602 G4double xi = 0; 529 G4double xe = 0.; 603 G4double xe = 0.; 530 G4double n1=0.; 604 G4double n1=0.; 531 G4double n2=0.; 605 G4double n2=0.; 532 606 >> 607 533 if (Ene>=50.) 608 if (Ene>=50.) 534 { 609 { 535 const G4double ay0=5.6, by0=18.6, aa0=2. 610 const G4double ay0=5.6, by0=18.6, aa0=2.9, ba0 = 8.16E-3; 536 const G4double aw = 0.0151, bw = 10.7, c 611 const G4double aw = 0.0151, bw = 10.7, cw = -410.; 537 612 538 const G4double axc = 3.1455, bxc = -1.11 613 const G4double axc = 3.1455, bxc = -1.11, cxc = 310.; 539 614 540 pl[0] = Fln(ay0,by0,Ene); 615 pl[0] = Fln(ay0,by0,Ene); 541 pl[1] = aa0 + ba0*(Ene); 616 pl[1] = aa0 + ba0*(Ene); 542 pl[2] = Poli(aw,bw,cw,Ene); 617 pl[2] = Poli(aw,bw,cw,Ene); 543 pl[3] = Poli(axc,bxc,cxc,Ene); 618 pl[3] = Poli(axc,bxc,cxc,Ene); 544 619 545 const G4double abf = 3.1216, bbf = 2.68; 620 const G4double abf = 3.1216, bbf = 2.68; 546 pt[0] = -1.4; 621 pt[0] = -1.4; 547 pt[1] = abf + bbf/Ene; 622 pt[1] = abf + bbf/Ene; 548 623 >> 624 >> 625 >> 626 //G4cout << "PL > 50. "<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 627 549 xi = 3.0; 628 xi = 3.0; 550 xe = Encu(pl,pt,xi); 629 xe = Encu(pl,pt,xi); >> 630 //G4cout << "ENCU "<< xe << G4endl; 551 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 631 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 552 n2 = Finttan(pt,xe) - Finttan(pt,0.); 632 n2 = Finttan(pt,xe) - Finttan(pt,0.); 553 } 633 } 554 else 634 else 555 { 635 { 556 const G4double ay0=0.144, by0=0.11; 636 const G4double ay0=0.144, by0=0.11; 557 const G4double aa0=2.7, ba0 = 2.74; 637 const G4double aa0=2.7, ba0 = 2.74; 558 const G4double aw = 0.21, bw = 10.8, cw 638 const G4double aw = 0.21, bw = 10.8, cw = -58.; 559 const G4double axc = 3.17, bxc = -0.87, 639 const G4double axc = 3.17, bxc = -0.87, cxc = -6.; 560 640 561 pl[0] = Fln(ay0, by0, Ene); 641 pl[0] = Fln(ay0, by0, Ene); 562 pl[1] = Fln(aa0, ba0, Ene); 642 pl[1] = Fln(aa0, ba0, Ene); 563 pl[2] = Poli(aw,bw,cw,Ene); 643 pl[2] = Poli(aw,bw,cw,Ene); 564 pl[3] = Poli(axc,bxc,cxc,Ene); 644 pl[3] = Poli(axc,bxc,cxc,Ene); 565 645 >> 646 //G4cout << "PL < 50."<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 647 //G4cout << "ENCU "<< xe << G4endl; 566 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 648 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); >> 649 567 } 650 } 568 651 569 652 570 G4double n=0.; 653 G4double n=0.; 571 n = n1+n2; 654 n = n1+n2; 572 655 573 G4double c1 = 0.; 656 G4double c1 = 0.; 574 c1 = Glor(pl, xe); 657 c1 = Glor(pl, xe); 575 658 >> 659 /* >> 660 G4double xm = 0.; >> 661 xm = Flor(pl,pl[3])*Glor(pl,pl[3]); >> 662 */ >> 663 576 G4double r1,r2,r3; 664 G4double r1,r2,r3; 577 G4double xco=0.; 665 G4double xco=0.; 578 666 579 if (Ene>=50.) 667 if (Ene>=50.) 580 { 668 { 581 r1= G4UniformRand(); 669 r1= G4UniformRand(); 582 if( r1>=n2/n) 670 if( r1>=n2/n) 583 { 671 { 584 do 672 do 585 { 673 { 586 r2 = G4UniformRand(); 674 r2 = G4UniformRand(); 587 value = Finvlor(pl,xe,r2); 675 value = Finvlor(pl,xe,r2); 588 xco = Glor(pl,value)/c1; 676 xco = Glor(pl,value)/c1; 589 r3 = G4UniformRand(); 677 r3 = G4UniformRand(); 590 } while(r3>=xco); 678 } while(r3>=xco); 591 } 679 } 592 else 680 else 593 { 681 { 594 value = Finvtan(pt,n,r1); 682 value = Finvtan(pt,n,r1); 595 } 683 } 596 } 684 } 597 else 685 else 598 { 686 { 599 do 687 do 600 { 688 { 601 r2 = G4UniformRand(); 689 r2 = G4UniformRand(); 602 value = Finvlor(pl,xe,r2); 690 value = Finvlor(pl,xe,r2); 603 xco = Glor(pl,value)/c1; 691 xco = Glor(pl,value)/c1; 604 r3 = G4UniformRand(); 692 r3 = G4UniformRand(); 605 } while(r3>=xco); 693 } while(r3>=xco); 606 } 694 } >> 695 >> 696 // G4cout << "PHI = " <<value << G4endl; 607 return value; 697 return value; 608 } 698 } 609 << 610 //....oooOO0OOooo........oooOO0OOooo........oo << 611 << 612 G4double G4LivermorePolarizedGammaConversionMo 699 G4double G4LivermorePolarizedGammaConversionModel::SetPsi(G4double Energy, G4double PhiLocal) 613 { 700 { >> 701 614 G4double value = 0.; 702 G4double value = 0.; 615 G4double Ene = Energy/MeV; 703 G4double Ene = Energy/MeV; 616 704 617 G4double p0l[4]; 705 G4double p0l[4]; 618 G4double ppml[4]; 706 G4double ppml[4]; 619 G4double p0t[2]; 707 G4double p0t[2]; 620 G4double ppmt[2]; 708 G4double ppmt[2]; 621 709 622 G4double xi = 0.; 710 G4double xi = 0.; 623 G4double xe0 = 0.; 711 G4double xe0 = 0.; 624 G4double xepm = 0.; 712 G4double xepm = 0.; 625 713 626 if (Ene>=50.) 714 if (Ene>=50.) 627 { 715 { 628 const G4double ay00 = 3.4, by00 = 9.8, a 716 const G4double ay00 = 3.4, by00 = 9.8, aa00 = 1.34, ba00 = 5.3; 629 const G4double aw0 = 0.014, bw0 = 9.7, c 717 const G4double aw0 = 0.014, bw0 = 9.7, cw0 = -2.E4; 630 const G4double axc0 = 3.1423, bxc0 = -2. 718 const G4double axc0 = 3.1423, bxc0 = -2.35, cxc0 = 0.; 631 const G4double ay0p = 1.53, by0p = 3.2, 719 const G4double ay0p = 1.53, by0p = 3.2, aap = 0.67, bap = 8.5E-3; 632 const G4double awp = 6.9E-3, bwp = 12.6, 720 const G4double awp = 6.9E-3, bwp = 12.6, cwp = -3.8E4; 633 const G4double axcp = 2.8E-3,bxcp = -3.1 721 const G4double axcp = 2.8E-3,bxcp = -3.133; 634 const G4double abf0 = 3.1213, bbf0 = 2.6 722 const G4double abf0 = 3.1213, bbf0 = 2.61; 635 const G4double abfpm = 3.1231, bbfpm = 2 723 const G4double abfpm = 3.1231, bbfpm = 2.84; 636 724 637 p0l[0] = Fln(ay00, by00, Ene); 725 p0l[0] = Fln(ay00, by00, Ene); 638 p0l[1] = Fln(aa00, ba00, Ene); 726 p0l[1] = Fln(aa00, ba00, Ene); 639 p0l[2] = Poli(aw0, bw0, cw0, Ene); 727 p0l[2] = Poli(aw0, bw0, cw0, Ene); 640 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 728 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 641 729 642 ppml[0] = Fln(ay0p, by0p, Ene); 730 ppml[0] = Fln(ay0p, by0p, Ene); 643 ppml[1] = aap + bap*(Ene); 731 ppml[1] = aap + bap*(Ene); 644 ppml[2] = Poli(awp, bwp, cwp, Ene); 732 ppml[2] = Poli(awp, bwp, cwp, Ene); 645 ppml[3] = Fln(axcp,bxcp,Ene); 733 ppml[3] = Fln(axcp,bxcp,Ene); 646 734 647 p0t[0] = -0.81; 735 p0t[0] = -0.81; 648 p0t[1] = abf0 + bbf0/Ene; 736 p0t[1] = abf0 + bbf0/Ene; 649 ppmt[0] = -0.6; 737 ppmt[0] = -0.6; 650 ppmt[1] = abfpm + bbfpm/Ene; 738 ppmt[1] = abfpm + bbfpm/Ene; 651 739 >> 740 //G4cout << "P0L > 50"<< p0l[0] << " " << p0l[1] << " " << p0l[2] << " " <<p0l[3] << " " << G4endl; >> 741 //G4cout << "PPML > 50"<< ppml[0] << " " << ppml[1] << " " << ppml[2] << " " <<ppml[3] << " " << G4endl; >> 742 652 xi = 3.0; 743 xi = 3.0; 653 xe0 = Encu(p0l, p0t, xi); 744 xe0 = Encu(p0l, p0t, xi); >> 745 //G4cout << "ENCU1 "<< xe0 << G4endl; 654 xepm = Encu(ppml, ppmt, xi); 746 xepm = Encu(ppml, ppmt, xi); >> 747 //G4cout << "ENCU2 "<< xepm << G4endl; 655 } 748 } 656 else 749 else 657 { 750 { 658 const G4double ay00 = 2.82, by00 = 6.35; 751 const G4double ay00 = 2.82, by00 = 6.35; 659 const G4double aa00 = -1.75, ba00 = 0.25 752 const G4double aa00 = -1.75, ba00 = 0.25; 660 753 661 const G4double aw0 = 0.028, bw0 = 5., cw 754 const G4double aw0 = 0.028, bw0 = 5., cw0 = -50.; 662 const G4double axc0 = 3.14213, bxc0 = -2 755 const G4double axc0 = 3.14213, bxc0 = -2.3, cxc0 = 5.7; 663 const G4double ay0p = 1.56, by0p = 3.6; 756 const G4double ay0p = 1.56, by0p = 3.6; 664 const G4double aap = 0.86, bap = 8.3E-3; 757 const G4double aap = 0.86, bap = 8.3E-3; 665 const G4double awp = 0.022, bwp = 7.4, c 758 const G4double awp = 0.022, bwp = 7.4, cwp = -51.; 666 const G4double xcp = 3.1486; 759 const G4double xcp = 3.1486; 667 760 668 p0l[0] = Fln(ay00, by00, Ene); 761 p0l[0] = Fln(ay00, by00, Ene); 669 p0l[1] = aa00+pow(Ene, ba00); 762 p0l[1] = aa00+pow(Ene, ba00); 670 p0l[2] = Poli(aw0, bw0, cw0, Ene); 763 p0l[2] = Poli(aw0, bw0, cw0, Ene); 671 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 764 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 672 ppml[0] = Fln(ay0p, by0p, Ene); 765 ppml[0] = Fln(ay0p, by0p, Ene); 673 ppml[1] = aap + bap*(Ene); 766 ppml[1] = aap + bap*(Ene); 674 ppml[2] = Poli(awp, bwp, cwp, Ene); 767 ppml[2] = Poli(awp, bwp, cwp, Ene); 675 ppml[3] = xcp; 768 ppml[3] = xcp; >> 769 676 } 770 } 677 771 678 G4double a,b=0.; 772 G4double a,b=0.; 679 773 680 if (Ene>=50.) 774 if (Ene>=50.) 681 { 775 { 682 if (PhiLocal>xepm) 776 if (PhiLocal>xepm) 683 { 777 { 684 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor( 778 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 685 } 779 } 686 else 780 else 687 { 781 { 688 b = Ftan(ppmt,PhiLocal); 782 b = Ftan(ppmt,PhiLocal); 689 } 783 } 690 if (PhiLocal>xe0) 784 if (PhiLocal>xe0) 691 { 785 { 692 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l 786 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 693 } 787 } 694 else 788 else 695 { 789 { 696 a = Ftan(p0t,PhiLocal); 790 a = Ftan(p0t,PhiLocal); 697 } 791 } 698 } 792 } 699 else 793 else 700 { 794 { 701 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml 795 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 702 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,Phi 796 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 703 } 797 } 704 G4double nr =0.; 798 G4double nr =0.; 705 799 706 if (b>a) 800 if (b>a) 707 { 801 { 708 nr = 1./b; 802 nr = 1./b; 709 } 803 } 710 else 804 else 711 { 805 { 712 nr = 1./a; 806 nr = 1./a; 713 } 807 } 714 808 715 G4double r1,r2=0.; 809 G4double r1,r2=0.; 716 G4double r3 =-1.; 810 G4double r3 =-1.; 717 do 811 do 718 { 812 { 719 r1 = G4UniformRand(); 813 r1 = G4UniformRand(); 720 r2 = G4UniformRand(); 814 r2 = G4UniformRand(); 721 //value = r2*pi; 815 //value = r2*pi; 722 value = 2.*r2*pi; 816 value = 2.*r2*pi; 723 r3 = nr*(a*cos(value)*cos(value) + b*sin 817 r3 = nr*(a*cos(value)*cos(value) + b*sin(value)*sin(value)); 724 }while(r1>r3); 818 }while(r1>r3); 725 819 726 return value; 820 return value; 727 } 821 } 728 822 729 //....oooOO0OOooo........oooOO0OOooo........oo << 730 823 731 G4double G4LivermorePolarizedGammaConversionMo 824 G4double G4LivermorePolarizedGammaConversionModel::Poli 732 (G4double a, G4double b, G4double c, G4double 825 (G4double a, G4double b, G4double c, G4double x) 733 { 826 { 734 G4double value=0.; 827 G4double value=0.; 735 if(x>0.) 828 if(x>0.) 736 { 829 { 737 value =(a + b/x + c/(x*x*x)); 830 value =(a + b/x + c/(x*x*x)); 738 } 831 } 739 else 832 else 740 { 833 { 741 //G4cout << "ERROR in Poli! " << G4endl; 834 //G4cout << "ERROR in Poli! " << G4endl; 742 } 835 } 743 return value; 836 return value; 744 } 837 } 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 G4double G4LivermorePolarizedGammaConversionMo 838 G4double G4LivermorePolarizedGammaConversionModel::Fln 749 (G4double a, G4double b, G4double x) 839 (G4double a, G4double b, G4double x) 750 { 840 { 751 G4double value=0.; 841 G4double value=0.; 752 if(x>0.) 842 if(x>0.) 753 { 843 { 754 value =(a*log(x)-b); 844 value =(a*log(x)-b); 755 } 845 } 756 else 846 else 757 { 847 { 758 //G4cout << "ERROR in Fln! " << G4endl; 848 //G4cout << "ERROR in Fln! " << G4endl; 759 } 849 } 760 return value; 850 return value; 761 } 851 } 762 852 763 //....oooOO0OOooo........oooOO0OOooo........oo << 764 853 765 G4double G4LivermorePolarizedGammaConversionMo 854 G4double G4LivermorePolarizedGammaConversionModel::Encu 766 (G4double* p_p1, G4double* p_p2, G4double x0) 855 (G4double* p_p1, G4double* p_p2, G4double x0) 767 { 856 { 768 G4int i=0; 857 G4int i=0; 769 G4double fx = 1.; 858 G4double fx = 1.; 770 G4double x = x0; 859 G4double x = x0; 771 const G4double xmax = 3.0; 860 const G4double xmax = 3.0; 772 861 773 for(i=0; i<100; ++i) 862 for(i=0; i<100; ++i) 774 { 863 { 775 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p 864 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x))/ 776 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 865 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 777 x -= fx; 866 x -= fx; 778 if(x > xmax) { return xmax; } 867 if(x > xmax) { return xmax; } >> 868 // x -= (Flor(p_p1, x)*Glor(p_p1,x) - Ftan(p_p2, x))/ >> 869 // (Fdlor(p_p1,x) - Fdtan(p_p2,x)); >> 870 // fx = Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x); >> 871 // G4cout << std::fabs(fx) << " " << i << " " << x << "dentro ENCU " << G4endl; 779 if(std::fabs(fx) <= x*1.0e-6) { break; } 872 if(std::fabs(fx) <= x*1.0e-6) { break; } 780 } 873 } 781 874 782 if(x < 0.0) { x = 0.0; } 875 if(x < 0.0) { x = 0.0; } 783 return x; 876 return x; 784 } 877 } 785 878 786 //....oooOO0OOooo........oooOO0OOooo........oo << 787 879 788 G4double G4LivermorePolarizedGammaConversionMo 880 G4double G4LivermorePolarizedGammaConversionModel::Flor(G4double* p_p1, G4double x) 789 { 881 { 790 G4double value =0.; 882 G4double value =0.; >> 883 // G4double y0 = p_p1[0]; >> 884 // G4double A = p_p1[1]; 791 G4double w = p_p1[2]; 885 G4double w = p_p1[2]; 792 G4double xc = p_p1[3]; 886 G4double xc = p_p1[3]; 793 887 794 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 888 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 795 return value; 889 return value; 796 } 890 } 797 891 798 //....oooOO0OOooo........oooOO0OOooo........oo << 799 892 800 G4double G4LivermorePolarizedGammaConversionMo 893 G4double G4LivermorePolarizedGammaConversionModel::Glor(G4double* p_p1, G4double x) 801 { 894 { 802 G4double value =0.; 895 G4double value =0.; 803 G4double y0 = p_p1[0]; 896 G4double y0 = p_p1[0]; 804 G4double A = p_p1[1]; 897 G4double A = p_p1[1]; 805 G4double w = p_p1[2]; 898 G4double w = p_p1[2]; 806 G4double xc = p_p1[3]; 899 G4double xc = p_p1[3]; 807 900 808 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 901 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 2.*A*w); 809 return value; 902 return value; 810 } 903 } 811 904 812 //....oooOO0OOooo........oooOO0OOooo........oo << 813 905 814 G4double G4LivermorePolarizedGammaConversionMo 906 G4double G4LivermorePolarizedGammaConversionModel::Fdlor(G4double* p_p1, G4double x) 815 { 907 { 816 G4double value =0.; 908 G4double value =0.; >> 909 //G4double y0 = p_p1[0]; 817 G4double A = p_p1[1]; 910 G4double A = p_p1[1]; 818 G4double w = p_p1[2]; 911 G4double w = p_p1[2]; 819 G4double xc = p_p1[3]; 912 G4double xc = p_p1[3]; 820 913 821 value = (-16.*A*w*(x-xc))/ 914 value = (-16.*A*w*(x-xc))/ 822 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)* 915 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)*(x-xc))); 823 return value; 916 return value; 824 } 917 } 825 918 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 919 828 G4double G4LivermorePolarizedGammaConversionMo 920 G4double G4LivermorePolarizedGammaConversionModel::Fintlor(G4double* p_p1, G4double x) 829 { 921 { 830 G4double value =0.; 922 G4double value =0.; 831 G4double y0 = p_p1[0]; 923 G4double y0 = p_p1[0]; 832 G4double A = p_p1[1]; 924 G4double A = p_p1[1]; 833 G4double w = p_p1[2]; 925 G4double w = p_p1[2]; 834 G4double xc = p_p1[3]; 926 G4double xc = p_p1[3]; 835 927 836 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 928 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 837 return value; 929 return value; 838 } 930 } 839 931 840 932 841 G4double G4LivermorePolarizedGammaConversionMo 933 G4double G4LivermorePolarizedGammaConversionModel::Finvlor(G4double* p_p1, G4double x, G4double r) 842 { 934 { 843 G4double value = 0.; 935 G4double value = 0.; 844 G4double nor = 0.; 936 G4double nor = 0.; >> 937 //G4double y0 = p_p1[0]; >> 938 // G4double A = p_p1[1]; 845 G4double w = p_p1[2]; 939 G4double w = p_p1[2]; 846 G4double xc = p_p1[3]; 940 G4double xc = p_p1[3]; 847 941 848 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2. 942 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2.*(x-xc)/w)/(2.*pi*w); 849 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan( 943 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan(2*(xc-x)/w)); 850 944 851 return value; 945 return value; 852 } 946 } 853 947 854 //....oooOO0OOooo........oooOO0OOooo........oo << 855 948 856 G4double G4LivermorePolarizedGammaConversionMo 949 G4double G4LivermorePolarizedGammaConversionModel::Ftan(G4double* p_p1, G4double x) 857 { 950 { 858 G4double value =0.; 951 G4double value =0.; 859 G4double a = p_p1[0]; 952 G4double a = p_p1[0]; 860 G4double b = p_p1[1]; 953 G4double b = p_p1[1]; 861 954 862 value = a /(x-b); 955 value = a /(x-b); 863 return value; 956 return value; 864 } 957 } 865 958 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 959 868 G4double G4LivermorePolarizedGammaConversionMo 960 G4double G4LivermorePolarizedGammaConversionModel::Fdtan(G4double* p_p1, G4double x) 869 { 961 { 870 G4double value =0.; 962 G4double value =0.; 871 G4double a = p_p1[0]; 963 G4double a = p_p1[0]; 872 G4double b = p_p1[1]; 964 G4double b = p_p1[1]; 873 965 874 value = -1.*a / ((x-b)*(x-b)); 966 value = -1.*a / ((x-b)*(x-b)); 875 return value; 967 return value; 876 } 968 } 877 969 878 //....oooOO0OOooo........oooOO0OOooo........oo << 879 970 880 G4double G4LivermorePolarizedGammaConversionMo 971 G4double G4LivermorePolarizedGammaConversionModel::Finttan(G4double* p_p1, G4double x) 881 { 972 { 882 G4double value =0.; 973 G4double value =0.; 883 G4double a = p_p1[0]; 974 G4double a = p_p1[0]; 884 G4double b = p_p1[1]; 975 G4double b = p_p1[1]; 885 976 >> 977 886 value = a*log(b-x); 978 value = a*log(b-x); 887 return value; 979 return value; 888 } 980 } 889 981 890 //....oooOO0OOooo........oooOO0OOooo........oo << 891 982 892 G4double G4LivermorePolarizedGammaConversionMo 983 G4double G4LivermorePolarizedGammaConversionModel::Finvtan(G4double* p_p1, G4double cnor, G4double r) 893 { 984 { 894 G4double value =0.; 985 G4double value =0.; 895 G4double a = p_p1[0]; 986 G4double a = p_p1[0]; 896 G4double b = p_p1[1]; 987 G4double b = p_p1[1]; 897 988 898 value = b*(1-G4Exp(r*cnor/a)); 989 value = b*(1-G4Exp(r*cnor/a)); 899 990 900 return value; 991 return value; 901 } 992 } 902 993 >> 994 >> 995 >> 996 903 //....oooOO0OOooo........oooOO0OOooo........oo 997 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 998 905 G4ThreeVector G4LivermorePolarizedGammaConvers 999 G4ThreeVector G4LivermorePolarizedGammaConversionModel::SetPerpendicularVector(G4ThreeVector& a) 906 { 1000 { 907 G4double dx = a.x(); 1001 G4double dx = a.x(); 908 G4double dy = a.y(); 1002 G4double dy = a.y(); 909 G4double dz = a.z(); 1003 G4double dz = a.z(); 910 G4double x = dx < 0.0 ? -dx : dx; 1004 G4double x = dx < 0.0 ? -dx : dx; 911 G4double y = dy < 0.0 ? -dy : dy; 1005 G4double y = dy < 0.0 ? -dy : dy; 912 G4double z = dz < 0.0 ? -dz : dz; 1006 G4double z = dz < 0.0 ? -dz : dz; 913 if (x < y) { 1007 if (x < y) { 914 return x < z ? G4ThreeVector(-dy,dx,0) : G 1008 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy); 915 }else{ 1009 }else{ 916 return y < z ? G4ThreeVector(dz,0,-dx) : G 1010 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0); 917 } 1011 } 918 } 1012 } 919 1013 920 //....oooOO0OOooo........oooOO0OOooo........oo 1014 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 921 1015 922 G4ThreeVector G4LivermorePolarizedGammaConvers 1016 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetRandomPolarization(G4ThreeVector& direction0) 923 { 1017 { 924 G4ThreeVector d0 = direction0.unit(); 1018 G4ThreeVector d0 = direction0.unit(); 925 G4ThreeVector a1 = SetPerpendicularVector(d0 1019 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal 926 G4ThreeVector a0 = a1.unit(); // unit vector 1020 G4ThreeVector a0 = a1.unit(); // unit vector 927 1021 928 G4double rand1 = G4UniformRand(); 1022 G4double rand1 = G4UniformRand(); 929 1023 930 G4double angle = twopi*rand1; // random pola 1024 G4double angle = twopi*rand1; // random polar angle 931 G4ThreeVector b0 = d0.cross(a0); // cross pr 1025 G4ThreeVector b0 = d0.cross(a0); // cross product 932 1026 933 G4ThreeVector c; 1027 G4ThreeVector c; 934 1028 935 c.setX(std::cos(angle)*(a0.x())+std::sin(ang 1029 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x()); 936 c.setY(std::cos(angle)*(a0.y())+std::sin(ang 1030 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y()); 937 c.setZ(std::cos(angle)*(a0.z())+std::sin(ang 1031 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z()); 938 1032 939 G4ThreeVector c0 = c.unit(); 1033 G4ThreeVector c0 = c.unit(); 940 1034 941 return c0; << 1035 return c0; >> 1036 942 } 1037 } 943 1038 944 //....oooOO0OOooo........oooOO0OOooo........oo 1039 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 945 1040 946 G4ThreeVector G4LivermorePolarizedGammaConvers 1041 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetPerpendicularPolarization 947 (const G4ThreeVector& gammaDirection, const G4 1042 (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const 948 { 1043 { >> 1044 949 // 1045 // 950 // The polarization of a photon is always pe 1046 // The polarization of a photon is always perpendicular to its momentum direction. 951 // Therefore this function removes those vec 1047 // Therefore this function removes those vector component of gammaPolarization, which 952 // points in direction of gammaDirection 1048 // points in direction of gammaDirection 953 // 1049 // 954 // Mathematically we search the projection o 1050 // Mathematically we search the projection of the vector a on the plane E, where n is the 955 // plains normal vector. 1051 // plains normal vector. 956 // The basic equation can be found in each g 1052 // The basic equation can be found in each geometry book (e.g. Bronstein): 957 // p = a - (a o n)/(n o n)*n 1053 // p = a - (a o n)/(n o n)*n 958 1054 959 return gammaPolarization - gammaPolarization 1055 return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection; 960 } 1056 } 961 1057 962 //....oooOO0OOooo........oooOO0OOooo........oo 1058 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 963 1059 >> 1060 964 void G4LivermorePolarizedGammaConversionModel: 1061 void G4LivermorePolarizedGammaConversionModel::SystemOfRefChange 965 (G4ThreeVector& direction0,G4ThreeVector& 1062 (G4ThreeVector& direction0,G4ThreeVector& direction1, 966 G4ThreeVector& polarization0) 1063 G4ThreeVector& polarization0) 967 { 1064 { 968 // direction0 is the original photon directi 1065 // direction0 is the original photon direction ---> z 969 // polarization0 is the original photon pola 1066 // polarization0 is the original photon polarization ---> x 970 // need to specify y axis in the real refere 1067 // need to specify y axis in the real reference frame ---> y 971 G4ThreeVector Axis_Z0 = direction0.unit(); 1068 G4ThreeVector Axis_Z0 = direction0.unit(); 972 G4ThreeVector Axis_X0 = polarization0.unit() 1069 G4ThreeVector Axis_X0 = polarization0.unit(); 973 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_ 1070 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed; 974 1071 975 G4double direction_x = direction1.getX(); 1072 G4double direction_x = direction1.getX(); 976 G4double direction_y = direction1.getY(); 1073 G4double direction_y = direction1.getY(); 977 G4double direction_z = direction1.getZ(); 1074 G4double direction_z = direction1.getZ(); 978 1075 979 direction1 = (direction_x*Axis_X0 + directio << 1076 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit(); >> 1077 980 } 1078 } 981 1079 >> 1080 982 //....oooOO0OOooo........oooOO0OOooo........oo 1081 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 983 1082 >> 1083 #include "G4AutoLock.hh" >> 1084 namespace { G4Mutex LivermorePolarizedGammaConversionModelMutex = G4MUTEX_INITIALIZER; } >> 1085 984 void G4LivermorePolarizedGammaConversionModel: 1086 void G4LivermorePolarizedGammaConversionModel::InitialiseForElement( 985 const G4ParticleDefiniti 1087 const G4ParticleDefinition*, 986 G4int Z) 1088 G4int Z) 987 { 1089 { 988 G4AutoLock l(&LivermorePolarizedGammaConvers 1090 G4AutoLock l(&LivermorePolarizedGammaConversionModelMutex); >> 1091 // G4cout << "G4LivermorePolarizedGammaConversionModel::InitialiseForElement Z= " >> 1092 // << Z << G4endl; 989 if(!data[Z]) { ReadData(Z); } 1093 if(!data[Z]) { ReadData(Z); } 990 l.unlock(); 1094 l.unlock(); 991 } 1095 } 992 1096