Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4LivermorePolarizedGammaConversionModel.hh,v 1.2 2010-11-23 16:42:15 flongo Exp $ 26 // 27 // 27 // Authors: G.Depaola & F.Longo 28 // Authors: G.Depaola & F.Longo 28 // 29 // 29 // 30 // 30 31 31 #include "G4LivermorePolarizedGammaConversionM 32 #include "G4LivermorePolarizedGammaConversionModel.hh" 32 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 33 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4Electron.hh" << 35 #include "G4Positron.hh" << 36 #include "G4ParticleChangeForGamma.hh" << 37 #include "G4Log.hh" << 38 #include "G4AutoLock.hh" << 39 #include "G4Exp.hh" << 40 #include "G4ProductionCutsTable.hh" << 41 35 42 //....oooOO0OOooo........oooOO0OOooo........oo 36 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 37 44 using namespace std; 38 using namespace std; 45 namespace { G4Mutex LivermorePolarizedGammaCon << 46 << 47 G4PhysicsFreeVector* G4LivermorePolarizedGamma << 48 39 49 //....oooOO0OOooo........oooOO0OOooo........oo 40 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 41 51 G4LivermorePolarizedGammaConversionModel::G4Li 42 G4LivermorePolarizedGammaConversionModel::G4LivermorePolarizedGammaConversionModel( 52 const G4ParticleDefinition*, const G4String 43 const G4ParticleDefinition*, const G4String& nam) 53 :G4VEmModel(nam), smallEnergy(2.*MeV), isIni << 44 :G4VEmModel(nam),fParticleChange(0), >> 45 isInitialised(false),meanFreePathTable(0),crossSectionHandler(0) 54 { 46 { 55 fParticleChange = nullptr; << 56 lowEnergyLimit = 2*electron_mass_c2; 47 lowEnergyLimit = 2*electron_mass_c2; 57 << 48 highEnergyLimit = 100 * GeV; >> 49 SetLowEnergyLimit(lowEnergyLimit); >> 50 SetHighEnergyLimit(highEnergyLimit); >> 51 smallEnergy = 2.*MeV; >> 52 58 Phi=0.; 53 Phi=0.; 59 Psi=0.; 54 Psi=0.; 60 55 61 verboseLevel= 0; 56 verboseLevel= 0; 62 // Verbosity scale: 57 // Verbosity scale: 63 // 0 = nothing 58 // 0 = nothing 64 // 1 = calculation of cross sections, file o << 59 // 1 = warning for energy non-conservation 65 // 2 = entering in methods << 60 // 2 = details of energy budget 66 << 61 // 3 = calculation of cross sections, file openings, samping of atoms >> 62 // 4 = entering in methods >> 63 67 if(verboseLevel > 0) { 64 if(verboseLevel > 0) { 68 G4cout << "Livermore Polarized GammaConver << 65 G4cout << "Livermore Polarized GammaConversion is constructed " << G4endl >> 66 << "Energy range: " >> 67 << lowEnergyLimit / keV << " keV - " >> 68 << highEnergyLimit / GeV << " GeV" 69 << G4endl; 69 << G4endl; 70 } 70 } 71 << 71 >> 72 crossSectionHandler = new G4CrossSectionHandler(); >> 73 crossSectionHandler->Initialise(0,lowEnergyLimit,highEnergyLimit,400); 72 } 74 } 73 75 74 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 77 76 G4LivermorePolarizedGammaConversionModel::~G4L 78 G4LivermorePolarizedGammaConversionModel::~G4LivermorePolarizedGammaConversionModel() 77 { 79 { 78 if(IsMaster()) { << 80 delete crossSectionHandler; 79 for(G4int i=0; i<maxZ; ++i) { << 80 if(data[i]) { << 81 delete data[i]; << 82 data[i] = nullptr; << 83 } << 84 } << 85 } << 86 } 81 } 87 82 >> 83 >> 84 88 //....oooOO0OOooo........oooOO0OOooo........oo 85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 89 86 90 void G4LivermorePolarizedGammaConversionModel: 87 void G4LivermorePolarizedGammaConversionModel::Initialise(const G4ParticleDefinition* particle, 91 const G 88 const G4DataVector& cuts) 92 { 89 { 93 if (verboseLevel > 1) << 90 if (verboseLevel > 3) 94 { << 91 G4cout << "Calling G4LivermorePolarizedGammaConversionModel::Initialise()" << G4endl; 95 G4cout << "Calling1 G4LivermorePolarized << 96 << G4endl << 97 << "Energy range: " << 98 << LowEnergyLimit() / MeV << " MeV - " << 99 << HighEnergyLimit() / GeV << " G << 100 << G4endl; << 101 } << 102 << 103 if(IsMaster()) << 104 { << 105 // Initialise element selector << 106 InitialiseElementSelectors(particle, cut << 107 << 108 // Access to elements << 109 const char* path = G4FindDataDir("G4LEDA << 110 << 111 G4ProductionCutsTable* theCoupleTable = << 112 G4ProductionCutsTable::GetProductionCutsTabl << 113 << 114 G4int numOfCouples = (G4int)theCoupleTab << 115 << 116 for(G4int i=0; i<numOfCouples; ++i) << 117 { << 118 const G4Material* material = << 119 theCoupleTable->GetMaterialCutsCouple(i) << 120 const G4ElementVector* theElementVector = << 121 std::size_t nelm = material->GetNumberOfEl << 122 << 123 for (std::size_t j=0; j<nelm; ++j) << 124 { << 125 G4int Z = (G4int)(*theElementVector)[j << 126 if(Z < 1) { Z = 1; } << 127 else if(Z > maxZ) { Z = maxZ; } << 128 if(!data[Z]) { ReadData(Z, path); } << 129 } << 130 } << 131 } << 132 if(isInitialised) { return; } << 133 fParticleChange = GetParticleChangeForGamma( << 134 isInitialised = true; << 135 } << 136 << 137 //....oooOO0OOooo........oooOO0OOooo........oo << 138 92 139 void G4LivermorePolarizedGammaConversionModel: << 93 if (crossSectionHandler) 140 const G4ParticleDefinition*, G4VEmModel* << 94 { 141 { << 95 crossSectionHandler->Clear(); 142 SetElementSelectors(masterModel->GetElementS << 96 delete crossSectionHandler; 143 } << 97 } 144 98 145 //....oooOO0OOooo........oooOO0OOooo........oo << 99 // Energy limits >> 100 /* >> 101 // V.Ivanchenko: this was meanless check >> 102 if (LowEnergyLimit() < lowEnergyLimit) >> 103 { >> 104 G4cout << "G4LivermorePolarizedGammaConversionModel: low energy limit increased from " << >> 105 LowEnergyLimit()/eV << " eV to " << lowEnergyLimit << " eV" << G4endl; >> 106 // SetLowEnergyLimit(lowEnergyLimit); >> 107 } >> 108 */ >> 109 if (HighEnergyLimit() > highEnergyLimit) >> 110 { >> 111 G4cout << "G4LivermorePolarizedGammaConversionModel: high energy limit decreased from " << >> 112 HighEnergyLimit()/GeV << " GeV to " << highEnergyLimit << " GeV" << G4endl; >> 113 // V.Ivanchenko: this is forbidden >> 114 // SetHighEnergyLimit(highEnergyLimit); >> 115 } >> 116 >> 117 // Reading of data files - all materials are read >> 118 >> 119 crossSectionHandler = new G4CrossSectionHandler; >> 120 crossSectionHandler->Clear(); >> 121 G4String crossSectionFile = "pair/pp-cs-"; >> 122 crossSectionHandler->LoadData(crossSectionFile); 146 123 147 G4double G4LivermorePolarizedGammaConversionMo << 124 // 148 const G4ParticleDefinition*, G4doub << 125 if (verboseLevel > 2) { 149 { << 126 G4cout << "Loaded cross section files for Livermore Polarized GammaConversion model" 150 return lowEnergyLimit; << 127 << G4endl; 151 } << 128 } >> 129 InitialiseElementSelectors(particle,cuts); 152 130 153 //....oooOO0OOooo........oooOO0OOooo........oo << 131 if(verboseLevel > 0) { >> 132 G4cout << "Livermore Polarized GammaConversion model is initialized " << G4endl >> 133 << "Energy range: " >> 134 << LowEnergyLimit() / keV << " keV - " >> 135 << HighEnergyLimit() / GeV << " GeV" >> 136 << G4endl; >> 137 } 154 138 155 void G4LivermorePolarizedGammaConversionModel: << 139 // 156 { << 140 if(!isInitialised) { 157 if (verboseLevel > 1) << 141 isInitialised = true; 158 { << 142 fParticleChange = GetParticleChangeForGamma(); 159 G4cout << "Calling ReadData() of G4Liver << 143 } 160 << G4endl; << 161 } << 162 << 163 if(data[Z]) { return; } << 164 << 165 const char* datadir = path; << 166 << 167 if(!datadir) << 168 { << 169 datadir = G4FindDataDir("G4LEDATA"); << 170 if(!datadir) << 171 { << 172 G4Exception("G4LivermorePolarizedGammaConv << 173 "em0006",FatalException, << 174 "Environment variable G4LEDATA not d << 175 return; << 176 } << 177 } << 178 // << 179 data[Z] = new G4PhysicsFreeVector(0,/*spline << 180 // << 181 std::ostringstream ost; << 182 ost << datadir << "/livermore/pair/pp-cs-" < << 183 std::ifstream fin(ost.str().c_str()); << 184 << 185 if( !fin.is_open()) << 186 { << 187 G4ExceptionDescription ed; << 188 ed << "G4LivermorePolarizedGammaConversi << 189 << "> is not opened!" << G4endl; << 190 G4Exception("G4LivermorePolarizedGammaCo << 191 "em0003",FatalException, << 192 ed,"G4LEDATA version should be G4EMLOW6. << 193 return; << 194 } << 195 else << 196 { << 197 << 198 if(verboseLevel > 3) { G4cout << "File " << 199 << " is opened by G4LivermorePolar << 200 << 201 data[Z]->Retrieve(fin, true); << 202 } << 203 << 204 // Activation of spline interpolation << 205 data[Z]->FillSecondDerivatives(); << 206 << 207 } 144 } 208 145 209 //....oooOO0OOooo........oooOO0OOooo........oo 146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 210 147 211 G4double G4LivermorePolarizedGammaConversionMo 148 G4double G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom( 212 const G 149 const G4ParticleDefinition*, 213 G4double GammaEnergy, 150 G4double GammaEnergy, 214 G4double Z, G4double, 151 G4double Z, G4double, 215 G4double, G4double) 152 G4double, G4double) 216 { 153 { 217 if (verboseLevel > 1) { << 154 if (verboseLevel > 3) { 218 G4cout << "G4LivermorePolarizedGammaConver 155 G4cout << "G4LivermorePolarizedGammaConversionModel::ComputeCrossSectionPerAtom()" 219 << G4endl; 156 << G4endl; 220 } 157 } 221 if (GammaEnergy < lowEnergyLimit) { return 0 << 158 if(Z < 0.9 || GammaEnergy <= lowEnergyLimit) { return 0.0; } 222 << 159 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 223 G4double xs = 0.0; << 160 return cs; 224 << 225 G4int intZ=G4int(Z); << 226 << 227 if(intZ < 1 || intZ > maxZ) { return xs; } << 228 << 229 G4PhysicsFreeVector* pv = data[intZ]; << 230 << 231 // if element was not initialised << 232 // do initialisation safely for MT mode << 233 if(!pv) << 234 { << 235 InitialiseForElement(0, intZ); << 236 pv = data[intZ]; << 237 if(!pv) { return xs; } << 238 } << 239 // x-section is taken from the table << 240 xs = pv->Value(GammaEnergy); << 241 << 242 if(verboseLevel > 0) << 243 { << 244 G4int n = G4int(pv->GetVectorLength() - << 245 G4cout << "****** DEBUG: tcs value for << 246 << GammaEnergy/MeV << G4endl; << 247 G4cout << " cs (Geant4 internal unit) << 248 G4cout << " -> first cs value in EA << 249 G4cout << " -> last cs value in EA << 250 G4cout << "*************************** << 251 } << 252 << 253 return xs; << 254 } 161 } 255 162 256 //....oooOO0OOooo........oooOO0OOooo........oo 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 257 164 258 void 165 void 259 G4LivermorePolarizedGammaConversionModel::Samp 166 G4LivermorePolarizedGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 260 const G4MaterialCutsCouple* 167 const G4MaterialCutsCouple* couple, 261 const G4DynamicParticle* aDy 168 const G4DynamicParticle* aDynamicGamma, 262 G4double, 169 G4double, 263 G4double) 170 G4double) 264 { 171 { 265 172 266 // Fluorescence generated according to: 173 // Fluorescence generated according to: 267 // J. Stepanek ,"A program to determine the 174 // J. Stepanek ,"A program to determine the radiation spectra due to a single atomic 268 // subshell ionisation by a particle or due 175 // subshell ionisation by a particle or due to deexcitation or decay of radionuclides", 269 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) 176 // Comp. Phys. Comm. 1206 pp 1-1-9 (1997) >> 177 270 if (verboseLevel > 3) 178 if (verboseLevel > 3) 271 G4cout << "Calling SampleSecondaries() of 179 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedGammaConversionModel" << G4endl; 272 180 273 G4double photonEnergy = aDynamicGamma->GetKi 181 G4double photonEnergy = aDynamicGamma->GetKineticEnergy(); >> 182 // Within energy limit? 274 183 275 if(photonEnergy <= lowEnergyLimit) 184 if(photonEnergy <= lowEnergyLimit) 276 { 185 { 277 fParticleChange->ProposeTrackStatus(fSto 186 fParticleChange->ProposeTrackStatus(fStopAndKill); 278 fParticleChange->SetProposedKineticEnerg 187 fParticleChange->SetProposedKineticEnergy(0.); 279 return; 188 return; 280 } 189 } 281 190 >> 191 282 G4ThreeVector gammaPolarization0 = aDynamicG 192 G4ThreeVector gammaPolarization0 = aDynamicGamma->GetPolarization(); 283 G4ThreeVector gammaDirection0 = aDynamicGamm 193 G4ThreeVector gammaDirection0 = aDynamicGamma->GetMomentumDirection(); 284 194 285 // Make sure that the polarization vector is 195 // Make sure that the polarization vector is perpendicular to the 286 // gamma direction. If not 196 // gamma direction. If not >> 197 287 if(!(gammaPolarization0.isOrthogonal(gammaDi 198 if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0)) 288 { // only for testing now 199 { // only for testing now 289 gammaPolarization0 = GetRandomPolarizati 200 gammaPolarization0 = GetRandomPolarization(gammaDirection0); 290 } 201 } 291 else 202 else 292 { 203 { 293 if ( gammaPolarization0.howOrthogonal(ga 204 if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0) 294 { 205 { 295 gammaPolarization0 = GetPerpendicularPolar 206 gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0); 296 } 207 } 297 } 208 } 298 209 299 // End of Protection 210 // End of Protection 300 211 >> 212 301 G4double epsilon ; 213 G4double epsilon ; 302 G4double epsilon0Local = electron_mass_c2 / 214 G4double epsilon0Local = electron_mass_c2 / photonEnergy ; 303 215 304 // Do it fast if photon energy < 2. MeV 216 // Do it fast if photon energy < 2. MeV 305 217 306 if (photonEnergy < smallEnergy ) 218 if (photonEnergy < smallEnergy ) 307 { 219 { 308 epsilon = epsilon0Local + (0.5 - epsilon 220 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand(); 309 } 221 } 310 else 222 else 311 { 223 { 312 // Select randomly one element in the cu << 224 >> 225 // Select randomly one element in the current material >> 226 >> 227 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy); >> 228 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy); >> 229 313 const G4ParticleDefinition* particle = 230 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 314 const G4Element* element = SelectRandomA 231 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy); 315 << 232 316 if (element == nullptr) << 233 /* >> 234 if (element == 0) 317 { 235 { 318 G4cout << "G4LivermorePolarizedGamma << 236 G4cout << "G4LivermorePolarizedGammaConversionModel::PostStepDoIt - element = 0" << G4endl; 319 return; << 320 } 237 } >> 238 */ 321 239 >> 240 G4IonisParamElm* ionisation = element->GetIonisation(); 322 241 323 G4IonisParamElm* ionisation = element->G << 242 /* 324 if (ionisation == nullptr) << 243 if (ionisation == 0) 325 { 244 { 326 G4cout << "G4LivermorePolarizedGamma << 245 G4cout << "G4LivermorePolarizedGammaConversionModel::PostStepDoIt - ionisation = 0" << G4endl; 327 return; << 328 } 246 } 329 << 247 */ >> 248 >> 249 330 // Extract Coulomb factor for this Eleme 250 // Extract Coulomb factor for this Element >> 251 331 G4double fZ = 8. * (ionisation->GetlogZ3 252 G4double fZ = 8. * (ionisation->GetlogZ3()); 332 if (photonEnergy > 50. * MeV) fZ += 8. * 253 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb()); 333 254 334 // Limits of the screening variable 255 // Limits of the screening variable 335 G4double screenFactor = 136. * epsilon0L 256 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ; 336 G4double screenMax = G4Exp ((42.24 - fZ) << 257 G4double screenMax = exp ((42.24 - fZ)/8.368) - 0.952 ; 337 G4double screenMin = std::min(4.*screenF 258 G4double screenMin = std::min(4.*screenFactor,screenMax) ; 338 259 339 // Limits of the energy sampling 260 // Limits of the energy sampling 340 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. 261 G4double epsilon1 = 0.5 - 0.5 * sqrt(1. - screenMin / screenMax) ; 341 G4double epsilonMin = std::max(epsilon0L 262 G4double epsilonMin = std::max(epsilon0Local,epsilon1); 342 G4double epsilonRange = 0.5 - epsilonMin 263 G4double epsilonRange = 0.5 - epsilonMin ; 343 264 344 // Sample the energy rate of the created 265 // Sample the energy rate of the created electron (or positron) 345 G4double screen; 266 G4double screen; 346 G4double gReject ; 267 G4double gReject ; 347 268 348 G4double f10 = ScreenFunction1(screenMin 269 G4double f10 = ScreenFunction1(screenMin) - fZ; 349 G4double f20 = ScreenFunction2(screenMin 270 G4double f20 = ScreenFunction2(screenMin) - fZ; 350 G4double normF1 = std::max(f10 * epsilon 271 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.); 351 G4double normF2 = std::max(1.5 * f20,0.) 272 G4double normF2 = std::max(1.5 * f20,0.); 352 273 353 do { 274 do { 354 if (normF1 / (normF1 + normF2) > G4Uni 275 if (normF1 / (normF1 + normF2) > G4UniformRand() ) 355 { 276 { 356 epsilon = 0.5 - epsilonRange * pow 277 epsilon = 0.5 - epsilonRange * pow(G4UniformRand(), 0.3333) ; 357 screen = screenFactor / (epsilon * 278 screen = screenFactor / (epsilon * (1. - epsilon)); 358 gReject = (ScreenFunction1(screen) 279 gReject = (ScreenFunction1(screen) - fZ) / f10 ; 359 } 280 } 360 else 281 else 361 { 282 { 362 epsilon = epsilonMin + epsilonRang 283 epsilon = epsilonMin + epsilonRange * G4UniformRand(); 363 screen = screenFactor / (epsilon * 284 screen = screenFactor / (epsilon * (1 - epsilon)); 364 gReject = (ScreenFunction2(screen) 285 gReject = (ScreenFunction2(screen) - fZ) / f20 ; >> 286 >> 287 365 } 288 } 366 } while ( gReject < G4UniformRand() ); 289 } while ( gReject < G4UniformRand() ); >> 290 367 } // End of epsilon sampling 291 } // End of epsilon sampling 368 292 369 // Fix charges randomly 293 // Fix charges randomly >> 294 370 G4double electronTotEnergy; 295 G4double electronTotEnergy; 371 G4double positronTotEnergy; 296 G4double positronTotEnergy; 372 297 373 if (G4UniformRand() > 0.5) << 298 >> 299 if (G4int(2*G4UniformRand())) 374 { 300 { 375 electronTotEnergy = (1. - epsilon) * pho 301 electronTotEnergy = (1. - epsilon) * photonEnergy; 376 positronTotEnergy = epsilon * photonEner 302 positronTotEnergy = epsilon * photonEnergy; 377 } 303 } 378 else 304 else 379 { 305 { 380 positronTotEnergy = (1. - epsilon) * pho 306 positronTotEnergy = (1. - epsilon) * photonEnergy; 381 electronTotEnergy = epsilon * photonEner 307 electronTotEnergy = epsilon * photonEnergy; 382 } 308 } 383 << 309 384 // Scattered electron (positron) angles. ( Z 310 // Scattered electron (positron) angles. ( Z - axis along the parent photon) 385 // Universal distribution suggested by L. Ur 311 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211), 386 // derived from Tsai distribution (Rev. Mod. 312 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977) >> 313 >> 314 /* >> 315 G4double u; >> 316 const G4double a1 = 0.625; >> 317 G4double a2 = 3. * a1; >> 318 >> 319 if (0.25 > G4UniformRand()) >> 320 { >> 321 u = - log(G4UniformRand() * G4UniformRand()) / a1 ; >> 322 } >> 323 else >> 324 { >> 325 u = - log(G4UniformRand() * G4UniformRand()) / a2 ; >> 326 } >> 327 */ >> 328 387 G4double Ene = electronTotEnergy/electron_ma 329 G4double Ene = electronTotEnergy/electron_mass_c2; // Normalized energy 388 330 389 G4double cosTheta = 0.; 331 G4double cosTheta = 0.; 390 G4double sinTheta = 0.; 332 G4double sinTheta = 0.; 391 333 392 SetTheta(&cosTheta,&sinTheta,Ene); 334 SetTheta(&cosTheta,&sinTheta,Ene); >> 335 >> 336 // G4double theta = u * electron_mass_c2 / photonEnergy ; >> 337 // G4double phi = twopi * G4UniformRand() ; >> 338 393 G4double phi,psi=0.; 339 G4double phi,psi=0.; 394 340 395 //corrected e+ e- angular angular distributi 341 //corrected e+ e- angular angular distribution //preliminary! >> 342 >> 343 // if(photonEnergy>50*MeV) >> 344 // { 396 phi = SetPhi(photonEnergy); 345 phi = SetPhi(photonEnergy); 397 psi = SetPsi(photonEnergy,phi); 346 psi = SetPsi(photonEnergy,phi); >> 347 // } >> 348 //else >> 349 // { >> 350 //psi = G4UniformRand()*2.*pi; >> 351 //phi = pi; // coplanar >> 352 // } >> 353 398 Psi = psi; 354 Psi = psi; 399 Phi = phi; 355 Phi = phi; >> 356 //G4cout << "PHI " << phi << G4endl; >> 357 //G4cout << "PSI " << psi << G4endl; 400 358 401 G4double phie, phip; 359 G4double phie, phip; 402 G4double choice, choice2; << 360 G4double choice; 403 choice = G4UniformRand(); 361 choice = G4UniformRand(); 404 choice2 = G4UniformRand(); << 405 << 406 if (choice2 <= 0.5) << 407 { << 408 // do nothing << 409 // phi = phi; << 410 } << 411 else << 412 { << 413 phi = -phi; << 414 } << 415 << 416 if (choice <= 0.5) 362 if (choice <= 0.5) 417 { 363 { 418 phie = psi; //azimuthal angle for the el 364 phie = psi; //azimuthal angle for the electron 419 phip = phie+phi; //azimuthal angle for t 365 phip = phie+phi; //azimuthal angle for the positron 420 } 366 } 421 else 367 else 422 { 368 { 423 // opzione 1 phie / phip equivalenti 369 // opzione 1 phie / phip equivalenti >> 370 424 phip = psi; //azimuthal angle for the po 371 phip = psi; //azimuthal angle for the positron 425 phie = phip + phi; //azimuthal angle for 372 phie = phip + phi; //azimuthal angle for the electron 426 } 373 } 427 374 428 375 429 // Electron Kinematics 376 // Electron Kinematics >> 377 430 G4double dirX = sinTheta*cos(phie); 378 G4double dirX = sinTheta*cos(phie); 431 G4double dirY = sinTheta*sin(phie); 379 G4double dirY = sinTheta*sin(phie); 432 G4double dirZ = cosTheta; 380 G4double dirZ = cosTheta; 433 G4ThreeVector electronDirection(dirX,dirY,di 381 G4ThreeVector electronDirection(dirX,dirY,dirZ); 434 382 435 // Kinematics of the created pair: 383 // Kinematics of the created pair: 436 // the electron and positron are assumed to 384 // the electron and positron are assumed to have a symetric angular 437 // distribution with respect to the Z axis a 385 // distribution with respect to the Z axis along the parent photon 438 386 >> 387 //G4double localEnergyDeposit = 0. ; >> 388 439 G4double electronKineEnergy = std::max(0.,el 389 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; 440 390 441 SystemOfRefChange(gammaDirection0,electronDi 391 SystemOfRefChange(gammaDirection0,electronDirection, 442 gammaPolarization0); 392 gammaPolarization0); 443 393 444 G4DynamicParticle* particle1 = new G4Dynamic 394 G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(), 445 electronDirection, 395 electronDirection, 446 electronKineEnergy); 396 electronKineEnergy); 447 397 448 // The e+ is always created (even with kinet 398 // The e+ is always created (even with kinetic energy = 0) for further annihilation >> 399 449 Ene = positronTotEnergy/electron_mass_c2; // 400 Ene = positronTotEnergy/electron_mass_c2; // Normalized energy 450 401 451 cosTheta = 0.; 402 cosTheta = 0.; 452 sinTheta = 0.; 403 sinTheta = 0.; 453 404 454 SetTheta(&cosTheta,&sinTheta,Ene); 405 SetTheta(&cosTheta,&sinTheta,Ene); 455 406 456 // Positron Kinematics 407 // Positron Kinematics >> 408 457 dirX = sinTheta*cos(phip); 409 dirX = sinTheta*cos(phip); 458 dirY = sinTheta*sin(phip); 410 dirY = sinTheta*sin(phip); 459 dirZ = cosTheta; 411 dirZ = cosTheta; 460 G4ThreeVector positronDirection(dirX,dirY,di 412 G4ThreeVector positronDirection(dirX,dirY,dirZ); 461 413 462 G4double positronKineEnergy = std::max(0.,po 414 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ; 463 SystemOfRefChange(gammaDirection0,positronDi 415 SystemOfRefChange(gammaDirection0,positronDirection, 464 gammaPolarization0); 416 gammaPolarization0); 465 417 466 // Create G4DynamicParticle object for the p 418 // Create G4DynamicParticle object for the particle2 467 G4DynamicParticle* particle2 = new G4Dynamic 419 G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(), 468 420 positronDirection, positronKineEnergy); >> 421 >> 422 469 fvect->push_back(particle1); 423 fvect->push_back(particle1); 470 fvect->push_back(particle2); 424 fvect->push_back(particle2); 471 425 >> 426 >> 427 472 // Kill the incident photon 428 // Kill the incident photon >> 429 >> 430 >> 431 >> 432 // Create lists of pointers to DynamicParticles (photons and electrons) >> 433 // (Is the electron vector necessary? To be checked) >> 434 // std::vector<G4DynamicParticle*>* photonVector = 0; >> 435 //std::vector<G4DynamicParticle*> electronVector; >> 436 >> 437 fParticleChange->ProposeMomentumDirection( 0., 0., 0. ); 473 fParticleChange->SetProposedKineticEnergy(0. 438 fParticleChange->SetProposedKineticEnergy(0.); 474 fParticleChange->ProposeTrackStatus(fStopAnd 439 fParticleChange->ProposeTrackStatus(fStopAndKill); >> 440 475 } 441 } 476 442 477 //....oooOO0OOooo........oooOO0OOooo........oo 443 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 478 444 479 G4double G4LivermorePolarizedGammaConversionMo 445 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction1(G4double screenVariable) 480 { 446 { 481 // Compute the value of the screening functi 447 // Compute the value of the screening function 3*phi1 - phi2 >> 448 482 G4double value; 449 G4double value; >> 450 483 if (screenVariable > 1.) 451 if (screenVariable > 1.) 484 value = 42.24 - 8.368 * log(screenVariable 452 value = 42.24 - 8.368 * log(screenVariable + 0.952); 485 else 453 else 486 value = 42.392 - screenVariable * (7.796 - 454 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable); 487 455 488 return value; 456 return value; 489 } 457 } 490 458 491 459 492 460 493 G4double G4LivermorePolarizedGammaConversionMo 461 G4double G4LivermorePolarizedGammaConversionModel::ScreenFunction2(G4double screenVariable) 494 { 462 { 495 // Compute the value of the screening functi 463 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2 >> 464 496 G4double value; 465 G4double value; 497 466 498 if (screenVariable > 1.) 467 if (screenVariable > 1.) 499 value = 42.24 - 8.368 * log(screenVariable 468 value = 42.24 - 8.368 * log(screenVariable + 0.952); 500 else 469 else 501 value = 41.405 - screenVariable * (5.828 - 470 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable); 502 471 503 return value; 472 return value; 504 } 473 } 505 474 506 475 507 void G4LivermorePolarizedGammaConversionModel: 476 void G4LivermorePolarizedGammaConversionModel::SetTheta(G4double* p_cosTheta, G4double* p_sinTheta, G4double Energy) 508 { 477 { >> 478 509 // to avoid computational errors since Theta 479 // to avoid computational errors since Theta could be very small 510 // Energy in Normalized Units (!) 480 // Energy in Normalized Units (!) 511 481 512 G4double Momentum = sqrt(Energy*Energy -1); 482 G4double Momentum = sqrt(Energy*Energy -1); 513 G4double Rand = G4UniformRand(); 483 G4double Rand = G4UniformRand(); 514 484 515 *p_cosTheta = (Energy*((2*Rand)- 1) + Moment 485 *p_cosTheta = (Energy*((2*Rand)- 1) + Momentum)/((Momentum*(2*Rand-1))+Energy); 516 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momen 486 *p_sinTheta = (2*sqrt(Rand*(1-Rand)))/(Momentum*(2*Rand-1)+Energy); 517 } 487 } 518 488 519 489 520 490 521 G4double G4LivermorePolarizedGammaConversionMo 491 G4double G4LivermorePolarizedGammaConversionModel::SetPhi(G4double Energy) 522 { 492 { >> 493 >> 494 523 G4double value = 0.; 495 G4double value = 0.; 524 G4double Ene = Energy/MeV; 496 G4double Ene = Energy/MeV; 525 497 526 G4double pl[4]; 498 G4double pl[4]; >> 499 >> 500 527 G4double pt[2]; 501 G4double pt[2]; 528 G4double xi = 0; 502 G4double xi = 0; 529 G4double xe = 0.; 503 G4double xe = 0.; 530 G4double n1=0.; 504 G4double n1=0.; 531 G4double n2=0.; 505 G4double n2=0.; 532 506 >> 507 533 if (Ene>=50.) 508 if (Ene>=50.) 534 { 509 { 535 const G4double ay0=5.6, by0=18.6, aa0=2. 510 const G4double ay0=5.6, by0=18.6, aa0=2.9, ba0 = 8.16E-3; 536 const G4double aw = 0.0151, bw = 10.7, c 511 const G4double aw = 0.0151, bw = 10.7, cw = -410.; 537 512 538 const G4double axc = 3.1455, bxc = -1.11 513 const G4double axc = 3.1455, bxc = -1.11, cxc = 310.; 539 514 540 pl[0] = Fln(ay0,by0,Ene); 515 pl[0] = Fln(ay0,by0,Ene); 541 pl[1] = aa0 + ba0*(Ene); 516 pl[1] = aa0 + ba0*(Ene); 542 pl[2] = Poli(aw,bw,cw,Ene); 517 pl[2] = Poli(aw,bw,cw,Ene); 543 pl[3] = Poli(axc,bxc,cxc,Ene); 518 pl[3] = Poli(axc,bxc,cxc,Ene); 544 519 545 const G4double abf = 3.1216, bbf = 2.68; 520 const G4double abf = 3.1216, bbf = 2.68; 546 pt[0] = -1.4; 521 pt[0] = -1.4; 547 pt[1] = abf + bbf/Ene; 522 pt[1] = abf + bbf/Ene; 548 523 >> 524 >> 525 >> 526 //G4cout << "PL > 50. "<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 527 549 xi = 3.0; 528 xi = 3.0; 550 xe = Encu(pl,pt,xi); 529 xe = Encu(pl,pt,xi); >> 530 //G4cout << "ENCU "<< xe << G4endl; 551 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 531 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 552 n2 = Finttan(pt,xe) - Finttan(pt,0.); 532 n2 = Finttan(pt,xe) - Finttan(pt,0.); 553 } 533 } 554 else 534 else 555 { 535 { 556 const G4double ay0=0.144, by0=0.11; 536 const G4double ay0=0.144, by0=0.11; 557 const G4double aa0=2.7, ba0 = 2.74; 537 const G4double aa0=2.7, ba0 = 2.74; 558 const G4double aw = 0.21, bw = 10.8, cw 538 const G4double aw = 0.21, bw = 10.8, cw = -58.; 559 const G4double axc = 3.17, bxc = -0.87, 539 const G4double axc = 3.17, bxc = -0.87, cxc = -6.; 560 540 561 pl[0] = Fln(ay0, by0, Ene); 541 pl[0] = Fln(ay0, by0, Ene); 562 pl[1] = Fln(aa0, ba0, Ene); 542 pl[1] = Fln(aa0, ba0, Ene); 563 pl[2] = Poli(aw,bw,cw,Ene); 543 pl[2] = Poli(aw,bw,cw,Ene); 564 pl[3] = Poli(axc,bxc,cxc,Ene); 544 pl[3] = Poli(axc,bxc,cxc,Ene); 565 545 >> 546 //G4cout << "PL < 50."<< pl[0] << " " << pl[1] << " " << pl[2] << " " <<pl[3] << " " << G4endl; >> 547 //G4cout << "ENCU "<< xe << G4endl; 566 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); 548 n1 = Fintlor(pl,pi) - Fintlor(pl,xe); >> 549 567 } 550 } 568 551 569 552 570 G4double n=0.; 553 G4double n=0.; 571 n = n1+n2; 554 n = n1+n2; 572 555 573 G4double c1 = 0.; 556 G4double c1 = 0.; 574 c1 = Glor(pl, xe); 557 c1 = Glor(pl, xe); 575 558 >> 559 /* >> 560 G4double xm = 0.; >> 561 xm = Flor(pl,pl[3])*Glor(pl,pl[3]); >> 562 */ >> 563 576 G4double r1,r2,r3; 564 G4double r1,r2,r3; 577 G4double xco=0.; 565 G4double xco=0.; 578 566 579 if (Ene>=50.) 567 if (Ene>=50.) 580 { 568 { 581 r1= G4UniformRand(); 569 r1= G4UniformRand(); 582 if( r1>=n2/n) 570 if( r1>=n2/n) 583 { 571 { 584 do 572 do 585 { 573 { 586 r2 = G4UniformRand(); 574 r2 = G4UniformRand(); 587 value = Finvlor(pl,xe,r2); 575 value = Finvlor(pl,xe,r2); 588 xco = Glor(pl,value)/c1; 576 xco = Glor(pl,value)/c1; 589 r3 = G4UniformRand(); 577 r3 = G4UniformRand(); 590 } while(r3>=xco); 578 } while(r3>=xco); 591 } 579 } 592 else 580 else 593 { 581 { 594 value = Finvtan(pt,n,r1); 582 value = Finvtan(pt,n,r1); 595 } 583 } 596 } 584 } 597 else 585 else 598 { 586 { 599 do 587 do 600 { 588 { 601 r2 = G4UniformRand(); 589 r2 = G4UniformRand(); 602 value = Finvlor(pl,xe,r2); 590 value = Finvlor(pl,xe,r2); 603 xco = Glor(pl,value)/c1; 591 xco = Glor(pl,value)/c1; 604 r3 = G4UniformRand(); 592 r3 = G4UniformRand(); 605 } while(r3>=xco); 593 } while(r3>=xco); 606 } 594 } >> 595 >> 596 // G4cout << "PHI = " <<value << G4endl; 607 return value; 597 return value; 608 } 598 } 609 << 610 //....oooOO0OOooo........oooOO0OOooo........oo << 611 << 612 G4double G4LivermorePolarizedGammaConversionMo 599 G4double G4LivermorePolarizedGammaConversionModel::SetPsi(G4double Energy, G4double PhiLocal) 613 { 600 { >> 601 614 G4double value = 0.; 602 G4double value = 0.; 615 G4double Ene = Energy/MeV; 603 G4double Ene = Energy/MeV; 616 604 617 G4double p0l[4]; 605 G4double p0l[4]; 618 G4double ppml[4]; 606 G4double ppml[4]; 619 G4double p0t[2]; 607 G4double p0t[2]; 620 G4double ppmt[2]; 608 G4double ppmt[2]; 621 609 622 G4double xi = 0.; 610 G4double xi = 0.; 623 G4double xe0 = 0.; 611 G4double xe0 = 0.; 624 G4double xepm = 0.; 612 G4double xepm = 0.; 625 613 626 if (Ene>=50.) 614 if (Ene>=50.) 627 { 615 { 628 const G4double ay00 = 3.4, by00 = 9.8, a 616 const G4double ay00 = 3.4, by00 = 9.8, aa00 = 1.34, ba00 = 5.3; 629 const G4double aw0 = 0.014, bw0 = 9.7, c 617 const G4double aw0 = 0.014, bw0 = 9.7, cw0 = -2.E4; 630 const G4double axc0 = 3.1423, bxc0 = -2. 618 const G4double axc0 = 3.1423, bxc0 = -2.35, cxc0 = 0.; 631 const G4double ay0p = 1.53, by0p = 3.2, 619 const G4double ay0p = 1.53, by0p = 3.2, aap = 0.67, bap = 8.5E-3; 632 const G4double awp = 6.9E-3, bwp = 12.6, 620 const G4double awp = 6.9E-3, bwp = 12.6, cwp = -3.8E4; 633 const G4double axcp = 2.8E-3,bxcp = -3.1 621 const G4double axcp = 2.8E-3,bxcp = -3.133; 634 const G4double abf0 = 3.1213, bbf0 = 2.6 622 const G4double abf0 = 3.1213, bbf0 = 2.61; 635 const G4double abfpm = 3.1231, bbfpm = 2 623 const G4double abfpm = 3.1231, bbfpm = 2.84; 636 624 637 p0l[0] = Fln(ay00, by00, Ene); 625 p0l[0] = Fln(ay00, by00, Ene); 638 p0l[1] = Fln(aa00, ba00, Ene); 626 p0l[1] = Fln(aa00, ba00, Ene); 639 p0l[2] = Poli(aw0, bw0, cw0, Ene); 627 p0l[2] = Poli(aw0, bw0, cw0, Ene); 640 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 628 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 641 629 642 ppml[0] = Fln(ay0p, by0p, Ene); 630 ppml[0] = Fln(ay0p, by0p, Ene); 643 ppml[1] = aap + bap*(Ene); 631 ppml[1] = aap + bap*(Ene); 644 ppml[2] = Poli(awp, bwp, cwp, Ene); 632 ppml[2] = Poli(awp, bwp, cwp, Ene); 645 ppml[3] = Fln(axcp,bxcp,Ene); 633 ppml[3] = Fln(axcp,bxcp,Ene); 646 634 647 p0t[0] = -0.81; 635 p0t[0] = -0.81; 648 p0t[1] = abf0 + bbf0/Ene; 636 p0t[1] = abf0 + bbf0/Ene; 649 ppmt[0] = -0.6; 637 ppmt[0] = -0.6; 650 ppmt[1] = abfpm + bbfpm/Ene; 638 ppmt[1] = abfpm + bbfpm/Ene; 651 639 >> 640 //G4cout << "P0L > 50"<< p0l[0] << " " << p0l[1] << " " << p0l[2] << " " <<p0l[3] << " " << G4endl; >> 641 //G4cout << "PPML > 50"<< ppml[0] << " " << ppml[1] << " " << ppml[2] << " " <<ppml[3] << " " << G4endl; >> 642 652 xi = 3.0; 643 xi = 3.0; 653 xe0 = Encu(p0l, p0t, xi); 644 xe0 = Encu(p0l, p0t, xi); >> 645 //G4cout << "ENCU1 "<< xe0 << G4endl; 654 xepm = Encu(ppml, ppmt, xi); 646 xepm = Encu(ppml, ppmt, xi); >> 647 //G4cout << "ENCU2 "<< xepm << G4endl; 655 } 648 } 656 else 649 else 657 { 650 { 658 const G4double ay00 = 2.82, by00 = 6.35; 651 const G4double ay00 = 2.82, by00 = 6.35; 659 const G4double aa00 = -1.75, ba00 = 0.25 652 const G4double aa00 = -1.75, ba00 = 0.25; 660 653 661 const G4double aw0 = 0.028, bw0 = 5., cw 654 const G4double aw0 = 0.028, bw0 = 5., cw0 = -50.; 662 const G4double axc0 = 3.14213, bxc0 = -2 655 const G4double axc0 = 3.14213, bxc0 = -2.3, cxc0 = 5.7; 663 const G4double ay0p = 1.56, by0p = 3.6; 656 const G4double ay0p = 1.56, by0p = 3.6; 664 const G4double aap = 0.86, bap = 8.3E-3; 657 const G4double aap = 0.86, bap = 8.3E-3; 665 const G4double awp = 0.022, bwp = 7.4, c 658 const G4double awp = 0.022, bwp = 7.4, cwp = -51.; 666 const G4double xcp = 3.1486; 659 const G4double xcp = 3.1486; 667 660 668 p0l[0] = Fln(ay00, by00, Ene); 661 p0l[0] = Fln(ay00, by00, Ene); 669 p0l[1] = aa00+pow(Ene, ba00); 662 p0l[1] = aa00+pow(Ene, ba00); 670 p0l[2] = Poli(aw0, bw0, cw0, Ene); 663 p0l[2] = Poli(aw0, bw0, cw0, Ene); 671 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 664 p0l[3] = Poli(axc0, bxc0, cxc0, Ene); 672 ppml[0] = Fln(ay0p, by0p, Ene); 665 ppml[0] = Fln(ay0p, by0p, Ene); 673 ppml[1] = aap + bap*(Ene); 666 ppml[1] = aap + bap*(Ene); 674 ppml[2] = Poli(awp, bwp, cwp, Ene); 667 ppml[2] = Poli(awp, bwp, cwp, Ene); 675 ppml[3] = xcp; 668 ppml[3] = xcp; >> 669 676 } 670 } 677 671 678 G4double a,b=0.; 672 G4double a,b=0.; 679 673 680 if (Ene>=50.) 674 if (Ene>=50.) 681 { 675 { 682 if (PhiLocal>xepm) 676 if (PhiLocal>xepm) 683 { 677 { 684 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor( 678 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 685 } 679 } 686 else 680 else 687 { 681 { 688 b = Ftan(ppmt,PhiLocal); 682 b = Ftan(ppmt,PhiLocal); 689 } 683 } 690 if (PhiLocal>xe0) 684 if (PhiLocal>xe0) 691 { 685 { 692 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l 686 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 693 } 687 } 694 else 688 else 695 { 689 { 696 a = Ftan(p0t,PhiLocal); 690 a = Ftan(p0t,PhiLocal); 697 } 691 } 698 } 692 } 699 else 693 else 700 { 694 { 701 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml 695 b = (ppml[0]+2*ppml[1]*ppml[2]*Flor(ppml,PhiLocal)); 702 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,Phi 696 a = (p0l[0]+2*p0l[1]*p0l[2]*Flor(p0l,PhiLocal)); 703 } 697 } 704 G4double nr =0.; 698 G4double nr =0.; 705 699 706 if (b>a) 700 if (b>a) 707 { 701 { 708 nr = 1./b; 702 nr = 1./b; 709 } 703 } 710 else 704 else 711 { 705 { 712 nr = 1./a; 706 nr = 1./a; 713 } 707 } 714 708 715 G4double r1,r2=0.; 709 G4double r1,r2=0.; 716 G4double r3 =-1.; 710 G4double r3 =-1.; 717 do 711 do 718 { 712 { 719 r1 = G4UniformRand(); 713 r1 = G4UniformRand(); 720 r2 = G4UniformRand(); 714 r2 = G4UniformRand(); 721 //value = r2*pi; << 715 value = r2*pi; 722 value = 2.*r2*pi; << 723 r3 = nr*(a*cos(value)*cos(value) + b*sin 716 r3 = nr*(a*cos(value)*cos(value) + b*sin(value)*sin(value)); 724 }while(r1>r3); 717 }while(r1>r3); 725 718 726 return value; 719 return value; 727 } 720 } 728 721 729 //....oooOO0OOooo........oooOO0OOooo........oo << 730 722 731 G4double G4LivermorePolarizedGammaConversionMo 723 G4double G4LivermorePolarizedGammaConversionModel::Poli 732 (G4double a, G4double b, G4double c, G4double 724 (G4double a, G4double b, G4double c, G4double x) 733 { 725 { 734 G4double value=0.; 726 G4double value=0.; 735 if(x>0.) 727 if(x>0.) 736 { 728 { 737 value =(a + b/x + c/(x*x*x)); 729 value =(a + b/x + c/(x*x*x)); 738 } 730 } 739 else 731 else 740 { 732 { 741 //G4cout << "ERROR in Poli! " << G4endl; 733 //G4cout << "ERROR in Poli! " << G4endl; 742 } 734 } 743 return value; 735 return value; 744 } 736 } 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 G4double G4LivermorePolarizedGammaConversionMo 737 G4double G4LivermorePolarizedGammaConversionModel::Fln 749 (G4double a, G4double b, G4double x) 738 (G4double a, G4double b, G4double x) 750 { 739 { 751 G4double value=0.; 740 G4double value=0.; 752 if(x>0.) 741 if(x>0.) 753 { 742 { 754 value =(a*log(x)-b); 743 value =(a*log(x)-b); 755 } 744 } 756 else 745 else 757 { 746 { 758 //G4cout << "ERROR in Fln! " << G4endl; 747 //G4cout << "ERROR in Fln! " << G4endl; 759 } 748 } 760 return value; 749 return value; 761 } 750 } 762 751 763 //....oooOO0OOooo........oooOO0OOooo........oo << 764 752 765 G4double G4LivermorePolarizedGammaConversionMo 753 G4double G4LivermorePolarizedGammaConversionModel::Encu 766 (G4double* p_p1, G4double* p_p2, G4double x0) 754 (G4double* p_p1, G4double* p_p2, G4double x0) 767 { 755 { 768 G4int i=0; 756 G4int i=0; 769 G4double fx = 1.; 757 G4double fx = 1.; 770 G4double x = x0; 758 G4double x = x0; 771 const G4double xmax = 3.0; 759 const G4double xmax = 3.0; 772 760 773 for(i=0; i<100; ++i) 761 for(i=0; i<100; ++i) 774 { 762 { 775 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p 763 fx = (Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x))/ 776 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 764 (Fdlor(p_p1,x) - Fdtan(p_p2,x)); 777 x -= fx; 765 x -= fx; 778 if(x > xmax) { return xmax; } 766 if(x > xmax) { return xmax; } >> 767 // x -= (Flor(p_p1, x)*Glor(p_p1,x) - Ftan(p_p2, x))/ >> 768 // (Fdlor(p_p1,x) - Fdtan(p_p2,x)); >> 769 // fx = Flor(p_p1,x)*Glor(p_p1,x) - Ftan(p_p2, x); >> 770 // G4cout << std::fabs(fx) << " " << i << " " << x << "dentro ENCU " << G4endl; 779 if(std::fabs(fx) <= x*1.0e-6) { break; } 771 if(std::fabs(fx) <= x*1.0e-6) { break; } 780 } 772 } 781 773 782 if(x < 0.0) { x = 0.0; } 774 if(x < 0.0) { x = 0.0; } 783 return x; 775 return x; 784 } 776 } 785 777 786 //....oooOO0OOooo........oooOO0OOooo........oo << 787 778 788 G4double G4LivermorePolarizedGammaConversionMo 779 G4double G4LivermorePolarizedGammaConversionModel::Flor(G4double* p_p1, G4double x) 789 { 780 { 790 G4double value =0.; 781 G4double value =0.; >> 782 // G4double y0 = p_p1[0]; >> 783 // G4double A = p_p1[1]; 791 G4double w = p_p1[2]; 784 G4double w = p_p1[2]; 792 G4double xc = p_p1[3]; 785 G4double xc = p_p1[3]; 793 786 794 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 787 value = 1./(pi*(w*w + 4.*(x-xc)*(x-xc))); 795 return value; 788 return value; 796 } 789 } 797 790 798 //....oooOO0OOooo........oooOO0OOooo........oo << 799 791 800 G4double G4LivermorePolarizedGammaConversionMo 792 G4double G4LivermorePolarizedGammaConversionModel::Glor(G4double* p_p1, G4double x) 801 { 793 { 802 G4double value =0.; 794 G4double value =0.; 803 G4double y0 = p_p1[0]; 795 G4double y0 = p_p1[0]; 804 G4double A = p_p1[1]; 796 G4double A = p_p1[1]; 805 G4double w = p_p1[2]; 797 G4double w = p_p1[2]; 806 G4double xc = p_p1[3]; 798 G4double xc = p_p1[3]; 807 799 808 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 800 value = (y0 *pi*(w*w + 4.*(x-xc)*(x-xc)) + 2.*A*w); 809 return value; 801 return value; 810 } 802 } 811 803 812 //....oooOO0OOooo........oooOO0OOooo........oo << 813 804 814 G4double G4LivermorePolarizedGammaConversionMo 805 G4double G4LivermorePolarizedGammaConversionModel::Fdlor(G4double* p_p1, G4double x) 815 { 806 { 816 G4double value =0.; 807 G4double value =0.; >> 808 //G4double y0 = p_p1[0]; 817 G4double A = p_p1[1]; 809 G4double A = p_p1[1]; 818 G4double w = p_p1[2]; 810 G4double w = p_p1[2]; 819 G4double xc = p_p1[3]; 811 G4double xc = p_p1[3]; 820 812 821 value = (-16.*A*w*(x-xc))/ 813 value = (-16.*A*w*(x-xc))/ 822 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)* 814 (pi*(w*w+4.*(x-xc)*(x-xc))*(w*w+4.*(x-xc)*(x-xc))); 823 return value; 815 return value; 824 } 816 } 825 817 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 818 828 G4double G4LivermorePolarizedGammaConversionMo 819 G4double G4LivermorePolarizedGammaConversionModel::Fintlor(G4double* p_p1, G4double x) 829 { 820 { 830 G4double value =0.; 821 G4double value =0.; 831 G4double y0 = p_p1[0]; 822 G4double y0 = p_p1[0]; 832 G4double A = p_p1[1]; 823 G4double A = p_p1[1]; 833 G4double w = p_p1[2]; 824 G4double w = p_p1[2]; 834 G4double xc = p_p1[3]; 825 G4double xc = p_p1[3]; 835 826 836 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 827 value = y0*x + A*atan( 2*(x-xc)/w) / pi; 837 return value; 828 return value; 838 } 829 } 839 830 840 831 841 G4double G4LivermorePolarizedGammaConversionMo 832 G4double G4LivermorePolarizedGammaConversionModel::Finvlor(G4double* p_p1, G4double x, G4double r) 842 { 833 { 843 G4double value = 0.; 834 G4double value = 0.; 844 G4double nor = 0.; 835 G4double nor = 0.; >> 836 //G4double y0 = p_p1[0]; >> 837 // G4double A = p_p1[1]; 845 G4double w = p_p1[2]; 838 G4double w = p_p1[2]; 846 G4double xc = p_p1[3]; 839 G4double xc = p_p1[3]; 847 840 848 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2. 841 nor = atan(2.*(pi-xc)/w)/(2.*pi*w) - atan(2.*(x-xc)/w)/(2.*pi*w); 849 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan( 842 value = xc - (w/2.)*tan(-2.*r*nor*pi*w+atan(2*(xc-x)/w)); 850 843 851 return value; 844 return value; 852 } 845 } 853 846 854 //....oooOO0OOooo........oooOO0OOooo........oo << 855 847 856 G4double G4LivermorePolarizedGammaConversionMo 848 G4double G4LivermorePolarizedGammaConversionModel::Ftan(G4double* p_p1, G4double x) 857 { 849 { 858 G4double value =0.; 850 G4double value =0.; 859 G4double a = p_p1[0]; 851 G4double a = p_p1[0]; 860 G4double b = p_p1[1]; 852 G4double b = p_p1[1]; 861 853 862 value = a /(x-b); 854 value = a /(x-b); 863 return value; 855 return value; 864 } 856 } 865 857 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 858 868 G4double G4LivermorePolarizedGammaConversionMo 859 G4double G4LivermorePolarizedGammaConversionModel::Fdtan(G4double* p_p1, G4double x) 869 { 860 { 870 G4double value =0.; 861 G4double value =0.; 871 G4double a = p_p1[0]; 862 G4double a = p_p1[0]; 872 G4double b = p_p1[1]; 863 G4double b = p_p1[1]; 873 864 874 value = -1.*a / ((x-b)*(x-b)); 865 value = -1.*a / ((x-b)*(x-b)); 875 return value; 866 return value; 876 } 867 } 877 868 878 //....oooOO0OOooo........oooOO0OOooo........oo << 879 869 880 G4double G4LivermorePolarizedGammaConversionMo 870 G4double G4LivermorePolarizedGammaConversionModel::Finttan(G4double* p_p1, G4double x) 881 { 871 { 882 G4double value =0.; 872 G4double value =0.; 883 G4double a = p_p1[0]; 873 G4double a = p_p1[0]; 884 G4double b = p_p1[1]; 874 G4double b = p_p1[1]; 885 875 >> 876 886 value = a*log(b-x); 877 value = a*log(b-x); 887 return value; 878 return value; 888 } 879 } 889 880 890 //....oooOO0OOooo........oooOO0OOooo........oo << 891 881 892 G4double G4LivermorePolarizedGammaConversionMo 882 G4double G4LivermorePolarizedGammaConversionModel::Finvtan(G4double* p_p1, G4double cnor, G4double r) 893 { 883 { 894 G4double value =0.; 884 G4double value =0.; 895 G4double a = p_p1[0]; 885 G4double a = p_p1[0]; 896 G4double b = p_p1[1]; 886 G4double b = p_p1[1]; 897 887 898 value = b*(1-G4Exp(r*cnor/a)); << 888 value = b*(1-exp(r*cnor/a)); 899 889 900 return value; 890 return value; 901 } 891 } 902 892 >> 893 >> 894 >> 895 903 //....oooOO0OOooo........oooOO0OOooo........oo 896 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 897 905 G4ThreeVector G4LivermorePolarizedGammaConvers 898 G4ThreeVector G4LivermorePolarizedGammaConversionModel::SetPerpendicularVector(G4ThreeVector& a) 906 { 899 { 907 G4double dx = a.x(); 900 G4double dx = a.x(); 908 G4double dy = a.y(); 901 G4double dy = a.y(); 909 G4double dz = a.z(); 902 G4double dz = a.z(); 910 G4double x = dx < 0.0 ? -dx : dx; 903 G4double x = dx < 0.0 ? -dx : dx; 911 G4double y = dy < 0.0 ? -dy : dy; 904 G4double y = dy < 0.0 ? -dy : dy; 912 G4double z = dz < 0.0 ? -dz : dz; 905 G4double z = dz < 0.0 ? -dz : dz; 913 if (x < y) { 906 if (x < y) { 914 return x < z ? G4ThreeVector(-dy,dx,0) : G 907 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy); 915 }else{ 908 }else{ 916 return y < z ? G4ThreeVector(dz,0,-dx) : G 909 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0); 917 } 910 } 918 } 911 } 919 912 920 //....oooOO0OOooo........oooOO0OOooo........oo 913 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 921 914 922 G4ThreeVector G4LivermorePolarizedGammaConvers 915 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetRandomPolarization(G4ThreeVector& direction0) 923 { 916 { 924 G4ThreeVector d0 = direction0.unit(); 917 G4ThreeVector d0 = direction0.unit(); 925 G4ThreeVector a1 = SetPerpendicularVector(d0 918 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal 926 G4ThreeVector a0 = a1.unit(); // unit vector 919 G4ThreeVector a0 = a1.unit(); // unit vector 927 920 928 G4double rand1 = G4UniformRand(); 921 G4double rand1 = G4UniformRand(); 929 922 930 G4double angle = twopi*rand1; // random pola 923 G4double angle = twopi*rand1; // random polar angle 931 G4ThreeVector b0 = d0.cross(a0); // cross pr 924 G4ThreeVector b0 = d0.cross(a0); // cross product 932 925 933 G4ThreeVector c; 926 G4ThreeVector c; 934 927 935 c.setX(std::cos(angle)*(a0.x())+std::sin(ang 928 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x()); 936 c.setY(std::cos(angle)*(a0.y())+std::sin(ang 929 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y()); 937 c.setZ(std::cos(angle)*(a0.z())+std::sin(ang 930 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z()); 938 931 939 G4ThreeVector c0 = c.unit(); 932 G4ThreeVector c0 = c.unit(); 940 933 941 return c0; << 934 return c0; >> 935 942 } 936 } 943 937 944 //....oooOO0OOooo........oooOO0OOooo........oo 938 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 945 939 946 G4ThreeVector G4LivermorePolarizedGammaConvers 940 G4ThreeVector G4LivermorePolarizedGammaConversionModel::GetPerpendicularPolarization 947 (const G4ThreeVector& gammaDirection, const G4 941 (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const 948 { 942 { >> 943 949 // 944 // 950 // The polarization of a photon is always pe 945 // The polarization of a photon is always perpendicular to its momentum direction. 951 // Therefore this function removes those vec 946 // Therefore this function removes those vector component of gammaPolarization, which 952 // points in direction of gammaDirection 947 // points in direction of gammaDirection 953 // 948 // 954 // Mathematically we search the projection o 949 // Mathematically we search the projection of the vector a on the plane E, where n is the 955 // plains normal vector. 950 // plains normal vector. 956 // The basic equation can be found in each g 951 // The basic equation can be found in each geometry book (e.g. Bronstein): 957 // p = a - (a o n)/(n o n)*n 952 // p = a - (a o n)/(n o n)*n 958 953 959 return gammaPolarization - gammaPolarization 954 return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection; 960 } 955 } 961 956 962 //....oooOO0OOooo........oooOO0OOooo........oo 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 963 958 >> 959 964 void G4LivermorePolarizedGammaConversionModel: 960 void G4LivermorePolarizedGammaConversionModel::SystemOfRefChange 965 (G4ThreeVector& direction0,G4ThreeVector& 961 (G4ThreeVector& direction0,G4ThreeVector& direction1, 966 G4ThreeVector& polarization0) 962 G4ThreeVector& polarization0) 967 { 963 { 968 // direction0 is the original photon directi 964 // direction0 is the original photon direction ---> z 969 // polarization0 is the original photon pola 965 // polarization0 is the original photon polarization ---> x 970 // need to specify y axis in the real refere 966 // need to specify y axis in the real reference frame ---> y 971 G4ThreeVector Axis_Z0 = direction0.unit(); 967 G4ThreeVector Axis_Z0 = direction0.unit(); 972 G4ThreeVector Axis_X0 = polarization0.unit() 968 G4ThreeVector Axis_X0 = polarization0.unit(); 973 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_ 969 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed; 974 970 975 G4double direction_x = direction1.getX(); 971 G4double direction_x = direction1.getX(); 976 G4double direction_y = direction1.getY(); 972 G4double direction_y = direction1.getY(); 977 G4double direction_z = direction1.getZ(); 973 G4double direction_z = direction1.getZ(); 978 974 979 direction1 = (direction_x*Axis_X0 + directio << 975 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit(); >> 976 980 } 977 } 981 978 982 //....oooOO0OOooo........oooOO0OOooo........oo << 983 979 984 void G4LivermorePolarizedGammaConversionModel: << 980 985 const G4ParticleDefiniti << 981 986 G4int Z) << 987 { << 988 G4AutoLock l(&LivermorePolarizedGammaConvers << 989 if(!data[Z]) { ReadData(Z); } << 990 l.unlock(); << 991 } << 992 982