Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // Authors: G.Depaola & F.Longo 28 // Authors: G.Depaola & F.Longo 28 // 29 // 29 // History: 30 // History: 30 // ------- << 31 // -------- 31 // << 32 // 05 Apr 2021 J Allison added quantum entan << 33 // If the photons have been "tagged" as "quant << 34 // G4eplusAnnihilation for annihilation into 2 << 35 // here if - and only if - both photons suffer << 36 // predictions from Pryce and Ward, Nature No << 37 // Physical Review 73 (1948) p.440. Experiment << 38 // entanglement in the MeV regime and its appl << 39 // D. Watts, J. Allison et al., Nature Communi << 40 // https://doi.org/10.1038/s41467-021-22907-5. << 41 // << 42 // 02 May 2009 S Incerti as V. Ivanchenko pr 32 // 02 May 2009 S Incerti as V. Ivanchenko proposed in G4LivermoreComptonModel.cc 43 // 33 // 44 // Cleanup initialisation and generation of se 34 // Cleanup initialisation and generation of secondaries: 45 // - apply internal high-ener 35 // - apply internal high-energy limit only in constructor 46 // - do not apply low-energy 36 // - do not apply low-energy limit (default is 0) 47 // - remove GetMeanFreePath m 37 // - remove GetMeanFreePath method and table 48 // - added protection against 38 // - added protection against numerical problem in energy sampling 49 // - use G4ElementSelector 39 // - use G4ElementSelector 50 40 51 #include "G4LivermorePolarizedComptonModel.hh" 41 #include "G4LivermorePolarizedComptonModel.hh" 52 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 53 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 54 #include "G4AutoLock.hh" << 55 #include "G4Electron.hh" << 56 #include "G4ParticleChangeForGamma.hh" << 57 #include "G4LossTableManager.hh" << 58 #include "G4VAtomDeexcitation.hh" << 59 #include "G4AtomicShell.hh" << 60 #include "G4Gamma.hh" << 61 #include "G4ShellData.hh" << 62 #include "G4DopplerProfile.hh" << 63 #include "G4Log.hh" << 64 #include "G4Exp.hh" << 65 #include "G4Pow.hh" << 66 #include "G4LogLogInterpolation.hh" << 67 #include "G4PhysicsModelCatalog.hh" << 68 #include "G4EntanglementAuxInfo.hh" << 69 #include "G4eplusAnnihilationEntanglementClipB << 70 44 71 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 72 46 73 using namespace std; 47 using namespace std; 74 namespace { G4Mutex LivermorePolarizedComptonM << 75 << 76 << 77 G4PhysicsFreeVector* G4LivermorePolarizedCompt << 78 G4ShellData* G4LivermorePolarizedCompton << 79 G4DopplerProfile* G4LivermorePolarizedCompton << 80 G4CompositeEMDataSet* G4LivermorePolarizedComp << 81 48 82 //....oooOO0OOooo........oooOO0OOooo........oo 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 83 50 84 G4LivermorePolarizedComptonModel::G4LivermoreP << 51 G4LivermorePolarizedComptonModel::G4LivermorePolarizedComptonModel(const G4ParticleDefinition*, 85 :G4VEmModel(nam),isInitialised(false) << 52 const G4String& nam) 86 { << 53 :G4VEmModel(nam),fParticleChange(0),isInitialised(false), 87 verboseLevel= 1; << 54 meanFreePathTable(0),scatterFunctionData(0),crossSectionHandler(0) >> 55 { >> 56 lowEnergyLimit = 250 * eV; >> 57 highEnergyLimit = 100 * GeV; >> 58 //SetLowEnergyLimit(lowEnergyLimit); >> 59 SetHighEnergyLimit(highEnergyLimit); >> 60 >> 61 verboseLevel= 0; 88 // Verbosity scale: 62 // Verbosity scale: 89 // 0 = nothing 63 // 0 = nothing 90 // 1 = warning for energy non-conservation 64 // 1 = warning for energy non-conservation 91 // 2 = details of energy budget 65 // 2 = details of energy budget 92 // 3 = calculation of cross sections, file o 66 // 3 = calculation of cross sections, file openings, sampling of atoms 93 // 4 = entering in methods 67 // 4 = entering in methods 94 68 95 if( verboseLevel>1 ) << 69 if( verboseLevel>0 ) { 96 G4cout << "Livermore Polarized Compton is << 70 G4cout << "Livermore Polarized Compton is constructed " << G4endl 97 << 71 << "Energy range: " 98 //Mark this model as "applicable" for atomic << 72 << lowEnergyLimit / eV << " eV - " 99 SetDeexcitationFlag(true); << 73 << highEnergyLimit / GeV << " GeV" 100 << 74 << G4endl; 101 fParticleChange = nullptr; << 75 } 102 fAtomDeexcitation = nullptr; << 103 fEntanglementModelID = G4PhysicsModelCatalog << 104 } 76 } 105 77 106 //....oooOO0OOooo........oooOO0OOooo........oo 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 107 79 108 G4LivermorePolarizedComptonModel::~G4Livermore 80 G4LivermorePolarizedComptonModel::~G4LivermorePolarizedComptonModel() 109 { 81 { 110 if(IsMaster()) { << 82 if (meanFreePathTable) delete meanFreePathTable; 111 delete shellData; << 83 if (crossSectionHandler) delete crossSectionHandler; 112 shellData = nullptr; << 84 if (scatterFunctionData) delete scatterFunctionData; 113 delete profileData; << 114 profileData = nullptr; << 115 delete scatterFunctionData; << 116 scatterFunctionData = nullptr; << 117 for(G4int i=0; i<maxZ; ++i) { << 118 if(data[i]) { << 119 delete data[i]; << 120 data[i] = nullptr; << 121 } << 122 } << 123 } << 124 } 85 } 125 86 126 //....oooOO0OOooo........oooOO0OOooo........oo 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 127 88 128 void G4LivermorePolarizedComptonModel::Initial 89 void G4LivermorePolarizedComptonModel::Initialise(const G4ParticleDefinition* particle, 129 const G 90 const G4DataVector& cuts) 130 { 91 { 131 if (verboseLevel > 1) << 92 if (verboseLevel > 3) 132 G4cout << "Calling G4LivermorePolarizedCom 93 G4cout << "Calling G4LivermorePolarizedComptonModel::Initialise()" << G4endl; 133 94 134 // Initialise element selector << 95 if (crossSectionHandler) 135 if(IsMaster()) { << 96 { 136 // Access to elements << 97 crossSectionHandler->Clear(); 137 const char* path = G4FindDataDir("G4LEDATA << 98 delete crossSectionHandler; 138 << 139 G4ProductionCutsTable* theCoupleTable = << 140 G4ProductionCutsTable::GetProductionCuts << 141 << 142 G4int numOfCouples = (G4int)theCoupleTable << 143 << 144 for(G4int i=0; i<numOfCouples; ++i) { << 145 const G4Material* material = << 146 theCoupleTable->GetMaterialCutsCouple( << 147 const G4ElementVector* theElementVector << 148 std::size_t nelm = material->GetNumberOf << 149 << 150 for (std::size_t j=0; j<nelm; ++j) { << 151 G4int Z = G4lrint((*theElementVector)[ << 152 if(Z < 1) { Z = 1; } << 153 else if(Z > maxZ){ Z = maxZ; } << 154 << 155 if( (!data[Z]) ) { ReadData(Z, path); << 156 } << 157 } << 158 << 159 // For Doppler broadening << 160 if(!shellData) { << 161 shellData = new G4ShellData(); << 162 shellData->SetOccupancyData(); << 163 G4String file = "/doppler/shell-doppler" << 164 shellData->LoadData(file); << 165 } << 166 if(!profileData) { profileData = new G4Dop << 167 << 168 // Scattering Function << 169 if(!scatterFunctionData) << 170 { << 171 << 172 G4VDataSetAlgorithm* scatterInterpolation = << 173 G4String scatterFile = "comp/ce-sf-"; << 174 scatterFunctionData = new G4CompositeEMDataS << 175 scatterFunctionData->LoadData(scatterFile); << 176 } << 177 << 178 InitialiseElementSelectors(particle, cuts) << 179 } << 180 << 181 if (verboseLevel > 2) { << 182 G4cout << "Loaded cross section files" << << 183 } 99 } >> 100 >> 101 // Reading of data files - all materials are read 184 102 185 if( verboseLevel>1 ) { << 103 crossSectionHandler = new G4CrossSectionHandler; 186 G4cout << "G4LivermoreComptonModel is init << 104 crossSectionHandler->Clear(); 187 << "Energy range: " << 105 G4String crossSectionFile = "comp/ce-cs-"; 188 << LowEnergyLimit() / eV << " eV - " << 106 crossSectionHandler->LoadData(crossSectionFile); 189 << HighEnergyLimit() / GeV << " GeV" << 107 190 << G4endl; << 108 meanFreePathTable = 0; >> 109 meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials(); >> 110 >> 111 G4VDataSetAlgorithm* scatterInterpolation = new G4LogLogInterpolation; >> 112 G4String scatterFile = "comp/ce-sf-"; >> 113 scatterFunctionData = new G4CompositeEMDataSet(scatterInterpolation, 1., 1.); >> 114 scatterFunctionData->LoadData(scatterFile); >> 115 >> 116 // For Doppler broadening >> 117 shellData.SetOccupancyData(); >> 118 G4String file = "/doppler/shell-doppler"; >> 119 shellData.LoadData(file); >> 120 >> 121 if (verboseLevel > 2) >> 122 G4cout << "Loaded cross section files for Livermore Polarized Compton model" << G4endl; >> 123 >> 124 InitialiseElementSelectors(particle,cuts); >> 125 >> 126 if( verboseLevel>0 ) { >> 127 G4cout << "Livermore Polarized Compton model is initialized " << G4endl >> 128 << "Energy range: " >> 129 << LowEnergyLimit() / eV << " eV - " >> 130 << HighEnergyLimit() / GeV << " GeV" >> 131 << G4endl; 191 } 132 } 192 // << 193 if(isInitialised) { return; } << 194 133 >> 134 // >> 135 >> 136 if(isInitialised) return; 195 fParticleChange = GetParticleChangeForGamma( 137 fParticleChange = GetParticleChangeForGamma(); 196 fAtomDeexcitation = G4LossTableManager::Ins << 197 isInitialised = true; 138 isInitialised = true; 198 } 139 } 199 140 200 << 201 void G4LivermorePolarizedComptonModel::Initial << 202 G4VEmModel* masterModel) << 203 { << 204 SetElementSelectors(masterModel->GetElementS << 205 } << 206 << 207 //....oooOO0OOooo........oooOO0OOooo........oo << 208 << 209 void G4LivermorePolarizedComptonModel::ReadDat << 210 { << 211 if (verboseLevel > 1) << 212 { << 213 G4cout << "G4LivermorePolarizedComptonMo << 214 << G4endl; << 215 } << 216 if(data[Z]) { return; } << 217 const char* datadir = path; << 218 if(!datadir) << 219 { << 220 datadir = G4FindDataDir("G4LEDATA"); << 221 if(!datadir) << 222 { << 223 G4Exception("G4LivermorePolarizedComptonMo << 224 "em0006",FatalException, << 225 "Environment variable G4LEDATA not d << 226 return; << 227 } << 228 } << 229 << 230 data[Z] = new G4PhysicsFreeVector(); << 231 << 232 std::ostringstream ost; << 233 ost << datadir << "/livermore/comp/ce-cs-" < << 234 std::ifstream fin(ost.str().c_str()); << 235 << 236 if( !fin.is_open()) << 237 { << 238 G4ExceptionDescription ed; << 239 ed << "G4LivermorePolarizedComptonModel << 240 << "> is not opened!" << G4endl; << 241 G4Exception("G4LivermoreComptonModel::Re << 242 "em0003",FatalException, << 243 ed,"G4LEDATA version should be G4EMLOW8. << 244 return; << 245 } else { << 246 if(verboseLevel > 3) { << 247 G4cout << "File " << ost.str() << 248 << " is opened by G4LivermorePolarizedC << 249 } << 250 data[Z]->Retrieve(fin, true); << 251 data[Z]->ScaleVector(MeV, MeV*barn); << 252 } << 253 fin.close(); << 254 } << 255 << 256 //....oooOO0OOooo........oooOO0OOooo........oo 141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 257 142 258 G4double G4LivermorePolarizedComptonModel::Com 143 G4double G4LivermorePolarizedComptonModel::ComputeCrossSectionPerAtom( 259 const G 144 const G4ParticleDefinition*, 260 G 145 G4double GammaEnergy, 261 G 146 G4double Z, G4double, 262 G 147 G4double, G4double) 263 { 148 { 264 if (verboseLevel > 3) 149 if (verboseLevel > 3) 265 G4cout << "Calling ComputeCrossSectionPerA 150 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermorePolarizedComptonModel" << G4endl; 266 151 267 G4double cs = 0.0; << 152 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0; 268 << 269 if (GammaEnergy < LowEnergyLimit()) << 270 return 0.0; << 271 153 272 G4int intZ = G4lrint(Z); << 154 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); 273 if(intZ < 1 || intZ > maxZ) { return cs; } << 274 << 275 G4PhysicsFreeVector* pv = data[intZ]; << 276 << 277 // if element was not initialised << 278 // do initialisation safely for MT mode << 279 if(!pv) << 280 { << 281 InitialiseForElement(0, intZ); << 282 pv = data[intZ]; << 283 if(!pv) { return cs; } << 284 } << 285 << 286 G4int n = G4int(pv->GetVectorLength() - 1); << 287 G4double e1 = pv->Energy(0); << 288 G4double e2 = pv->Energy(n); << 289 << 290 if(GammaEnergy <= e1) { cs = GammaEnerg << 291 else if(GammaEnergy <= e2) { cs = pv->Value( << 292 else if(GammaEnergy > e2) { cs = pv->Value( << 293 << 294 return cs; 155 return cs; 295 << 296 } 156 } 297 157 298 //....oooOO0OOooo........oooOO0OOooo........oo 158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 299 159 300 void G4LivermorePolarizedComptonModel::SampleS 160 void G4LivermorePolarizedComptonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 301 const G4MaterialCutsCouple* co 161 const G4MaterialCutsCouple* couple, 302 const G4DynamicParticle* aDyna 162 const G4DynamicParticle* aDynamicGamma, 303 G4double, 163 G4double, 304 G4double) 164 G4double) 305 { 165 { 306 // The scattered gamma energy is sampled acc 166 // The scattered gamma energy is sampled according to Klein - Nishina formula. 307 // The random number techniques of Butcher & 167 // The random number techniques of Butcher & Messel are used (Nuc Phys 20(1960),15). 308 // GEANT4 internal units 168 // GEANT4 internal units 309 // 169 // 310 // Note : Effects due to binding of atomic e 170 // Note : Effects due to binding of atomic electrons are negliged. 311 171 312 if (verboseLevel > 3) 172 if (verboseLevel > 3) 313 G4cout << "Calling SampleSecondaries() of 173 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedComptonModel" << G4endl; 314 174 315 G4double gammaEnergy0 = aDynamicGamma->GetKi 175 G4double gammaEnergy0 = aDynamicGamma->GetKineticEnergy(); 316 << 317 // do nothing below the threshold << 318 // should never get here because the XS is z << 319 if (gammaEnergy0 < LowEnergyLimit()) << 320 return ; << 321 << 322 G4ThreeVector gammaPolarization0 = aDynamicG 176 G4ThreeVector gammaPolarization0 = aDynamicGamma->GetPolarization(); 323 177 324 // Protection: a polarisation parallel to th 178 // Protection: a polarisation parallel to the 325 // direction causes problems; 179 // direction causes problems; 326 // in that case find a random polarization 180 // in that case find a random polarization >> 181 327 G4ThreeVector gammaDirection0 = aDynamicGamm 182 G4ThreeVector gammaDirection0 = aDynamicGamma->GetMomentumDirection(); 328 183 329 // Make sure that the polarization vector is 184 // Make sure that the polarization vector is perpendicular to the 330 // gamma direction. If not 185 // gamma direction. If not >> 186 331 if(!(gammaPolarization0.isOrthogonal(gammaDi 187 if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0)) 332 { // only for testing now 188 { // only for testing now 333 gammaPolarization0 = GetRandomPolarizati 189 gammaPolarization0 = GetRandomPolarization(gammaDirection0); 334 } 190 } 335 else 191 else 336 { 192 { 337 if ( gammaPolarization0.howOrthogonal(ga 193 if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0) 338 { 194 { 339 gammaPolarization0 = GetPerpendicularPolar 195 gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0); 340 } 196 } 341 } 197 } >> 198 342 // End of Protection 199 // End of Protection 343 200 >> 201 // Within energy limit? >> 202 >> 203 if(gammaEnergy0 <= lowEnergyLimit) >> 204 { >> 205 fParticleChange->ProposeTrackStatus(fStopAndKill); >> 206 fParticleChange->SetProposedKineticEnergy(0.); >> 207 fParticleChange->ProposeLocalEnergyDeposit(gammaEnergy0); >> 208 return; >> 209 } >> 210 344 G4double E0_m = gammaEnergy0 / electron_mass 211 G4double E0_m = gammaEnergy0 / electron_mass_c2 ; 345 212 346 // Select randomly one element in the curren 213 // Select randomly one element in the current material 347 //G4int Z = crossSectionHandler->SelectRando 214 //G4int Z = crossSectionHandler->SelectRandomAtom(couple,gammaEnergy0); 348 const G4ParticleDefinition* particle = aDyn 215 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 349 const G4Element* elm = SelectRandomAtom(coup 216 const G4Element* elm = SelectRandomAtom(couple,particle,gammaEnergy0); 350 G4int Z = (G4int)elm->GetZ(); 217 G4int Z = (G4int)elm->GetZ(); 351 218 352 // Sample the energy and the polarization of 219 // Sample the energy and the polarization of the scattered photon >> 220 353 G4double epsilon, epsilonSq, onecost, sinThe 221 G4double epsilon, epsilonSq, onecost, sinThetaSqr, greject ; 354 222 355 G4double epsilon0Local = 1./(1. + 2*E0_m); 223 G4double epsilon0Local = 1./(1. + 2*E0_m); 356 G4double epsilon0Sq = epsilon0Local*epsilon0 224 G4double epsilon0Sq = epsilon0Local*epsilon0Local; 357 G4double alpha1 = - G4Log(epsilon0Local); << 225 G4double alpha1 = - std::log(epsilon0Local); 358 G4double alpha2 = 0.5*(1.- epsilon0Sq); 226 G4double alpha2 = 0.5*(1.- epsilon0Sq); 359 227 360 G4double wlGamma = h_Planck*c_light/gammaEne 228 G4double wlGamma = h_Planck*c_light/gammaEnergy0; 361 G4double gammaEnergy1; 229 G4double gammaEnergy1; 362 G4ThreeVector gammaDirection1; 230 G4ThreeVector gammaDirection1; 363 231 364 do { 232 do { 365 if ( alpha1/(alpha1+alpha2) > G4UniformRan 233 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) 366 { 234 { 367 epsilon = G4Exp(-alpha1*G4UniformRand()); << 235 epsilon = std::exp(-alpha1*G4UniformRand()); 368 epsilonSq = epsilon*epsilon; 236 epsilonSq = epsilon*epsilon; 369 } 237 } 370 else 238 else 371 { 239 { 372 epsilonSq = epsilon0Sq + (1.- epsilon0Sq)*G4 240 epsilonSq = epsilon0Sq + (1.- epsilon0Sq)*G4UniformRand(); 373 epsilon = std::sqrt(epsilonSq); 241 epsilon = std::sqrt(epsilonSq); 374 } 242 } 375 243 376 onecost = (1.- epsilon)/(epsilon*E0_m); 244 onecost = (1.- epsilon)/(epsilon*E0_m); 377 sinThetaSqr = onecost*(2.-onecost); 245 sinThetaSqr = onecost*(2.-onecost); 378 246 379 // Protection 247 // Protection 380 if (sinThetaSqr > 1.) 248 if (sinThetaSqr > 1.) 381 { 249 { 382 G4cout 250 G4cout 383 << " -- Warning -- G4LivermorePolarizedCom 251 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 384 << "sin(theta)**2 = " 252 << "sin(theta)**2 = " 385 << sinThetaSqr 253 << sinThetaSqr 386 << "; set to 1" 254 << "; set to 1" 387 << G4endl; 255 << G4endl; 388 sinThetaSqr = 1.; 256 sinThetaSqr = 1.; 389 } 257 } 390 if (sinThetaSqr < 0.) 258 if (sinThetaSqr < 0.) 391 { 259 { 392 G4cout 260 G4cout 393 << " -- Warning -- G4LivermorePolarizedCom 261 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 394 << "sin(theta)**2 = " 262 << "sin(theta)**2 = " 395 << sinThetaSqr 263 << sinThetaSqr 396 << "; set to 0" 264 << "; set to 0" 397 << G4endl; 265 << G4endl; 398 sinThetaSqr = 0.; 266 sinThetaSqr = 0.; 399 } 267 } 400 // End protection 268 // End protection 401 269 402 G4double x = std::sqrt(onecost/2.) / (wlG 270 G4double x = std::sqrt(onecost/2.) / (wlGamma/cm);; 403 G4double scatteringFunction = scatterFunct 271 G4double scatteringFunction = scatterFunctionData->FindValue(x,Z-1); 404 greject = (1. - epsilon*sinThetaSqr/(1.+ e 272 greject = (1. - epsilon*sinThetaSqr/(1.+ epsilonSq))*scatteringFunction; 405 273 406 } while(greject < G4UniformRand()*Z); 274 } while(greject < G4UniformRand()*Z); 407 275 408 276 409 // ***************************************** 277 // **************************************************** 410 // Phi determination 278 // Phi determination 411 // ***************************************** 279 // **************************************************** >> 280 412 G4double phi = SetPhi(epsilon,sinThetaSqr); 281 G4double phi = SetPhi(epsilon,sinThetaSqr); 413 282 414 // 283 // 415 // scattered gamma angles. ( Z - axis along 284 // scattered gamma angles. ( Z - axis along the parent gamma) 416 // 285 // >> 286 417 G4double cosTheta = 1. - onecost; 287 G4double cosTheta = 1. - onecost; 418 288 419 // Protection 289 // Protection >> 290 420 if (cosTheta > 1.) 291 if (cosTheta > 1.) 421 { 292 { 422 G4cout 293 G4cout 423 << " -- Warning -- G4LivermorePolarizedCompt 294 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 424 << "cosTheta = " 295 << "cosTheta = " 425 << cosTheta 296 << cosTheta 426 << "; set to 1" 297 << "; set to 1" 427 << G4endl; 298 << G4endl; 428 cosTheta = 1.; 299 cosTheta = 1.; 429 } 300 } 430 if (cosTheta < -1.) 301 if (cosTheta < -1.) 431 { 302 { 432 G4cout 303 G4cout 433 << " -- Warning -- G4LivermorePolarizedCompt 304 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 434 << "cosTheta = " 305 << "cosTheta = " 435 << cosTheta 306 << cosTheta 436 << "; set to -1" 307 << "; set to -1" 437 << G4endl; 308 << G4endl; 438 cosTheta = -1.; 309 cosTheta = -1.; 439 } 310 } 440 // End protection 311 // End protection 441 << 312 >> 313 442 G4double sinTheta = std::sqrt (sinThetaSqr); 314 G4double sinTheta = std::sqrt (sinThetaSqr); 443 315 444 // Protection 316 // Protection 445 if (sinTheta > 1.) 317 if (sinTheta > 1.) 446 { 318 { 447 G4cout 319 G4cout 448 << " -- Warning -- G4LivermorePolarizedCompt 320 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 449 << "sinTheta = " 321 << "sinTheta = " 450 << sinTheta 322 << sinTheta 451 << "; set to 1" 323 << "; set to 1" 452 << G4endl; 324 << G4endl; 453 sinTheta = 1.; 325 sinTheta = 1.; 454 } 326 } 455 if (sinTheta < -1.) 327 if (sinTheta < -1.) 456 { 328 { 457 G4cout 329 G4cout 458 << " -- Warning -- G4LivermorePolarizedCompt 330 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 459 << "sinTheta = " 331 << "sinTheta = " 460 << sinTheta 332 << sinTheta 461 << "; set to -1" 333 << "; set to -1" 462 << G4endl; 334 << G4endl; 463 sinTheta = -1.; 335 sinTheta = -1.; 464 } 336 } 465 // End protection 337 // End protection 466 338 467 // Check for entanglement and re-sample phi << 468 << 469 const auto* auxInfo << 470 = fParticleChange->GetCurrentTrack()->GetAux << 471 if (auxInfo) { << 472 const auto* entanglementAuxInfo = dynamic_ << 473 if (entanglementAuxInfo) { << 474 auto* clipBoard = dynamic_cast<G4eplusAn << 475 (entanglementAuxInfo->GetEntanglementCli << 476 if (clipBoard) { << 477 // This is an entangled photon from ep << 478 // If this is the first scatter of the << 479 // phi on the clipboard. << 480 // If this is the first scatter of the << 481 // phi of the first scatter of the fir << 482 // theta of the second photon, to samp << 483 if (clipBoard->IsTrack1Measurement()) << 484 // Check we have the relevant track. << 485 // necessary but I want to be sure t << 486 // entangled system are properly pai << 487 // Note: the tracking manager pops t << 488 // will rely on that. (If not, the << 489 // more complicated to ensure we mat << 490 // So our track 1 is clipboard track << 491 if (clipBoard->GetTrackB() == fParti << 492 // This is the first scatter of th << 493 // // Debug << 494 // auto* track1 = fPart << 495 // G4cout << 496 // << "This is the firs << 497 // << "\nTrack: " << tr << 498 // << ", Parent: " << t << 499 // << ", Name: " << cli << 500 // << G4endl; << 501 // // End debug << 502 clipBoard->ResetTrack1Measurement( << 503 // Store cos(theta),phi of first p << 504 clipBoard->SetComptonCosTheta1(cos << 505 clipBoard->SetComptonPhi1(phi); << 506 } << 507 } else if (clipBoard->IsTrack2Measurem << 508 // Check we have the relevant track. << 509 // Remember our track 2 is clipboard << 510 if (clipBoard->GetTrackA() == fParti << 511 // This is the first scatter of th << 512 // // Debug << 513 // auto* track2 = fPart << 514 // G4cout << 515 // << "This is the firs << 516 // << "\nTrack: " << tr << 517 // << ", Parent: " << t << 518 // << ", Name: " << cli << 519 // << G4endl; << 520 // // End debug << 521 clipBoard->ResetTrack2Measurement( << 522 << 523 // Get cos(theta),phi of first pho << 524 const G4double& cosTheta1 = clipBo << 525 const G4double& phi1 = clipBoard-> << 526 // For clarity make aliases for th << 527 const G4double& cosTheta2 = cosThe << 528 G4double& phi2 = phi; << 529 // G4cout << "cosTheta1 << 530 // G4cout << "cosTheta2 << 531 << 532 // Re-sample phi << 533 // Draw the difference of azimutha << 534 // A + B * cos(2*deltaPhi), or rat << 535 // C = A / (A + |B|) and D = B / ( << 536 const G4double sin2Theta1 = 1.-cos << 537 const G4double sin2Theta2 = 1.-cos << 538 << 539 // Pryce and Ward, Nature No 4065 << 540 auto* g4Pow = G4Pow::GetInstance() << 541 const G4double A = << 542 ((g4Pow->powN(1.-cosTheta1,3))+2.) << 543 ((g4Pow->powN(2.-cosTheta1,3)*g4Po << 544 const G4double B = -(sin2Theta1*si << 545 ((g4Pow->powN(2.-cosTheta1,2)*g4Po << 546 << 547 // // Snyder et al, Physical Re << 548 // // (This is an alternative f << 549 // const G4double& k0 = gammaEn << 550 // const G4double k1 = k0/(2.-c << 551 // const G4double k2 = k0/(2.-c << 552 // const G4double gamma1 = k1/k << 553 // const G4double gamma2 = k2/k << 554 // const G4double A1 = gamma1*g << 555 // const G4double B1 = 2.*sin2T << 556 // // That's A1 + B1*sin2(delta << 557 // const G4double A = A1 + 0.5* << 558 // const G4double B = -0.5*B1; << 559 << 560 const G4double maxValue = A + std: << 561 const G4double C = A / maxValue; << 562 const G4double D = B / maxValue; << 563 // G4cout << "A,B,C,D: " << A < << 564 << 565 // Sample delta phi << 566 G4double deltaPhi; << 567 const G4int maxCount = 999999; << 568 G4int iCount = 0; << 569 for (; iCount < maxCount; ++iCount << 570 deltaPhi = twopi * G4UniformRand << 571 if (G4UniformRand() < C + D * co << 572 } << 573 if (iCount >= maxCount ) { << 574 G4cout << "G4LivermorePolarizedC << 575 << "Re-sampled delta phi not fou << 576 << " tries - carrying on anyway. << 577 } << 578 << 579 // Thus, the desired second photon << 580 phi2 = deltaPhi - phi1 + halfpi; << 581 // The minus sign is in above stat << 582 // annihilation photons are in opp << 583 // are measured in the opposite di << 584 // halfpi is added for the followi << 585 // In this function phi is relativ << 586 // SystemOfRefChange below. We kno << 587 // the polarisations of the two an << 588 // to each other, i.e., halfpi dif << 589 // Furthermore, only sin(phi) and << 590 // need to place any range constra << 591 // if (phi2 > pi) { << 592 // phi2 -= twopi; << 593 // } << 594 // if (phi2 < -pi) { << 595 // phi2 += twopi; << 596 // } << 597 } << 598 } << 599 } << 600 } << 601 } << 602 << 603 // End of entanglement << 604 339 605 G4double dirx = sinTheta*std::cos(phi); 340 G4double dirx = sinTheta*std::cos(phi); 606 G4double diry = sinTheta*std::sin(phi); 341 G4double diry = sinTheta*std::sin(phi); 607 G4double dirz = cosTheta ; 342 G4double dirz = cosTheta ; 608 << 343 >> 344 609 // oneCosT , eom 345 // oneCosT , eom 610 346 611 // Doppler broadening - Method based on: 347 // Doppler broadening - Method based on: 612 // Y. Namito, S. Ban and H. Hirayama, 348 // Y. Namito, S. Ban and H. Hirayama, 613 // "Implementation of the Doppler Broadening 349 // "Implementation of the Doppler Broadening of a Compton-Scattered Photon Into the EGS4 Code" 614 // NIM A 349, pp. 489-494, 1994 350 // NIM A 349, pp. 489-494, 1994 615 351 616 // Maximum number of sampling iterations 352 // Maximum number of sampling iterations 617 static G4int maxDopplerIterations = 1000; << 353 >> 354 G4int maxDopplerIterations = 1000; 618 G4double bindingE = 0.; 355 G4double bindingE = 0.; 619 G4double photonEoriginal = epsilon * gammaEn 356 G4double photonEoriginal = epsilon * gammaEnergy0; 620 G4double photonE = -1.; 357 G4double photonE = -1.; 621 G4int iteration = 0; 358 G4int iteration = 0; 622 G4double eMax = gammaEnergy0; 359 G4double eMax = gammaEnergy0; 623 360 624 G4int shellIdx = 0; << 625 << 626 if (verboseLevel > 3) { << 627 G4cout << "Started loop to sample broading << 628 } << 629 << 630 do 361 do 631 { 362 { 632 iteration++; 363 iteration++; 633 // Select shell based on shell occupancy 364 // Select shell based on shell occupancy 634 shellIdx = shellData->SelectRandomShell( << 365 G4int shell = shellData.SelectRandomShell(Z); 635 bindingE = shellData->BindingEnergy(Z,sh << 366 bindingE = shellData.BindingEnergy(Z,shell); 636 367 637 if (verboseLevel > 3) { << 638 G4cout << "Shell ID= " << shellIdx << 639 << " Ebind(keV)= " << bindingE/keV << << 640 } << 641 eMax = gammaEnergy0 - bindingE; 368 eMax = gammaEnergy0 - bindingE; 642 << 369 643 // Randomly sample bound electron moment 370 // Randomly sample bound electron momentum (memento: the data set is in Atomic Units) 644 G4double pSample = profileData->RandomSe << 371 G4double pSample = profileData.RandomSelectMomentum(Z,shell); 645 << 646 if (verboseLevel > 3) { << 647 G4cout << "pSample= " << pSample << G4e << 648 } << 649 // Rescale from atomic units 372 // Rescale from atomic units 650 G4double pDoppler = pSample * fine_struc 373 G4double pDoppler = pSample * fine_structure_const; 651 G4double pDoppler2 = pDoppler * pDoppler 374 G4double pDoppler2 = pDoppler * pDoppler; 652 G4double var2 = 1. + onecost * E0_m; 375 G4double var2 = 1. + onecost * E0_m; 653 G4double var3 = var2*var2 - pDoppler2; 376 G4double var3 = var2*var2 - pDoppler2; 654 G4double var4 = var2 - pDoppler2 * cosTh 377 G4double var4 = var2 - pDoppler2 * cosTheta; 655 G4double var = var4*var4 - var3 + pDoppl 378 G4double var = var4*var4 - var3 + pDoppler2 * var3; 656 if (var > 0.) 379 if (var > 0.) 657 { 380 { 658 G4double varSqrt = std::sqrt(var); 381 G4double varSqrt = std::sqrt(var); 659 G4double scale = gammaEnergy0 / var3; 382 G4double scale = gammaEnergy0 / var3; 660 // Random select either root 383 // Random select either root 661 if (G4UniformRand() < 0.5) photonE = (var4 384 if (G4UniformRand() < 0.5) photonE = (var4 - varSqrt) * scale; 662 else photonE = (var4 + varSqrt) * scale; 385 else photonE = (var4 + varSqrt) * scale; 663 } 386 } 664 else 387 else 665 { 388 { 666 photonE = -1.; 389 photonE = -1.; 667 } 390 } 668 } while ( iteration <= maxDopplerIterations 391 } while ( iteration <= maxDopplerIterations && 669 (photonE < 0. || photonE > eMax || phot 392 (photonE < 0. || photonE > eMax || photonE < eMax*G4UniformRand()) ); 670 << 393 671 // End of recalculation of photon energy wit 394 // End of recalculation of photon energy with Doppler broadening 672 // Revert to original if maximum number of i 395 // Revert to original if maximum number of iterations threshold has been reached 673 if (iteration >= maxDopplerIterations) 396 if (iteration >= maxDopplerIterations) 674 { 397 { 675 photonE = photonEoriginal; 398 photonE = photonEoriginal; 676 bindingE = 0.; 399 bindingE = 0.; 677 } 400 } 678 401 679 gammaEnergy1 = photonE; 402 gammaEnergy1 = photonE; 680 403 681 // 404 // 682 // update G4VParticleChange for the scattere 405 // update G4VParticleChange for the scattered photon 683 // 406 // >> 407 >> 408 // gammaEnergy1 = epsilon*gammaEnergy0; >> 409 >> 410 684 // New polarization 411 // New polarization >> 412 685 G4ThreeVector gammaPolarization1 = SetNewPol 413 G4ThreeVector gammaPolarization1 = SetNewPolarization(epsilon, 686 sinThetaSqr, 414 sinThetaSqr, 687 phi, 415 phi, 688 cosTheta); 416 cosTheta); 689 417 690 // Set new direction 418 // Set new direction 691 G4ThreeVector tmpDirection1( dirx,diry,dirz 419 G4ThreeVector tmpDirection1( dirx,diry,dirz ); 692 gammaDirection1 = tmpDirection1; 420 gammaDirection1 = tmpDirection1; 693 421 694 // Change reference frame. 422 // Change reference frame. >> 423 695 SystemOfRefChange(gammaDirection0,gammaDirec 424 SystemOfRefChange(gammaDirection0,gammaDirection1, 696 gammaPolarization0,gammaPolarization1) 425 gammaPolarization0,gammaPolarization1); 697 426 698 if (gammaEnergy1 > 0.) 427 if (gammaEnergy1 > 0.) 699 { 428 { 700 fParticleChange->SetProposedKineticEnerg 429 fParticleChange->SetProposedKineticEnergy( gammaEnergy1 ) ; 701 fParticleChange->ProposeMomentumDirectio 430 fParticleChange->ProposeMomentumDirection( gammaDirection1 ); 702 fParticleChange->ProposePolarization( ga 431 fParticleChange->ProposePolarization( gammaPolarization1 ); 703 } 432 } 704 else 433 else 705 { 434 { 706 gammaEnergy1 = 0.; 435 gammaEnergy1 = 0.; 707 fParticleChange->SetProposedKineticEnerg 436 fParticleChange->SetProposedKineticEnergy(0.) ; 708 fParticleChange->ProposeTrackStatus(fSto 437 fParticleChange->ProposeTrackStatus(fStopAndKill); 709 } 438 } 710 439 711 // 440 // 712 // kinematic of the scattered electron 441 // kinematic of the scattered electron 713 // 442 // >> 443 714 G4double ElecKineEnergy = gammaEnergy0 - gam 444 G4double ElecKineEnergy = gammaEnergy0 - gammaEnergy1 -bindingE; 715 445 716 // SI -protection against negative final ene 446 // SI -protection against negative final energy: no e- is created 717 // like in G4LivermoreComptonModel.cc 447 // like in G4LivermoreComptonModel.cc 718 if(ElecKineEnergy < 0.0) { 448 if(ElecKineEnergy < 0.0) { 719 fParticleChange->ProposeLocalEnergyDeposit 449 fParticleChange->ProposeLocalEnergyDeposit(gammaEnergy0 - gammaEnergy1); 720 return; 450 return; 721 } 451 } 722 452 >> 453 // SI - Removed range test >> 454 723 G4double ElecMomentum = std::sqrt(ElecKineEn 455 G4double ElecMomentum = std::sqrt(ElecKineEnergy*(ElecKineEnergy+2.*electron_mass_c2)); 724 456 725 G4ThreeVector ElecDirection((gammaEnergy0 * 457 G4ThreeVector ElecDirection((gammaEnergy0 * gammaDirection0 - 726 gammaEnergy1 * gammaDirection1) * ( 458 gammaEnergy1 * gammaDirection1) * (1./ElecMomentum)); 727 459 728 G4DynamicParticle* dp = << 729 new G4DynamicParticle (G4Electron::Electro << 730 fvect->push_back(dp); << 731 << 732 // sample deexcitation << 733 // << 734 if (verboseLevel > 3) { << 735 G4cout << "Started atomic de-excitation " << 736 } << 737 << 738 if(fAtomDeexcitation && iteration < maxDoppl << 739 G4int index = couple->GetIndex(); << 740 if(fAtomDeexcitation->CheckDeexcitationAct << 741 std::size_t nbefore = fvect->size(); << 742 G4AtomicShellEnumerator as = G4AtomicShe << 743 const G4AtomicShell* shell = fAtomDeexci << 744 fAtomDeexcitation->GenerateParticles(fve << 745 std::size_t nafter = fvect->size(); << 746 if(nafter > nbefore) { << 747 for (std::size_t i=nbefore; i<nafter; ++i) { << 748 //Check if there is enough residual energy << 749 if (bindingE >= ((*fvect)[i])->GetKineticE << 750 { << 751 //Ok, this is a valid secondary: << 752 bindingE -= ((*fvect)[i])->GetKineticE << 753 } << 754 else << 755 { << 756 //Invalid secondary: not enough energy << 757 //Keep its energy in the local deposit << 758 delete (*fvect)[i]; << 759 (*fvect)[i]=0; << 760 } << 761 } << 762 } << 763 } << 764 } << 765 //This should never happen << 766 if(bindingE < 0.0) << 767 G4Exception("G4LivermoreComptonModel::Samp << 768 "em2050",FatalException,"Negative local en << 769 << 770 fParticleChange->ProposeLocalEnergyDeposit(b 460 fParticleChange->ProposeLocalEnergyDeposit(bindingE); >> 461 >> 462 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),ElecDirection.unit(),ElecKineEnergy) ; >> 463 fvect->push_back(dp); 771 464 772 } 465 } 773 466 774 //....oooOO0OOooo........oooOO0OOooo........oo 467 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 775 468 776 G4double G4LivermorePolarizedComptonModel::Set 469 G4double G4LivermorePolarizedComptonModel::SetPhi(G4double energyRate, 777 G4double sinSqrTh) 470 G4double sinSqrTh) 778 { 471 { 779 G4double rand1; 472 G4double rand1; 780 G4double rand2; 473 G4double rand2; 781 G4double phiProbability; 474 G4double phiProbability; 782 G4double phi; 475 G4double phi; 783 G4double a, b; 476 G4double a, b; 784 477 785 do 478 do 786 { 479 { 787 rand1 = G4UniformRand(); 480 rand1 = G4UniformRand(); 788 rand2 = G4UniformRand(); 481 rand2 = G4UniformRand(); 789 phiProbability=0.; 482 phiProbability=0.; 790 phi = twopi*rand1; 483 phi = twopi*rand1; 791 484 792 a = 2*sinSqrTh; 485 a = 2*sinSqrTh; 793 b = energyRate + 1/energyRate; 486 b = energyRate + 1/energyRate; 794 487 795 phiProbability = 1 - (a/b)*(std::cos(phi 488 phiProbability = 1 - (a/b)*(std::cos(phi)*std::cos(phi)); >> 489 >> 490 >> 491 796 } 492 } 797 while ( rand2 > phiProbability ); 493 while ( rand2 > phiProbability ); 798 return phi; 494 return phi; 799 } 495 } 800 496 801 497 802 //....oooOO0OOooo........oooOO0OOooo........oo 498 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 499 804 G4ThreeVector G4LivermorePolarizedComptonModel 500 G4ThreeVector G4LivermorePolarizedComptonModel::SetPerpendicularVector(G4ThreeVector& a) 805 { 501 { 806 G4double dx = a.x(); 502 G4double dx = a.x(); 807 G4double dy = a.y(); 503 G4double dy = a.y(); 808 G4double dz = a.z(); 504 G4double dz = a.z(); 809 G4double x = dx < 0.0 ? -dx : dx; 505 G4double x = dx < 0.0 ? -dx : dx; 810 G4double y = dy < 0.0 ? -dy : dy; 506 G4double y = dy < 0.0 ? -dy : dy; 811 G4double z = dz < 0.0 ? -dz : dz; 507 G4double z = dz < 0.0 ? -dz : dz; 812 if (x < y) { 508 if (x < y) { 813 return x < z ? G4ThreeVector(-dy,dx,0) : G 509 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy); 814 }else{ 510 }else{ 815 return y < z ? G4ThreeVector(dz,0,-dx) : G 511 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0); 816 } 512 } 817 } 513 } 818 514 819 //....oooOO0OOooo........oooOO0OOooo........oo 515 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 820 516 821 G4ThreeVector G4LivermorePolarizedComptonModel 517 G4ThreeVector G4LivermorePolarizedComptonModel::GetRandomPolarization(G4ThreeVector& direction0) 822 { 518 { 823 G4ThreeVector d0 = direction0.unit(); 519 G4ThreeVector d0 = direction0.unit(); 824 G4ThreeVector a1 = SetPerpendicularVector(d0 520 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal 825 G4ThreeVector a0 = a1.unit(); // unit vector 521 G4ThreeVector a0 = a1.unit(); // unit vector 826 522 827 G4double rand1 = G4UniformRand(); 523 G4double rand1 = G4UniformRand(); 828 524 829 G4double angle = twopi*rand1; // random pola 525 G4double angle = twopi*rand1; // random polar angle 830 G4ThreeVector b0 = d0.cross(a0); // cross pr 526 G4ThreeVector b0 = d0.cross(a0); // cross product 831 527 832 G4ThreeVector c; 528 G4ThreeVector c; 833 529 834 c.setX(std::cos(angle)*(a0.x())+std::sin(ang 530 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x()); 835 c.setY(std::cos(angle)*(a0.y())+std::sin(ang 531 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y()); 836 c.setZ(std::cos(angle)*(a0.z())+std::sin(ang 532 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z()); 837 533 838 G4ThreeVector c0 = c.unit(); 534 G4ThreeVector c0 = c.unit(); 839 535 840 return c0; 536 return c0; >> 537 841 } 538 } 842 539 843 //....oooOO0OOooo........oooOO0OOooo........oo 540 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 844 541 845 G4ThreeVector G4LivermorePolarizedComptonModel 542 G4ThreeVector G4LivermorePolarizedComptonModel::GetPerpendicularPolarization 846 (const G4ThreeVector& gammaDirection, const G4 543 (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const 847 { 544 { >> 545 848 // 546 // 849 // The polarization of a photon is always pe 547 // The polarization of a photon is always perpendicular to its momentum direction. 850 // Therefore this function removes those vec 548 // Therefore this function removes those vector component of gammaPolarization, which 851 // points in direction of gammaDirection 549 // points in direction of gammaDirection 852 // 550 // 853 // Mathematically we search the projection o 551 // Mathematically we search the projection of the vector a on the plane E, where n is the 854 // plains normal vector. 552 // plains normal vector. 855 // The basic equation can be found in each g 553 // The basic equation can be found in each geometry book (e.g. Bronstein): 856 // p = a - (a o n)/(n o n)*n 554 // p = a - (a o n)/(n o n)*n 857 555 858 return gammaPolarization - gammaPolarization 556 return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection; 859 } 557 } 860 558 861 //....oooOO0OOooo........oooOO0OOooo........oo 559 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 862 560 863 G4ThreeVector G4LivermorePolarizedComptonModel 561 G4ThreeVector G4LivermorePolarizedComptonModel::SetNewPolarization(G4double epsilon, 864 G4double sinSqrTh, 562 G4double sinSqrTh, 865 G4double phi, 563 G4double phi, 866 G4double costheta) 564 G4double costheta) 867 { 565 { 868 G4double rand1; 566 G4double rand1; 869 G4double rand2; 567 G4double rand2; 870 G4double cosPhi = std::cos(phi); 568 G4double cosPhi = std::cos(phi); 871 G4double sinPhi = std::sin(phi); 569 G4double sinPhi = std::sin(phi); 872 G4double sinTheta = std::sqrt(sinSqrTh); 570 G4double sinTheta = std::sqrt(sinSqrTh); 873 G4double cosSqrPhi = cosPhi*cosPhi; 571 G4double cosSqrPhi = cosPhi*cosPhi; 874 // G4double cossqrth = 1.-sinSqrTh; 572 // G4double cossqrth = 1.-sinSqrTh; 875 // G4double sinsqrphi = sinPhi*sinPhi; 573 // G4double sinsqrphi = sinPhi*sinPhi; 876 G4double normalisation = std::sqrt(1. - cosS 574 G4double normalisation = std::sqrt(1. - cosSqrPhi*sinSqrTh); 877 575 >> 576 878 // Determination of Theta 577 // Determination of Theta >> 578 >> 579 // ---- MGP ---- Commented out the following 3 lines to avoid compilation >> 580 // warnings (unused variables) >> 581 // G4double thetaProbability; 879 G4double theta; 582 G4double theta; >> 583 // G4double a, b; >> 584 // G4double cosTheta; >> 585 >> 586 /* >> 587 >> 588 depaola method >> 589 >> 590 do >> 591 { >> 592 rand1 = G4UniformRand(); >> 593 rand2 = G4UniformRand(); >> 594 thetaProbability=0.; >> 595 theta = twopi*rand1; >> 596 a = 4*normalisation*normalisation; >> 597 b = (epsilon + 1/epsilon) - 2; >> 598 thetaProbability = (b + a*std::cos(theta)*std::cos(theta))/(a+b); >> 599 cosTheta = std::cos(theta); >> 600 } >> 601 while ( rand2 > thetaProbability ); >> 602 >> 603 G4double cosBeta = cosTheta; >> 604 >> 605 */ >> 606 880 607 881 // Dan Xu method (IEEE TNS, 52, 1160 (2005)) 608 // Dan Xu method (IEEE TNS, 52, 1160 (2005)) >> 609 882 rand1 = G4UniformRand(); 610 rand1 = G4UniformRand(); 883 rand2 = G4UniformRand(); 611 rand2 = G4UniformRand(); 884 612 885 if (rand1<(epsilon+1.0/epsilon-2)/(2.0*(epsi 613 if (rand1<(epsilon+1.0/epsilon-2)/(2.0*(epsilon+1.0/epsilon)-4.0*sinSqrTh*cosSqrPhi)) 886 { 614 { 887 if (rand2<0.5) 615 if (rand2<0.5) 888 theta = pi/2.0; 616 theta = pi/2.0; 889 else 617 else 890 theta = 3.0*pi/2.0; 618 theta = 3.0*pi/2.0; 891 } 619 } 892 else 620 else 893 { 621 { 894 if (rand2<0.5) 622 if (rand2<0.5) 895 theta = 0; 623 theta = 0; 896 else 624 else 897 theta = pi; 625 theta = pi; 898 } 626 } 899 G4double cosBeta = std::cos(theta); 627 G4double cosBeta = std::cos(theta); 900 G4double sinBeta = std::sqrt(1-cosBeta*cosBe 628 G4double sinBeta = std::sqrt(1-cosBeta*cosBeta); 901 629 902 G4ThreeVector gammaPolarization1; 630 G4ThreeVector gammaPolarization1; 903 631 904 G4double xParallel = normalisation*cosBeta; 632 G4double xParallel = normalisation*cosBeta; 905 G4double yParallel = -(sinSqrTh*cosPhi*sinPh 633 G4double yParallel = -(sinSqrTh*cosPhi*sinPhi)*cosBeta/normalisation; 906 G4double zParallel = -(costheta*sinTheta*cos 634 G4double zParallel = -(costheta*sinTheta*cosPhi)*cosBeta/normalisation; 907 G4double xPerpendicular = 0.; 635 G4double xPerpendicular = 0.; 908 G4double yPerpendicular = (costheta)*sinBeta 636 G4double yPerpendicular = (costheta)*sinBeta/normalisation; 909 G4double zPerpendicular = -(sinTheta*sinPhi) 637 G4double zPerpendicular = -(sinTheta*sinPhi)*sinBeta/normalisation; 910 638 911 G4double xTotal = (xParallel + xPerpendicula 639 G4double xTotal = (xParallel + xPerpendicular); 912 G4double yTotal = (yParallel + yPerpendicula 640 G4double yTotal = (yParallel + yPerpendicular); 913 G4double zTotal = (zParallel + zPerpendicula 641 G4double zTotal = (zParallel + zPerpendicular); 914 642 915 gammaPolarization1.setX(xTotal); 643 gammaPolarization1.setX(xTotal); 916 gammaPolarization1.setY(yTotal); 644 gammaPolarization1.setY(yTotal); 917 gammaPolarization1.setZ(zTotal); 645 gammaPolarization1.setZ(zTotal); 918 646 919 return gammaPolarization1; 647 return gammaPolarization1; >> 648 920 } 649 } 921 650 922 //....oooOO0OOooo........oooOO0OOooo........oo 651 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 923 652 924 void G4LivermorePolarizedComptonModel::SystemO 653 void G4LivermorePolarizedComptonModel::SystemOfRefChange(G4ThreeVector& direction0, 925 G4ThreeVector& direction1, 654 G4ThreeVector& direction1, 926 G4ThreeVector& polarization0, 655 G4ThreeVector& polarization0, 927 G4ThreeVector& polarization1) 656 G4ThreeVector& polarization1) 928 { 657 { 929 // direction0 is the original photon directi 658 // direction0 is the original photon direction ---> z 930 // polarization0 is the original photon pola 659 // polarization0 is the original photon polarization ---> x 931 // need to specify y axis in the real refere 660 // need to specify y axis in the real reference frame ---> y 932 G4ThreeVector Axis_Z0 = direction0.unit(); 661 G4ThreeVector Axis_Z0 = direction0.unit(); 933 G4ThreeVector Axis_X0 = polarization0.unit() 662 G4ThreeVector Axis_X0 = polarization0.unit(); 934 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_ 663 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed; 935 664 936 G4double direction_x = direction1.getX(); 665 G4double direction_x = direction1.getX(); 937 G4double direction_y = direction1.getY(); 666 G4double direction_y = direction1.getY(); 938 G4double direction_z = direction1.getZ(); 667 G4double direction_z = direction1.getZ(); 939 668 940 direction1 = (direction_x*Axis_X0 + directio 669 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit(); 941 G4double polarization_x = polarization1.getX 670 G4double polarization_x = polarization1.getX(); 942 G4double polarization_y = polarization1.getY 671 G4double polarization_y = polarization1.getY(); 943 G4double polarization_z = polarization1.getZ 672 G4double polarization_z = polarization1.getZ(); 944 673 945 polarization1 = (polarization_x*Axis_X0 + po 674 polarization1 = (polarization_x*Axis_X0 + polarization_y*Axis_Y0 + polarization_z*Axis_Z0).unit(); 946 675 947 } 676 } 948 677 949 678 950 //....oooOO0OOooo........oooOO0OOooo........oo << 951 //....oooOO0OOooo........oooOO0OOooo........oo << 952 << 953 void << 954 G4LivermorePolarizedComptonModel::InitialiseFo << 955 G4int Z) << 956 { << 957 G4AutoLock l(&LivermorePolarizedComptonModel << 958 if(!data[Z]) { ReadData(Z); } << 959 l.unlock(); << 960 } << 961 679