Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // Authors: G.Depaola & F.Longo 28 // Authors: G.Depaola & F.Longo 28 // 29 // 29 // History: 30 // History: 30 // ------- << 31 // -------- 31 // << 32 // 05 Apr 2021 J Allison added quantum entan << 33 // If the photons have been "tagged" as "quant << 34 // G4eplusAnnihilation for annihilation into 2 << 35 // here if - and only if - both photons suffer << 36 // predictions from Pryce and Ward, Nature No << 37 // Physical Review 73 (1948) p.440. Experiment << 38 // entanglement in the MeV regime and its appl << 39 // D. Watts, J. Allison et al., Nature Communi << 40 // https://doi.org/10.1038/s41467-021-22907-5. << 41 // << 42 // 02 May 2009 S Incerti as V. Ivanchenko pr 32 // 02 May 2009 S Incerti as V. Ivanchenko proposed in G4LivermoreComptonModel.cc 43 // 33 // 44 // Cleanup initialisation and generation of se 34 // Cleanup initialisation and generation of secondaries: 45 // - apply internal high-ener 35 // - apply internal high-energy limit only in constructor 46 // - do not apply low-energy 36 // - do not apply low-energy limit (default is 0) 47 // - remove GetMeanFreePath m 37 // - remove GetMeanFreePath method and table 48 // - added protection against 38 // - added protection against numerical problem in energy sampling 49 // - use G4ElementSelector 39 // - use G4ElementSelector 50 40 51 #include "G4LivermorePolarizedComptonModel.hh" 41 #include "G4LivermorePolarizedComptonModel.hh" 52 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 53 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 54 #include "G4AutoLock.hh" << 55 #include "G4Electron.hh" 44 #include "G4Electron.hh" 56 #include "G4ParticleChangeForGamma.hh" 45 #include "G4ParticleChangeForGamma.hh" 57 #include "G4LossTableManager.hh" 46 #include "G4LossTableManager.hh" 58 #include "G4VAtomDeexcitation.hh" 47 #include "G4VAtomDeexcitation.hh" 59 #include "G4AtomicShell.hh" 48 #include "G4AtomicShell.hh" 60 #include "G4Gamma.hh" 49 #include "G4Gamma.hh" 61 #include "G4ShellData.hh" 50 #include "G4ShellData.hh" 62 #include "G4DopplerProfile.hh" 51 #include "G4DopplerProfile.hh" 63 #include "G4Log.hh" 52 #include "G4Log.hh" 64 #include "G4Exp.hh" 53 #include "G4Exp.hh" 65 #include "G4Pow.hh" << 66 #include "G4LogLogInterpolation.hh" 54 #include "G4LogLogInterpolation.hh" 67 #include "G4PhysicsModelCatalog.hh" << 68 #include "G4EntanglementAuxInfo.hh" << 69 #include "G4eplusAnnihilationEntanglementClipB << 70 55 71 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 72 57 73 using namespace std; 58 using namespace std; 74 namespace { G4Mutex LivermorePolarizedComptonM << 75 59 >> 60 G4int G4LivermorePolarizedComptonModel::maxZ = 99; >> 61 G4LPhysicsFreeVector* G4LivermorePolarizedComptonModel::data[] = {0}; >> 62 G4ShellData* G4LivermorePolarizedComptonModel::shellData = 0; >> 63 G4DopplerProfile* G4LivermorePolarizedComptonModel::profileData = 0; >> 64 G4CompositeEMDataSet* G4LivermorePolarizedComptonModel::scatterFunctionData = 0; 76 65 77 G4PhysicsFreeVector* G4LivermorePolarizedCompt << 66 //static const G4double ln10 = G4Log(10.); 78 G4ShellData* G4LivermorePolarizedCompton << 79 G4DopplerProfile* G4LivermorePolarizedCompton << 80 G4CompositeEMDataSet* G4LivermorePolarizedComp << 81 67 82 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 83 69 84 G4LivermorePolarizedComptonModel::G4LivermoreP 70 G4LivermorePolarizedComptonModel::G4LivermorePolarizedComptonModel(const G4ParticleDefinition*, const G4String& nam) 85 :G4VEmModel(nam),isInitialised(false) 71 :G4VEmModel(nam),isInitialised(false) 86 { 72 { 87 verboseLevel= 1; 73 verboseLevel= 1; 88 // Verbosity scale: 74 // Verbosity scale: 89 // 0 = nothing 75 // 0 = nothing 90 // 1 = warning for energy non-conservation 76 // 1 = warning for energy non-conservation 91 // 2 = details of energy budget 77 // 2 = details of energy budget 92 // 3 = calculation of cross sections, file o 78 // 3 = calculation of cross sections, file openings, sampling of atoms 93 // 4 = entering in methods 79 // 4 = entering in methods 94 80 95 if( verboseLevel>1 ) 81 if( verboseLevel>1 ) 96 G4cout << "Livermore Polarized Compton is 82 G4cout << "Livermore Polarized Compton is constructed " << G4endl; 97 83 98 //Mark this model as "applicable" for atomic 84 //Mark this model as "applicable" for atomic deexcitation 99 SetDeexcitationFlag(true); 85 SetDeexcitationFlag(true); 100 86 101 fParticleChange = nullptr; << 87 fParticleChange = 0; 102 fAtomDeexcitation = nullptr; << 88 fAtomDeexcitation = 0; 103 fEntanglementModelID = G4PhysicsModelCatalog << 104 } 89 } 105 90 106 //....oooOO0OOooo........oooOO0OOooo........oo 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 107 92 108 G4LivermorePolarizedComptonModel::~G4Livermore 93 G4LivermorePolarizedComptonModel::~G4LivermorePolarizedComptonModel() 109 { 94 { 110 if(IsMaster()) { 95 if(IsMaster()) { 111 delete shellData; 96 delete shellData; 112 shellData = nullptr; << 97 shellData = 0; 113 delete profileData; 98 delete profileData; 114 profileData = nullptr; << 99 profileData = 0; 115 delete scatterFunctionData; 100 delete scatterFunctionData; 116 scatterFunctionData = nullptr; << 101 scatterFunctionData = 0; 117 for(G4int i=0; i<maxZ; ++i) { 102 for(G4int i=0; i<maxZ; ++i) { 118 if(data[i]) { 103 if(data[i]) { 119 delete data[i]; 104 delete data[i]; 120 data[i] = nullptr; << 105 data[i] = 0; 121 } 106 } 122 } 107 } 123 } 108 } 124 } 109 } 125 110 126 //....oooOO0OOooo........oooOO0OOooo........oo 111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 127 112 128 void G4LivermorePolarizedComptonModel::Initial 113 void G4LivermorePolarizedComptonModel::Initialise(const G4ParticleDefinition* particle, 129 const G 114 const G4DataVector& cuts) 130 { 115 { 131 if (verboseLevel > 1) 116 if (verboseLevel > 1) 132 G4cout << "Calling G4LivermorePolarizedCom 117 G4cout << "Calling G4LivermorePolarizedComptonModel::Initialise()" << G4endl; 133 118 134 // Initialise element selector 119 // Initialise element selector >> 120 135 if(IsMaster()) { 121 if(IsMaster()) { >> 122 136 // Access to elements 123 // Access to elements 137 const char* path = G4FindDataDir("G4LEDATA << 124 >> 125 char* path = getenv("G4LEDATA"); 138 126 139 G4ProductionCutsTable* theCoupleTable = 127 G4ProductionCutsTable* theCoupleTable = 140 G4ProductionCutsTable::GetProductionCuts 128 G4ProductionCutsTable::GetProductionCutsTable(); 141 129 142 G4int numOfCouples = (G4int)theCoupleTable << 130 G4int numOfCouples = theCoupleTable->GetTableSize(); 143 131 144 for(G4int i=0; i<numOfCouples; ++i) { 132 for(G4int i=0; i<numOfCouples; ++i) { 145 const G4Material* material = 133 const G4Material* material = 146 theCoupleTable->GetMaterialCutsCouple( << 134 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 147 const G4ElementVector* theElementVector 135 const G4ElementVector* theElementVector = material->GetElementVector(); 148 std::size_t nelm = material->GetNumberOf << 136 G4int nelm = material->GetNumberOfElements(); 149 137 150 for (std::size_t j=0; j<nelm; ++j) { << 138 for (G4int j=0; j<nelm; ++j) { 151 G4int Z = G4lrint((*theElementVector)[ << 139 G4int Z = G4lrint((*theElementVector)[j]->GetZ()); 152 if(Z < 1) { Z = 1; } << 140 if(Z < 1) { Z = 1; } 153 else if(Z > maxZ){ Z = maxZ; } << 141 else if(Z > maxZ){ Z = maxZ; } 154 << 142 155 if( (!data[Z]) ) { ReadData(Z, path); << 143 if( (!data[Z]) ) { ReadData(Z, path); } 156 } 144 } 157 } 145 } 158 146 159 // For Doppler broadening 147 // For Doppler broadening 160 if(!shellData) { 148 if(!shellData) { 161 shellData = new G4ShellData(); 149 shellData = new G4ShellData(); 162 shellData->SetOccupancyData(); 150 shellData->SetOccupancyData(); 163 G4String file = "/doppler/shell-doppler" 151 G4String file = "/doppler/shell-doppler"; 164 shellData->LoadData(file); 152 shellData->LoadData(file); 165 } 153 } 166 if(!profileData) { profileData = new G4Dop 154 if(!profileData) { profileData = new G4DopplerProfile(); } 167 155 168 // Scattering Function 156 // Scattering Function >> 157 169 if(!scatterFunctionData) 158 if(!scatterFunctionData) 170 { 159 { 171 160 172 G4VDataSetAlgorithm* scatterInterpolation = 161 G4VDataSetAlgorithm* scatterInterpolation = new G4LogLogInterpolation; 173 G4String scatterFile = "comp/ce-sf-"; 162 G4String scatterFile = "comp/ce-sf-"; 174 scatterFunctionData = new G4CompositeEMDataS 163 scatterFunctionData = new G4CompositeEMDataSet(scatterInterpolation, 1., 1.); 175 scatterFunctionData->LoadData(scatterFile); 164 scatterFunctionData->LoadData(scatterFile); 176 } 165 } 177 166 178 InitialiseElementSelectors(particle, cuts) 167 InitialiseElementSelectors(particle, cuts); 179 } 168 } 180 169 181 if (verboseLevel > 2) { 170 if (verboseLevel > 2) { 182 G4cout << "Loaded cross section files" << 171 G4cout << "Loaded cross section files" << G4endl; 183 } 172 } 184 173 185 if( verboseLevel>1 ) { 174 if( verboseLevel>1 ) { 186 G4cout << "G4LivermoreComptonModel is init 175 G4cout << "G4LivermoreComptonModel is initialized " << G4endl 187 << "Energy range: " 176 << "Energy range: " 188 << LowEnergyLimit() / eV << " eV - " 177 << LowEnergyLimit() / eV << " eV - " 189 << HighEnergyLimit() / GeV << " GeV" 178 << HighEnergyLimit() / GeV << " GeV" 190 << G4endl; 179 << G4endl; 191 } 180 } 192 // 181 // 193 if(isInitialised) { return; } 182 if(isInitialised) { return; } 194 183 195 fParticleChange = GetParticleChangeForGamma( 184 fParticleChange = GetParticleChangeForGamma(); 196 fAtomDeexcitation = G4LossTableManager::Ins 185 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation(); 197 isInitialised = true; 186 isInitialised = true; 198 } 187 } 199 188 200 189 201 void G4LivermorePolarizedComptonModel::Initial 190 void G4LivermorePolarizedComptonModel::InitialiseLocal(const G4ParticleDefinition*, 202 G4VEmModel* masterModel) 191 G4VEmModel* masterModel) 203 { 192 { 204 SetElementSelectors(masterModel->GetElementS 193 SetElementSelectors(masterModel->GetElementSelectors()); 205 } 194 } 206 195 207 //....oooOO0OOooo........oooOO0OOooo........oo 196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 208 197 209 void G4LivermorePolarizedComptonModel::ReadDat << 198 void G4LivermorePolarizedComptonModel::ReadData(size_t Z, const char* path) 210 { 199 { 211 if (verboseLevel > 1) 200 if (verboseLevel > 1) 212 { 201 { 213 G4cout << "G4LivermorePolarizedComptonMo 202 G4cout << "G4LivermorePolarizedComptonModel::ReadData()" 214 << G4endl; 203 << G4endl; 215 } 204 } 216 if(data[Z]) { return; } 205 if(data[Z]) { return; } 217 const char* datadir = path; 206 const char* datadir = path; 218 if(!datadir) 207 if(!datadir) 219 { 208 { 220 datadir = G4FindDataDir("G4LEDATA"); << 209 datadir = getenv("G4LEDATA"); 221 if(!datadir) 210 if(!datadir) 222 { 211 { 223 G4Exception("G4LivermorePolarizedComptonMo 212 G4Exception("G4LivermorePolarizedComptonModel::ReadData()", 224 "em0006",FatalException, 213 "em0006",FatalException, 225 "Environment variable G4LEDATA not d 214 "Environment variable G4LEDATA not defined"); 226 return; 215 return; 227 } 216 } 228 } 217 } 229 218 230 data[Z] = new G4PhysicsFreeVector(); << 219 data[Z] = new G4LPhysicsFreeVector(); 231 << 220 >> 221 // Activation of spline interpolation >> 222 data[Z]->SetSpline(false); >> 223 232 std::ostringstream ost; 224 std::ostringstream ost; 233 ost << datadir << "/livermore/comp/ce-cs-" < 225 ost << datadir << "/livermore/comp/ce-cs-" << Z <<".dat"; 234 std::ifstream fin(ost.str().c_str()); 226 std::ifstream fin(ost.str().c_str()); 235 227 236 if( !fin.is_open()) 228 if( !fin.is_open()) 237 { 229 { 238 G4ExceptionDescription ed; 230 G4ExceptionDescription ed; 239 ed << "G4LivermorePolarizedComptonModel 231 ed << "G4LivermorePolarizedComptonModel data file <" << ost.str().c_str() 240 << "> is not opened!" << G4endl; 232 << "> is not opened!" << G4endl; 241 G4Exception("G4LivermoreComptonModel::Re 233 G4Exception("G4LivermoreComptonModel::ReadData()", 242 "em0003",FatalException, 234 "em0003",FatalException, 243 ed,"G4LEDATA version should be G4EMLOW8. << 235 ed,"G4LEDATA version should be G4EMLOW6.34 or later"); 244 return; 236 return; 245 } else { 237 } else { 246 if(verboseLevel > 3) { 238 if(verboseLevel > 3) { 247 G4cout << "File " << ost.str() 239 G4cout << "File " << ost.str() 248 << " is opened by G4LivermorePolarizedC 240 << " is opened by G4LivermorePolarizedComptonModel" << G4endl; 249 } 241 } 250 data[Z]->Retrieve(fin, true); 242 data[Z]->Retrieve(fin, true); 251 data[Z]->ScaleVector(MeV, MeV*barn); 243 data[Z]->ScaleVector(MeV, MeV*barn); 252 } 244 } 253 fin.close(); 245 fin.close(); 254 } 246 } 255 247 >> 248 >> 249 >> 250 256 //....oooOO0OOooo........oooOO0OOooo........oo 251 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 257 252 258 G4double G4LivermorePolarizedComptonModel::Com 253 G4double G4LivermorePolarizedComptonModel::ComputeCrossSectionPerAtom( 259 const G 254 const G4ParticleDefinition*, 260 G 255 G4double GammaEnergy, 261 G 256 G4double Z, G4double, 262 G 257 G4double, G4double) 263 { 258 { 264 if (verboseLevel > 3) 259 if (verboseLevel > 3) 265 G4cout << "Calling ComputeCrossSectionPerA 260 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermorePolarizedComptonModel" << G4endl; 266 261 267 G4double cs = 0.0; 262 G4double cs = 0.0; 268 263 269 if (GammaEnergy < LowEnergyLimit()) 264 if (GammaEnergy < LowEnergyLimit()) 270 return 0.0; 265 return 0.0; 271 266 272 G4int intZ = G4lrint(Z); 267 G4int intZ = G4lrint(Z); 273 if(intZ < 1 || intZ > maxZ) { return cs; } 268 if(intZ < 1 || intZ > maxZ) { return cs; } 274 269 275 G4PhysicsFreeVector* pv = data[intZ]; << 270 G4LPhysicsFreeVector* pv = data[intZ]; 276 271 277 // if element was not initialised 272 // if element was not initialised 278 // do initialisation safely for MT mode 273 // do initialisation safely for MT mode 279 if(!pv) 274 if(!pv) 280 { 275 { 281 InitialiseForElement(0, intZ); 276 InitialiseForElement(0, intZ); 282 pv = data[intZ]; 277 pv = data[intZ]; 283 if(!pv) { return cs; } 278 if(!pv) { return cs; } 284 } 279 } 285 280 286 G4int n = G4int(pv->GetVectorLength() - 1); << 281 G4int n = pv->GetVectorLength() - 1; 287 G4double e1 = pv->Energy(0); 282 G4double e1 = pv->Energy(0); 288 G4double e2 = pv->Energy(n); 283 G4double e2 = pv->Energy(n); 289 284 290 if(GammaEnergy <= e1) { cs = GammaEnerg 285 if(GammaEnergy <= e1) { cs = GammaEnergy/(e1*e1)*pv->Value(e1); } 291 else if(GammaEnergy <= e2) { cs = pv->Value( 286 else if(GammaEnergy <= e2) { cs = pv->Value(GammaEnergy)/GammaEnergy; } 292 else if(GammaEnergy > e2) { cs = pv->Value( 287 else if(GammaEnergy > e2) { cs = pv->Value(e2)/GammaEnergy; } 293 288 294 return cs; 289 return cs; 295 290 296 } 291 } 297 292 298 //....oooOO0OOooo........oooOO0OOooo........oo 293 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 299 294 300 void G4LivermorePolarizedComptonModel::SampleS 295 void G4LivermorePolarizedComptonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 301 const G4MaterialCutsCouple* co 296 const G4MaterialCutsCouple* couple, 302 const G4DynamicParticle* aDyna 297 const G4DynamicParticle* aDynamicGamma, 303 G4double, 298 G4double, 304 G4double) 299 G4double) 305 { 300 { 306 // The scattered gamma energy is sampled acc 301 // The scattered gamma energy is sampled according to Klein - Nishina formula. 307 // The random number techniques of Butcher & 302 // The random number techniques of Butcher & Messel are used (Nuc Phys 20(1960),15). 308 // GEANT4 internal units 303 // GEANT4 internal units 309 // 304 // 310 // Note : Effects due to binding of atomic e 305 // Note : Effects due to binding of atomic electrons are negliged. 311 306 312 if (verboseLevel > 3) 307 if (verboseLevel > 3) 313 G4cout << "Calling SampleSecondaries() of 308 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedComptonModel" << G4endl; 314 309 315 G4double gammaEnergy0 = aDynamicGamma->GetKi 310 G4double gammaEnergy0 = aDynamicGamma->GetKineticEnergy(); 316 311 317 // do nothing below the threshold 312 // do nothing below the threshold 318 // should never get here because the XS is z 313 // should never get here because the XS is zero below the limit 319 if (gammaEnergy0 < LowEnergyLimit()) 314 if (gammaEnergy0 < LowEnergyLimit()) 320 return ; 315 return ; 321 316 >> 317 322 G4ThreeVector gammaPolarization0 = aDynamicG 318 G4ThreeVector gammaPolarization0 = aDynamicGamma->GetPolarization(); 323 319 324 // Protection: a polarisation parallel to th 320 // Protection: a polarisation parallel to the 325 // direction causes problems; 321 // direction causes problems; 326 // in that case find a random polarization 322 // in that case find a random polarization >> 323 327 G4ThreeVector gammaDirection0 = aDynamicGamm 324 G4ThreeVector gammaDirection0 = aDynamicGamma->GetMomentumDirection(); 328 325 329 // Make sure that the polarization vector is 326 // Make sure that the polarization vector is perpendicular to the 330 // gamma direction. If not 327 // gamma direction. If not >> 328 331 if(!(gammaPolarization0.isOrthogonal(gammaDi 329 if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0)) 332 { // only for testing now 330 { // only for testing now 333 gammaPolarization0 = GetRandomPolarizati 331 gammaPolarization0 = GetRandomPolarization(gammaDirection0); 334 } 332 } 335 else 333 else 336 { 334 { 337 if ( gammaPolarization0.howOrthogonal(ga 335 if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0) 338 { 336 { 339 gammaPolarization0 = GetPerpendicularPolar 337 gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0); 340 } 338 } 341 } 339 } >> 340 342 // End of Protection 341 // End of Protection 343 342 344 G4double E0_m = gammaEnergy0 / electron_mass 343 G4double E0_m = gammaEnergy0 / electron_mass_c2 ; 345 344 346 // Select randomly one element in the curren 345 // Select randomly one element in the current material 347 //G4int Z = crossSectionHandler->SelectRando 346 //G4int Z = crossSectionHandler->SelectRandomAtom(couple,gammaEnergy0); 348 const G4ParticleDefinition* particle = aDyn 347 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); 349 const G4Element* elm = SelectRandomAtom(coup 348 const G4Element* elm = SelectRandomAtom(couple,particle,gammaEnergy0); 350 G4int Z = (G4int)elm->GetZ(); 349 G4int Z = (G4int)elm->GetZ(); 351 350 352 // Sample the energy and the polarization of 351 // Sample the energy and the polarization of the scattered photon >> 352 353 G4double epsilon, epsilonSq, onecost, sinThe 353 G4double epsilon, epsilonSq, onecost, sinThetaSqr, greject ; 354 354 355 G4double epsilon0Local = 1./(1. + 2*E0_m); 355 G4double epsilon0Local = 1./(1. + 2*E0_m); 356 G4double epsilon0Sq = epsilon0Local*epsilon0 356 G4double epsilon0Sq = epsilon0Local*epsilon0Local; 357 G4double alpha1 = - G4Log(epsilon0Local); << 357 G4double alpha1 = - std::log(epsilon0Local); 358 G4double alpha2 = 0.5*(1.- epsilon0Sq); 358 G4double alpha2 = 0.5*(1.- epsilon0Sq); 359 359 360 G4double wlGamma = h_Planck*c_light/gammaEne 360 G4double wlGamma = h_Planck*c_light/gammaEnergy0; 361 G4double gammaEnergy1; 361 G4double gammaEnergy1; 362 G4ThreeVector gammaDirection1; 362 G4ThreeVector gammaDirection1; 363 363 364 do { 364 do { 365 if ( alpha1/(alpha1+alpha2) > G4UniformRan 365 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) 366 { 366 { 367 epsilon = G4Exp(-alpha1*G4UniformRand()); 367 epsilon = G4Exp(-alpha1*G4UniformRand()); 368 epsilonSq = epsilon*epsilon; 368 epsilonSq = epsilon*epsilon; 369 } 369 } 370 else 370 else 371 { 371 { 372 epsilonSq = epsilon0Sq + (1.- epsilon0Sq)*G4 372 epsilonSq = epsilon0Sq + (1.- epsilon0Sq)*G4UniformRand(); 373 epsilon = std::sqrt(epsilonSq); 373 epsilon = std::sqrt(epsilonSq); 374 } 374 } 375 375 376 onecost = (1.- epsilon)/(epsilon*E0_m); 376 onecost = (1.- epsilon)/(epsilon*E0_m); 377 sinThetaSqr = onecost*(2.-onecost); 377 sinThetaSqr = onecost*(2.-onecost); 378 378 379 // Protection 379 // Protection 380 if (sinThetaSqr > 1.) 380 if (sinThetaSqr > 1.) 381 { 381 { 382 G4cout 382 G4cout 383 << " -- Warning -- G4LivermorePolarizedCom 383 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 384 << "sin(theta)**2 = " 384 << "sin(theta)**2 = " 385 << sinThetaSqr 385 << sinThetaSqr 386 << "; set to 1" 386 << "; set to 1" 387 << G4endl; 387 << G4endl; 388 sinThetaSqr = 1.; 388 sinThetaSqr = 1.; 389 } 389 } 390 if (sinThetaSqr < 0.) 390 if (sinThetaSqr < 0.) 391 { 391 { 392 G4cout 392 G4cout 393 << " -- Warning -- G4LivermorePolarizedCom 393 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 394 << "sin(theta)**2 = " 394 << "sin(theta)**2 = " 395 << sinThetaSqr 395 << sinThetaSqr 396 << "; set to 0" 396 << "; set to 0" 397 << G4endl; 397 << G4endl; 398 sinThetaSqr = 0.; 398 sinThetaSqr = 0.; 399 } 399 } 400 // End protection 400 // End protection 401 401 402 G4double x = std::sqrt(onecost/2.) / (wlG 402 G4double x = std::sqrt(onecost/2.) / (wlGamma/cm);; 403 G4double scatteringFunction = scatterFunct 403 G4double scatteringFunction = scatterFunctionData->FindValue(x,Z-1); 404 greject = (1. - epsilon*sinThetaSqr/(1.+ e 404 greject = (1. - epsilon*sinThetaSqr/(1.+ epsilonSq))*scatteringFunction; 405 405 406 } while(greject < G4UniformRand()*Z); 406 } while(greject < G4UniformRand()*Z); 407 407 408 408 409 // ***************************************** 409 // **************************************************** 410 // Phi determination 410 // Phi determination 411 // ***************************************** 411 // **************************************************** >> 412 412 G4double phi = SetPhi(epsilon,sinThetaSqr); 413 G4double phi = SetPhi(epsilon,sinThetaSqr); 413 414 414 // 415 // 415 // scattered gamma angles. ( Z - axis along 416 // scattered gamma angles. ( Z - axis along the parent gamma) 416 // 417 // >> 418 417 G4double cosTheta = 1. - onecost; 419 G4double cosTheta = 1. - onecost; 418 420 419 // Protection 421 // Protection >> 422 420 if (cosTheta > 1.) 423 if (cosTheta > 1.) 421 { 424 { 422 G4cout 425 G4cout 423 << " -- Warning -- G4LivermorePolarizedCompt 426 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 424 << "cosTheta = " 427 << "cosTheta = " 425 << cosTheta 428 << cosTheta 426 << "; set to 1" 429 << "; set to 1" 427 << G4endl; 430 << G4endl; 428 cosTheta = 1.; 431 cosTheta = 1.; 429 } 432 } 430 if (cosTheta < -1.) 433 if (cosTheta < -1.) 431 { 434 { 432 G4cout 435 G4cout 433 << " -- Warning -- G4LivermorePolarizedCompt 436 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 434 << "cosTheta = " 437 << "cosTheta = " 435 << cosTheta 438 << cosTheta 436 << "; set to -1" 439 << "; set to -1" 437 << G4endl; 440 << G4endl; 438 cosTheta = -1.; 441 cosTheta = -1.; 439 } 442 } 440 // End protection 443 // End protection 441 << 444 >> 445 442 G4double sinTheta = std::sqrt (sinThetaSqr); 446 G4double sinTheta = std::sqrt (sinThetaSqr); 443 447 444 // Protection 448 // Protection 445 if (sinTheta > 1.) 449 if (sinTheta > 1.) 446 { 450 { 447 G4cout 451 G4cout 448 << " -- Warning -- G4LivermorePolarizedCompt 452 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 449 << "sinTheta = " 453 << "sinTheta = " 450 << sinTheta 454 << sinTheta 451 << "; set to 1" 455 << "; set to 1" 452 << G4endl; 456 << G4endl; 453 sinTheta = 1.; 457 sinTheta = 1.; 454 } 458 } 455 if (sinTheta < -1.) 459 if (sinTheta < -1.) 456 { 460 { 457 G4cout 461 G4cout 458 << " -- Warning -- G4LivermorePolarizedCompt 462 << " -- Warning -- G4LivermorePolarizedComptonModel::SampleSecondaries " 459 << "sinTheta = " 463 << "sinTheta = " 460 << sinTheta 464 << sinTheta 461 << "; set to -1" 465 << "; set to -1" 462 << G4endl; 466 << G4endl; 463 sinTheta = -1.; 467 sinTheta = -1.; 464 } 468 } 465 // End protection 469 // End protection 466 470 467 // Check for entanglement and re-sample phi << 468 << 469 const auto* auxInfo << 470 = fParticleChange->GetCurrentTrack()->GetAux << 471 if (auxInfo) { << 472 const auto* entanglementAuxInfo = dynamic_ << 473 if (entanglementAuxInfo) { << 474 auto* clipBoard = dynamic_cast<G4eplusAn << 475 (entanglementAuxInfo->GetEntanglementCli << 476 if (clipBoard) { << 477 // This is an entangled photon from ep << 478 // If this is the first scatter of the << 479 // phi on the clipboard. << 480 // If this is the first scatter of the << 481 // phi of the first scatter of the fir << 482 // theta of the second photon, to samp << 483 if (clipBoard->IsTrack1Measurement()) << 484 // Check we have the relevant track. << 485 // necessary but I want to be sure t << 486 // entangled system are properly pai << 487 // Note: the tracking manager pops t << 488 // will rely on that. (If not, the << 489 // more complicated to ensure we mat << 490 // So our track 1 is clipboard track << 491 if (clipBoard->GetTrackB() == fParti << 492 // This is the first scatter of th << 493 // // Debug << 494 // auto* track1 = fPart << 495 // G4cout << 496 // << "This is the firs << 497 // << "\nTrack: " << tr << 498 // << ", Parent: " << t << 499 // << ", Name: " << cli << 500 // << G4endl; << 501 // // End debug << 502 clipBoard->ResetTrack1Measurement( << 503 // Store cos(theta),phi of first p << 504 clipBoard->SetComptonCosTheta1(cos << 505 clipBoard->SetComptonPhi1(phi); << 506 } << 507 } else if (clipBoard->IsTrack2Measurem << 508 // Check we have the relevant track. << 509 // Remember our track 2 is clipboard << 510 if (clipBoard->GetTrackA() == fParti << 511 // This is the first scatter of th << 512 // // Debug << 513 // auto* track2 = fPart << 514 // G4cout << 515 // << "This is the firs << 516 // << "\nTrack: " << tr << 517 // << ", Parent: " << t << 518 // << ", Name: " << cli << 519 // << G4endl; << 520 // // End debug << 521 clipBoard->ResetTrack2Measurement( << 522 << 523 // Get cos(theta),phi of first pho << 524 const G4double& cosTheta1 = clipBo << 525 const G4double& phi1 = clipBoard-> << 526 // For clarity make aliases for th << 527 const G4double& cosTheta2 = cosThe << 528 G4double& phi2 = phi; << 529 // G4cout << "cosTheta1 << 530 // G4cout << "cosTheta2 << 531 << 532 // Re-sample phi << 533 // Draw the difference of azimutha << 534 // A + B * cos(2*deltaPhi), or rat << 535 // C = A / (A + |B|) and D = B / ( << 536 const G4double sin2Theta1 = 1.-cos << 537 const G4double sin2Theta2 = 1.-cos << 538 << 539 // Pryce and Ward, Nature No 4065 << 540 auto* g4Pow = G4Pow::GetInstance() << 541 const G4double A = << 542 ((g4Pow->powN(1.-cosTheta1,3))+2.) << 543 ((g4Pow->powN(2.-cosTheta1,3)*g4Po << 544 const G4double B = -(sin2Theta1*si << 545 ((g4Pow->powN(2.-cosTheta1,2)*g4Po << 546 << 547 // // Snyder et al, Physical Re << 548 // // (This is an alternative f << 549 // const G4double& k0 = gammaEn << 550 // const G4double k1 = k0/(2.-c << 551 // const G4double k2 = k0/(2.-c << 552 // const G4double gamma1 = k1/k << 553 // const G4double gamma2 = k2/k << 554 // const G4double A1 = gamma1*g << 555 // const G4double B1 = 2.*sin2T << 556 // // That's A1 + B1*sin2(delta << 557 // const G4double A = A1 + 0.5* << 558 // const G4double B = -0.5*B1; << 559 << 560 const G4double maxValue = A + std: << 561 const G4double C = A / maxValue; << 562 const G4double D = B / maxValue; << 563 // G4cout << "A,B,C,D: " << A < << 564 << 565 // Sample delta phi << 566 G4double deltaPhi; << 567 const G4int maxCount = 999999; << 568 G4int iCount = 0; << 569 for (; iCount < maxCount; ++iCount << 570 deltaPhi = twopi * G4UniformRand << 571 if (G4UniformRand() < C + D * co << 572 } << 573 if (iCount >= maxCount ) { << 574 G4cout << "G4LivermorePolarizedC << 575 << "Re-sampled delta phi not fou << 576 << " tries - carrying on anyway. << 577 } << 578 << 579 // Thus, the desired second photon << 580 phi2 = deltaPhi - phi1 + halfpi; << 581 // The minus sign is in above stat << 582 // annihilation photons are in opp << 583 // are measured in the opposite di << 584 // halfpi is added for the followi << 585 // In this function phi is relativ << 586 // SystemOfRefChange below. We kno << 587 // the polarisations of the two an << 588 // to each other, i.e., halfpi dif << 589 // Furthermore, only sin(phi) and << 590 // need to place any range constra << 591 // if (phi2 > pi) { << 592 // phi2 -= twopi; << 593 // } << 594 // if (phi2 < -pi) { << 595 // phi2 += twopi; << 596 // } << 597 } << 598 } << 599 } << 600 } << 601 } << 602 << 603 // End of entanglement << 604 471 605 G4double dirx = sinTheta*std::cos(phi); 472 G4double dirx = sinTheta*std::cos(phi); 606 G4double diry = sinTheta*std::sin(phi); 473 G4double diry = sinTheta*std::sin(phi); 607 G4double dirz = cosTheta ; 474 G4double dirz = cosTheta ; 608 << 475 >> 476 609 // oneCosT , eom 477 // oneCosT , eom 610 478 611 // Doppler broadening - Method based on: 479 // Doppler broadening - Method based on: 612 // Y. Namito, S. Ban and H. Hirayama, 480 // Y. Namito, S. Ban and H. Hirayama, 613 // "Implementation of the Doppler Broadening 481 // "Implementation of the Doppler Broadening of a Compton-Scattered Photon Into the EGS4 Code" 614 // NIM A 349, pp. 489-494, 1994 482 // NIM A 349, pp. 489-494, 1994 615 483 616 // Maximum number of sampling iterations 484 // Maximum number of sampling iterations >> 485 617 static G4int maxDopplerIterations = 1000; 486 static G4int maxDopplerIterations = 1000; 618 G4double bindingE = 0.; 487 G4double bindingE = 0.; 619 G4double photonEoriginal = epsilon * gammaEn 488 G4double photonEoriginal = epsilon * gammaEnergy0; 620 G4double photonE = -1.; 489 G4double photonE = -1.; 621 G4int iteration = 0; 490 G4int iteration = 0; 622 G4double eMax = gammaEnergy0; 491 G4double eMax = gammaEnergy0; 623 492 624 G4int shellIdx = 0; 493 G4int shellIdx = 0; 625 494 626 if (verboseLevel > 3) { 495 if (verboseLevel > 3) { 627 G4cout << "Started loop to sample broading 496 G4cout << "Started loop to sample broading" << G4endl; 628 } 497 } 629 498 630 do 499 do 631 { 500 { 632 iteration++; 501 iteration++; 633 // Select shell based on shell occupancy 502 // Select shell based on shell occupancy 634 shellIdx = shellData->SelectRandomShell( 503 shellIdx = shellData->SelectRandomShell(Z); 635 bindingE = shellData->BindingEnergy(Z,sh 504 bindingE = shellData->BindingEnergy(Z,shellIdx); 636 505 637 if (verboseLevel > 3) { 506 if (verboseLevel > 3) { 638 G4cout << "Shell ID= " << shellIdx 507 G4cout << "Shell ID= " << shellIdx 639 << " Ebind(keV)= " << bindingE/keV << 508 << " Ebind(keV)= " << bindingE/keV << G4endl; 640 } 509 } 641 eMax = gammaEnergy0 - bindingE; 510 eMax = gammaEnergy0 - bindingE; 642 511 643 // Randomly sample bound electron moment 512 // Randomly sample bound electron momentum (memento: the data set is in Atomic Units) 644 G4double pSample = profileData->RandomSe 513 G4double pSample = profileData->RandomSelectMomentum(Z,shellIdx); 645 514 646 if (verboseLevel > 3) { 515 if (verboseLevel > 3) { 647 G4cout << "pSample= " << pSample << G4e 516 G4cout << "pSample= " << pSample << G4endl; 648 } 517 } 649 // Rescale from atomic units 518 // Rescale from atomic units 650 G4double pDoppler = pSample * fine_struc 519 G4double pDoppler = pSample * fine_structure_const; 651 G4double pDoppler2 = pDoppler * pDoppler 520 G4double pDoppler2 = pDoppler * pDoppler; 652 G4double var2 = 1. + onecost * E0_m; 521 G4double var2 = 1. + onecost * E0_m; 653 G4double var3 = var2*var2 - pDoppler2; 522 G4double var3 = var2*var2 - pDoppler2; 654 G4double var4 = var2 - pDoppler2 * cosTh 523 G4double var4 = var2 - pDoppler2 * cosTheta; 655 G4double var = var4*var4 - var3 + pDoppl 524 G4double var = var4*var4 - var3 + pDoppler2 * var3; 656 if (var > 0.) 525 if (var > 0.) 657 { 526 { 658 G4double varSqrt = std::sqrt(var); 527 G4double varSqrt = std::sqrt(var); 659 G4double scale = gammaEnergy0 / var3; 528 G4double scale = gammaEnergy0 / var3; 660 // Random select either root 529 // Random select either root 661 if (G4UniformRand() < 0.5) photonE = (var4 530 if (G4UniformRand() < 0.5) photonE = (var4 - varSqrt) * scale; 662 else photonE = (var4 + varSqrt) * scale; 531 else photonE = (var4 + varSqrt) * scale; 663 } 532 } 664 else 533 else 665 { 534 { 666 photonE = -1.; 535 photonE = -1.; 667 } 536 } 668 } while ( iteration <= maxDopplerIterations 537 } while ( iteration <= maxDopplerIterations && 669 (photonE < 0. || photonE > eMax || phot 538 (photonE < 0. || photonE > eMax || photonE < eMax*G4UniformRand()) ); >> 539 //while (iteration <= maxDopplerIterations && photonE > eMax); ??? >> 540 670 541 671 // End of recalculation of photon energy wit 542 // End of recalculation of photon energy with Doppler broadening 672 // Revert to original if maximum number of i 543 // Revert to original if maximum number of iterations threshold has been reached 673 if (iteration >= maxDopplerIterations) 544 if (iteration >= maxDopplerIterations) 674 { 545 { 675 photonE = photonEoriginal; 546 photonE = photonEoriginal; 676 bindingE = 0.; 547 bindingE = 0.; 677 } 548 } 678 549 679 gammaEnergy1 = photonE; 550 gammaEnergy1 = photonE; 680 551 681 // 552 // 682 // update G4VParticleChange for the scattere 553 // update G4VParticleChange for the scattered photon 683 // 554 // >> 555 >> 556 >> 557 >> 558 // gammaEnergy1 = epsilon*gammaEnergy0; >> 559 >> 560 684 // New polarization 561 // New polarization >> 562 685 G4ThreeVector gammaPolarization1 = SetNewPol 563 G4ThreeVector gammaPolarization1 = SetNewPolarization(epsilon, 686 sinThetaSqr, 564 sinThetaSqr, 687 phi, 565 phi, 688 cosTheta); 566 cosTheta); 689 567 690 // Set new direction 568 // Set new direction 691 G4ThreeVector tmpDirection1( dirx,diry,dirz 569 G4ThreeVector tmpDirection1( dirx,diry,dirz ); 692 gammaDirection1 = tmpDirection1; 570 gammaDirection1 = tmpDirection1; 693 571 694 // Change reference frame. 572 // Change reference frame. >> 573 695 SystemOfRefChange(gammaDirection0,gammaDirec 574 SystemOfRefChange(gammaDirection0,gammaDirection1, 696 gammaPolarization0,gammaPolarization1) 575 gammaPolarization0,gammaPolarization1); 697 576 698 if (gammaEnergy1 > 0.) 577 if (gammaEnergy1 > 0.) 699 { 578 { 700 fParticleChange->SetProposedKineticEnerg 579 fParticleChange->SetProposedKineticEnergy( gammaEnergy1 ) ; 701 fParticleChange->ProposeMomentumDirectio 580 fParticleChange->ProposeMomentumDirection( gammaDirection1 ); 702 fParticleChange->ProposePolarization( ga 581 fParticleChange->ProposePolarization( gammaPolarization1 ); 703 } 582 } 704 else 583 else 705 { 584 { 706 gammaEnergy1 = 0.; 585 gammaEnergy1 = 0.; 707 fParticleChange->SetProposedKineticEnerg 586 fParticleChange->SetProposedKineticEnergy(0.) ; 708 fParticleChange->ProposeTrackStatus(fSto 587 fParticleChange->ProposeTrackStatus(fStopAndKill); 709 } 588 } 710 589 711 // 590 // 712 // kinematic of the scattered electron 591 // kinematic of the scattered electron 713 // 592 // >> 593 714 G4double ElecKineEnergy = gammaEnergy0 - gam 594 G4double ElecKineEnergy = gammaEnergy0 - gammaEnergy1 -bindingE; 715 595 716 // SI -protection against negative final ene 596 // SI -protection against negative final energy: no e- is created 717 // like in G4LivermoreComptonModel.cc 597 // like in G4LivermoreComptonModel.cc 718 if(ElecKineEnergy < 0.0) { 598 if(ElecKineEnergy < 0.0) { 719 fParticleChange->ProposeLocalEnergyDeposit 599 fParticleChange->ProposeLocalEnergyDeposit(gammaEnergy0 - gammaEnergy1); 720 return; 600 return; 721 } 601 } 722 602 >> 603 // SI - Removed range test >> 604 723 G4double ElecMomentum = std::sqrt(ElecKineEn 605 G4double ElecMomentum = std::sqrt(ElecKineEnergy*(ElecKineEnergy+2.*electron_mass_c2)); 724 606 725 G4ThreeVector ElecDirection((gammaEnergy0 * 607 G4ThreeVector ElecDirection((gammaEnergy0 * gammaDirection0 - 726 gammaEnergy1 * gammaDirection1) * ( 608 gammaEnergy1 * gammaDirection1) * (1./ElecMomentum)); 727 609 728 G4DynamicParticle* dp = << 610 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),ElecDirection.unit(),ElecKineEnergy) ; 729 new G4DynamicParticle (G4Electron::Electro << 730 fvect->push_back(dp); 611 fvect->push_back(dp); 731 612 732 // sample deexcitation 613 // sample deexcitation 733 // << 614 // >> 615 734 if (verboseLevel > 3) { 616 if (verboseLevel > 3) { 735 G4cout << "Started atomic de-excitation " 617 G4cout << "Started atomic de-excitation " << fAtomDeexcitation << G4endl; 736 } 618 } 737 619 738 if(fAtomDeexcitation && iteration < maxDoppl 620 if(fAtomDeexcitation && iteration < maxDopplerIterations) { 739 G4int index = couple->GetIndex(); 621 G4int index = couple->GetIndex(); 740 if(fAtomDeexcitation->CheckDeexcitationAct 622 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) { 741 std::size_t nbefore = fvect->size(); << 623 size_t nbefore = fvect->size(); 742 G4AtomicShellEnumerator as = G4AtomicShe 624 G4AtomicShellEnumerator as = G4AtomicShellEnumerator(shellIdx); 743 const G4AtomicShell* shell = fAtomDeexci 625 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as); 744 fAtomDeexcitation->GenerateParticles(fve 626 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index); 745 std::size_t nafter = fvect->size(); << 627 size_t nafter = fvect->size(); 746 if(nafter > nbefore) { 628 if(nafter > nbefore) { 747 for (std::size_t i=nbefore; i<nafter; ++i) { << 629 for (size_t i=nbefore; i<nafter; ++i) { 748 //Check if there is enough residual energy 630 //Check if there is enough residual energy 749 if (bindingE >= ((*fvect)[i])->GetKineticE 631 if (bindingE >= ((*fvect)[i])->GetKineticEnergy()) 750 { 632 { 751 //Ok, this is a valid secondary: 633 //Ok, this is a valid secondary: keep it 752 bindingE -= ((*fvect)[i])->GetKineticE 634 bindingE -= ((*fvect)[i])->GetKineticEnergy(); 753 } 635 } 754 else 636 else 755 { 637 { 756 //Invalid secondary: not enough energy 638 //Invalid secondary: not enough energy to create it! 757 //Keep its energy in the local deposit 639 //Keep its energy in the local deposit 758 delete (*fvect)[i]; 640 delete (*fvect)[i]; 759 (*fvect)[i]=0; 641 (*fvect)[i]=0; 760 } 642 } 761 } 643 } 762 } 644 } 763 } 645 } 764 } 646 } 765 //This should never happen 647 //This should never happen 766 if(bindingE < 0.0) 648 if(bindingE < 0.0) 767 G4Exception("G4LivermoreComptonModel::Samp 649 G4Exception("G4LivermoreComptonModel::SampleSecondaries()", 768 "em2050",FatalException,"Negative local en 650 "em2050",FatalException,"Negative local energy deposit"); 769 651 770 fParticleChange->ProposeLocalEnergyDeposit(b 652 fParticleChange->ProposeLocalEnergyDeposit(bindingE); 771 653 772 } 654 } 773 655 774 //....oooOO0OOooo........oooOO0OOooo........oo 656 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 775 657 776 G4double G4LivermorePolarizedComptonModel::Set 658 G4double G4LivermorePolarizedComptonModel::SetPhi(G4double energyRate, 777 G4double sinSqrTh) 659 G4double sinSqrTh) 778 { 660 { 779 G4double rand1; 661 G4double rand1; 780 G4double rand2; 662 G4double rand2; 781 G4double phiProbability; 663 G4double phiProbability; 782 G4double phi; 664 G4double phi; 783 G4double a, b; 665 G4double a, b; 784 666 785 do 667 do 786 { 668 { 787 rand1 = G4UniformRand(); 669 rand1 = G4UniformRand(); 788 rand2 = G4UniformRand(); 670 rand2 = G4UniformRand(); 789 phiProbability=0.; 671 phiProbability=0.; 790 phi = twopi*rand1; 672 phi = twopi*rand1; 791 673 792 a = 2*sinSqrTh; 674 a = 2*sinSqrTh; 793 b = energyRate + 1/energyRate; 675 b = energyRate + 1/energyRate; 794 676 795 phiProbability = 1 - (a/b)*(std::cos(phi 677 phiProbability = 1 - (a/b)*(std::cos(phi)*std::cos(phi)); >> 678 >> 679 >> 680 796 } 681 } 797 while ( rand2 > phiProbability ); 682 while ( rand2 > phiProbability ); 798 return phi; 683 return phi; 799 } 684 } 800 685 801 686 802 //....oooOO0OOooo........oooOO0OOooo........oo 687 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 688 804 G4ThreeVector G4LivermorePolarizedComptonModel 689 G4ThreeVector G4LivermorePolarizedComptonModel::SetPerpendicularVector(G4ThreeVector& a) 805 { 690 { 806 G4double dx = a.x(); 691 G4double dx = a.x(); 807 G4double dy = a.y(); 692 G4double dy = a.y(); 808 G4double dz = a.z(); 693 G4double dz = a.z(); 809 G4double x = dx < 0.0 ? -dx : dx; 694 G4double x = dx < 0.0 ? -dx : dx; 810 G4double y = dy < 0.0 ? -dy : dy; 695 G4double y = dy < 0.0 ? -dy : dy; 811 G4double z = dz < 0.0 ? -dz : dz; 696 G4double z = dz < 0.0 ? -dz : dz; 812 if (x < y) { 697 if (x < y) { 813 return x < z ? G4ThreeVector(-dy,dx,0) : G 698 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy); 814 }else{ 699 }else{ 815 return y < z ? G4ThreeVector(dz,0,-dx) : G 700 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0); 816 } 701 } 817 } 702 } 818 703 819 //....oooOO0OOooo........oooOO0OOooo........oo 704 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 820 705 821 G4ThreeVector G4LivermorePolarizedComptonModel 706 G4ThreeVector G4LivermorePolarizedComptonModel::GetRandomPolarization(G4ThreeVector& direction0) 822 { 707 { 823 G4ThreeVector d0 = direction0.unit(); 708 G4ThreeVector d0 = direction0.unit(); 824 G4ThreeVector a1 = SetPerpendicularVector(d0 709 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal 825 G4ThreeVector a0 = a1.unit(); // unit vector 710 G4ThreeVector a0 = a1.unit(); // unit vector 826 711 827 G4double rand1 = G4UniformRand(); 712 G4double rand1 = G4UniformRand(); 828 713 829 G4double angle = twopi*rand1; // random pola 714 G4double angle = twopi*rand1; // random polar angle 830 G4ThreeVector b0 = d0.cross(a0); // cross pr 715 G4ThreeVector b0 = d0.cross(a0); // cross product 831 716 832 G4ThreeVector c; 717 G4ThreeVector c; 833 718 834 c.setX(std::cos(angle)*(a0.x())+std::sin(ang 719 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x()); 835 c.setY(std::cos(angle)*(a0.y())+std::sin(ang 720 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y()); 836 c.setZ(std::cos(angle)*(a0.z())+std::sin(ang 721 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z()); 837 722 838 G4ThreeVector c0 = c.unit(); 723 G4ThreeVector c0 = c.unit(); 839 724 840 return c0; 725 return c0; >> 726 841 } 727 } 842 728 843 //....oooOO0OOooo........oooOO0OOooo........oo 729 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 844 730 845 G4ThreeVector G4LivermorePolarizedComptonModel 731 G4ThreeVector G4LivermorePolarizedComptonModel::GetPerpendicularPolarization 846 (const G4ThreeVector& gammaDirection, const G4 732 (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const 847 { 733 { >> 734 848 // 735 // 849 // The polarization of a photon is always pe 736 // The polarization of a photon is always perpendicular to its momentum direction. 850 // Therefore this function removes those vec 737 // Therefore this function removes those vector component of gammaPolarization, which 851 // points in direction of gammaDirection 738 // points in direction of gammaDirection 852 // 739 // 853 // Mathematically we search the projection o 740 // Mathematically we search the projection of the vector a on the plane E, where n is the 854 // plains normal vector. 741 // plains normal vector. 855 // The basic equation can be found in each g 742 // The basic equation can be found in each geometry book (e.g. Bronstein): 856 // p = a - (a o n)/(n o n)*n 743 // p = a - (a o n)/(n o n)*n 857 744 858 return gammaPolarization - gammaPolarization 745 return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection; 859 } 746 } 860 747 861 //....oooOO0OOooo........oooOO0OOooo........oo 748 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 862 749 863 G4ThreeVector G4LivermorePolarizedComptonModel 750 G4ThreeVector G4LivermorePolarizedComptonModel::SetNewPolarization(G4double epsilon, 864 G4double sinSqrTh, 751 G4double sinSqrTh, 865 G4double phi, 752 G4double phi, 866 G4double costheta) 753 G4double costheta) 867 { 754 { 868 G4double rand1; 755 G4double rand1; 869 G4double rand2; 756 G4double rand2; 870 G4double cosPhi = std::cos(phi); 757 G4double cosPhi = std::cos(phi); 871 G4double sinPhi = std::sin(phi); 758 G4double sinPhi = std::sin(phi); 872 G4double sinTheta = std::sqrt(sinSqrTh); 759 G4double sinTheta = std::sqrt(sinSqrTh); 873 G4double cosSqrPhi = cosPhi*cosPhi; 760 G4double cosSqrPhi = cosPhi*cosPhi; 874 // G4double cossqrth = 1.-sinSqrTh; 761 // G4double cossqrth = 1.-sinSqrTh; 875 // G4double sinsqrphi = sinPhi*sinPhi; 762 // G4double sinsqrphi = sinPhi*sinPhi; 876 G4double normalisation = std::sqrt(1. - cosS 763 G4double normalisation = std::sqrt(1. - cosSqrPhi*sinSqrTh); 877 764 >> 765 878 // Determination of Theta 766 // Determination of Theta >> 767 >> 768 // ---- MGP ---- Commented out the following 3 lines to avoid compilation >> 769 // warnings (unused variables) >> 770 // G4double thetaProbability; 879 G4double theta; 771 G4double theta; >> 772 // G4double a, b; >> 773 // G4double cosTheta; >> 774 >> 775 /* >> 776 >> 777 depaola method >> 778 >> 779 do >> 780 { >> 781 rand1 = G4UniformRand(); >> 782 rand2 = G4UniformRand(); >> 783 thetaProbability=0.; >> 784 theta = twopi*rand1; >> 785 a = 4*normalisation*normalisation; >> 786 b = (epsilon + 1/epsilon) - 2; >> 787 thetaProbability = (b + a*std::cos(theta)*std::cos(theta))/(a+b); >> 788 cosTheta = std::cos(theta); >> 789 } >> 790 while ( rand2 > thetaProbability ); >> 791 >> 792 G4double cosBeta = cosTheta; >> 793 >> 794 */ >> 795 880 796 881 // Dan Xu method (IEEE TNS, 52, 1160 (2005)) 797 // Dan Xu method (IEEE TNS, 52, 1160 (2005)) >> 798 882 rand1 = G4UniformRand(); 799 rand1 = G4UniformRand(); 883 rand2 = G4UniformRand(); 800 rand2 = G4UniformRand(); 884 801 885 if (rand1<(epsilon+1.0/epsilon-2)/(2.0*(epsi 802 if (rand1<(epsilon+1.0/epsilon-2)/(2.0*(epsilon+1.0/epsilon)-4.0*sinSqrTh*cosSqrPhi)) 886 { 803 { 887 if (rand2<0.5) 804 if (rand2<0.5) 888 theta = pi/2.0; 805 theta = pi/2.0; 889 else 806 else 890 theta = 3.0*pi/2.0; 807 theta = 3.0*pi/2.0; 891 } 808 } 892 else 809 else 893 { 810 { 894 if (rand2<0.5) 811 if (rand2<0.5) 895 theta = 0; 812 theta = 0; 896 else 813 else 897 theta = pi; 814 theta = pi; 898 } 815 } 899 G4double cosBeta = std::cos(theta); 816 G4double cosBeta = std::cos(theta); 900 G4double sinBeta = std::sqrt(1-cosBeta*cosBe 817 G4double sinBeta = std::sqrt(1-cosBeta*cosBeta); 901 818 902 G4ThreeVector gammaPolarization1; 819 G4ThreeVector gammaPolarization1; 903 820 904 G4double xParallel = normalisation*cosBeta; 821 G4double xParallel = normalisation*cosBeta; 905 G4double yParallel = -(sinSqrTh*cosPhi*sinPh 822 G4double yParallel = -(sinSqrTh*cosPhi*sinPhi)*cosBeta/normalisation; 906 G4double zParallel = -(costheta*sinTheta*cos 823 G4double zParallel = -(costheta*sinTheta*cosPhi)*cosBeta/normalisation; 907 G4double xPerpendicular = 0.; 824 G4double xPerpendicular = 0.; 908 G4double yPerpendicular = (costheta)*sinBeta 825 G4double yPerpendicular = (costheta)*sinBeta/normalisation; 909 G4double zPerpendicular = -(sinTheta*sinPhi) 826 G4double zPerpendicular = -(sinTheta*sinPhi)*sinBeta/normalisation; 910 827 911 G4double xTotal = (xParallel + xPerpendicula 828 G4double xTotal = (xParallel + xPerpendicular); 912 G4double yTotal = (yParallel + yPerpendicula 829 G4double yTotal = (yParallel + yPerpendicular); 913 G4double zTotal = (zParallel + zPerpendicula 830 G4double zTotal = (zParallel + zPerpendicular); 914 831 915 gammaPolarization1.setX(xTotal); 832 gammaPolarization1.setX(xTotal); 916 gammaPolarization1.setY(yTotal); 833 gammaPolarization1.setY(yTotal); 917 gammaPolarization1.setZ(zTotal); 834 gammaPolarization1.setZ(zTotal); 918 835 919 return gammaPolarization1; 836 return gammaPolarization1; >> 837 920 } 838 } 921 839 922 //....oooOO0OOooo........oooOO0OOooo........oo 840 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 923 841 924 void G4LivermorePolarizedComptonModel::SystemO 842 void G4LivermorePolarizedComptonModel::SystemOfRefChange(G4ThreeVector& direction0, 925 G4ThreeVector& direction1, 843 G4ThreeVector& direction1, 926 G4ThreeVector& polarization0, 844 G4ThreeVector& polarization0, 927 G4ThreeVector& polarization1) 845 G4ThreeVector& polarization1) 928 { 846 { 929 // direction0 is the original photon directi 847 // direction0 is the original photon direction ---> z 930 // polarization0 is the original photon pola 848 // polarization0 is the original photon polarization ---> x 931 // need to specify y axis in the real refere 849 // need to specify y axis in the real reference frame ---> y 932 G4ThreeVector Axis_Z0 = direction0.unit(); 850 G4ThreeVector Axis_Z0 = direction0.unit(); 933 G4ThreeVector Axis_X0 = polarization0.unit() 851 G4ThreeVector Axis_X0 = polarization0.unit(); 934 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_ 852 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed; 935 853 936 G4double direction_x = direction1.getX(); 854 G4double direction_x = direction1.getX(); 937 G4double direction_y = direction1.getY(); 855 G4double direction_y = direction1.getY(); 938 G4double direction_z = direction1.getZ(); 856 G4double direction_z = direction1.getZ(); 939 857 940 direction1 = (direction_x*Axis_X0 + directio 858 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit(); 941 G4double polarization_x = polarization1.getX 859 G4double polarization_x = polarization1.getX(); 942 G4double polarization_y = polarization1.getY 860 G4double polarization_y = polarization1.getY(); 943 G4double polarization_z = polarization1.getZ 861 G4double polarization_z = polarization1.getZ(); 944 862 945 polarization1 = (polarization_x*Axis_X0 + po 863 polarization1 = (polarization_x*Axis_X0 + polarization_y*Axis_Y0 + polarization_z*Axis_Z0).unit(); 946 864 947 } 865 } 948 866 949 867 950 //....oooOO0OOooo........oooOO0OOooo........oo 868 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 951 //....oooOO0OOooo........oooOO0OOooo........oo 869 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 952 870 >> 871 #include "G4AutoLock.hh" >> 872 namespace { G4Mutex LivermorePolarizedComptonModelMutex = G4MUTEX_INITIALIZER; } >> 873 953 void 874 void 954 G4LivermorePolarizedComptonModel::InitialiseFo 875 G4LivermorePolarizedComptonModel::InitialiseForElement(const G4ParticleDefinition*, 955 G4int Z) 876 G4int Z) 956 { 877 { 957 G4AutoLock l(&LivermorePolarizedComptonModel 878 G4AutoLock l(&LivermorePolarizedComptonModelMutex); >> 879 // G4cout << "G4LivermoreComptonModel::InitialiseForElement Z= " >> 880 // << Z << G4endl; 958 if(!data[Z]) { ReadData(Z); } 881 if(!data[Z]) { ReadData(Z); } 959 l.unlock(); 882 l.unlock(); 960 } 883 } 961 884