Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc (Version 10.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Author: Sebastien Incerti                       26 // Author: Sebastien Incerti
 27 //         22 January 2012                         27 //         22 January 2012
 28 //         on base of G4LivermoreNuclearGammaC     28 //         on base of G4LivermoreNuclearGammaConversionModel (original version)
 29 //         and G4LivermoreRayleighModel (MT ve     29 //         and G4LivermoreRayleighModel (MT version)
 30                                                    30 
 31 #include "G4LivermoreNuclearGammaConversionMod     31 #include "G4LivermoreNuclearGammaConversionModel.hh"
 32 #include "G4PhysicalConstants.hh"                  32 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"                      33 #include "G4SystemOfUnits.hh"
 34 #include "G4Log.hh"                                34 #include "G4Log.hh"
 35 #include "G4Exp.hh"                                35 #include "G4Exp.hh"
 36 #include "G4AutoLock.hh"                       << 
 37                                                    36 
 38 //....oooOO0OOooo........oooOO0OOooo........oo     37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 39                                                    38 
 40 using namespace std;                               39 using namespace std;
 41 namespace { G4Mutex LivermoreNuclearGammaConve << 
 42                                                    40 
 43 //....oooOO0OOooo........oooOO0OOooo........oo     41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 44                                                    42 
 45 G4PhysicsFreeVector* G4LivermoreNuclearGammaCo <<  43 G4int G4LivermoreNuclearGammaConversionModel::maxZ = 100;
                                                   >>  44 G4LPhysicsFreeVector* G4LivermoreNuclearGammaConversionModel::data[] = {0};
 46                                                    45 
 47 G4LivermoreNuclearGammaConversionModel::G4Live     46 G4LivermoreNuclearGammaConversionModel::G4LivermoreNuclearGammaConversionModel
 48 (const G4ParticleDefinition*, const G4String&      47 (const G4ParticleDefinition*, const G4String& nam)
 49   :G4VEmModel(nam),smallEnergy(2.*MeV),        <<  48 :G4VEmModel(nam),isInitialised(false),smallEnergy(2.*MeV)
 50    isInitialised(false)                        << 
 51 {                                                  49 {
 52   fParticleChange = nullptr;                   <<  50   fParticleChange = 0;
 53                                                    51 
 54   lowEnergyLimit = 2.0*electron_mass_c2;           52   lowEnergyLimit = 2.0*electron_mass_c2;
 55                                                    53      
 56   verboseLevel= 0;                                 54   verboseLevel= 0;
 57   // Verbosity scale for debugging purposes:       55   // Verbosity scale for debugging purposes:
 58   // 0 = nothing                                   56   // 0 = nothing 
 59   // 1 = calculation of cross sections, file o     57   // 1 = calculation of cross sections, file openings...
 60   // 2 = entering in methods                       58   // 2 = entering in methods
 61                                                    59 
 62   if(verboseLevel > 0)                             60   if(verboseLevel > 0) 
 63   {                                                61   {
 64     G4cout << "G4LivermoreNuclearGammaConversi     62     G4cout << "G4LivermoreNuclearGammaConversionModel is constructed " << G4endl;
 65   }                                                63   }
 66 }                                                  64 }
 67                                                    65 
 68 //....oooOO0OOooo........oooOO0OOooo........oo     66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 69                                                    67 
 70 G4LivermoreNuclearGammaConversionModel::~G4Liv     68 G4LivermoreNuclearGammaConversionModel::~G4LivermoreNuclearGammaConversionModel()
 71 {                                                  69 {
 72   if(IsMaster()) {                                 70   if(IsMaster()) {
 73     for(G4int i=0; i<maxZ; ++i) {                  71     for(G4int i=0; i<maxZ; ++i) {
 74       if(data[i]) {                                72       if(data[i]) { 
 75   delete data[i];                                  73   delete data[i];
 76   data[i] = 0;                                     74   data[i] = 0;
 77       }                                            75       }
 78     }                                              76     }
 79   }                                                77   }
 80 }                                                  78 }
 81                                                    79 
 82 //....oooOO0OOooo........oooOO0OOooo........oo     80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 83                                                    81 
 84 void G4LivermoreNuclearGammaConversionModel::I     82 void G4LivermoreNuclearGammaConversionModel::Initialise(
 85                                 const G4Partic     83                                 const G4ParticleDefinition* particle,
 86         const G4DataVector& cuts)                  84         const G4DataVector& cuts)
 87 {                                                  85 {
                                                   >>  86 
 88   if (verboseLevel > 1)                            87   if (verboseLevel > 1) 
 89     {                                          <<  88   {
 90     G4cout << "Calling Initialise() of G4Liver     89     G4cout << "Calling Initialise() of G4LivermoreNuclearGammaConversionModel." 
 91      << G4endl                                     90      << G4endl
 92      << "Energy range: "                           91      << "Energy range: "
 93      << LowEnergyLimit() / MeV << " MeV - "        92      << LowEnergyLimit() / MeV << " MeV - "
 94      << HighEnergyLimit() / GeV << " GeV"          93      << HighEnergyLimit() / GeV << " GeV"
 95      << G4endl;                                    94      << G4endl;
 96     }                                          <<  95   }
 97                                                    96 
 98   if(IsMaster())                                   97   if(IsMaster()) 
 99   {                                                98   {
100                                                    99 
101     // Initialise element selector                100     // Initialise element selector
                                                   >> 101 
102     InitialiseElementSelectors(particle, cuts)    102     InitialiseElementSelectors(particle, cuts);
103                                                   103 
104     // Access to elements                      << 104     // Access to elements
105     const char* path = G4FindDataDir("G4LEDATA << 105   
                                                   >> 106     char* path = std::getenv("G4LEDATA");
106                                                   107 
107     G4ProductionCutsTable* theCoupleTable =       108     G4ProductionCutsTable* theCoupleTable =
108       G4ProductionCutsTable::GetProductionCuts    109       G4ProductionCutsTable::GetProductionCutsTable();
109                                                   110   
110     G4int numOfCouples = (G4int)theCoupleTable << 111     G4int numOfCouples = theCoupleTable->GetTableSize();
111                                                   112   
112     for(G4int i=0; i<numOfCouples; ++i)           113     for(G4int i=0; i<numOfCouples; ++i) 
113     {                                             114     {
114       const G4Material* material =                115       const G4Material* material = 
115         theCoupleTable->GetMaterialCutsCouple(    116         theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
116       const G4ElementVector* theElementVector     117       const G4ElementVector* theElementVector = material->GetElementVector();
117       std::size_t nelm = material->GetNumberOf << 118       G4int nelm = material->GetNumberOfElements();
118                                                   119     
119       for (std::size_t j=0; j<nelm; ++j)       << 120       for (G4int j=0; j<nelm; ++j) 
120       {                                        << 121   {
121         G4int Z = (G4int)(*theElementVector)[j << 122     G4int Z = (G4int)(*theElementVector)[j]->GetZ();
122         if(Z < 1)          { Z = 1; }          << 123     if(Z < 1)          { Z = 1; }
123         else if(Z > maxZ)  { Z = maxZ; }       << 124     else if(Z > maxZ)  { Z = maxZ; }
124         if(!data[Z]) { ReadData(Z, path); }    << 125     if(!data[Z]) { ReadData(Z, path); }
125       }                                        << 126   }
126     }                                             127     }
127   }                                               128   }
128   if(isInitialised) { return; }                   129   if(isInitialised) { return; }
129   fParticleChange = GetParticleChangeForGamma(    130   fParticleChange = GetParticleChangeForGamma();
130   isInitialised = true;                           131   isInitialised = true;
131 }                                                 132 }
132                                                   133 
133 //....oooOO0OOooo........oooOO0OOooo........oo    134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
134                                                   135 
135 void G4LivermoreNuclearGammaConversionModel::I    136 void G4LivermoreNuclearGammaConversionModel::InitialiseLocal(
136      const G4ParticleDefinition*, G4VEmModel*     137      const G4ParticleDefinition*, G4VEmModel* masterModel)
137 {                                                 138 {
138   SetElementSelectors(masterModel->GetElementS    139   SetElementSelectors(masterModel->GetElementSelectors());
139 }                                                 140 }
140                                                   141 
141 //....oooOO0OOooo........oooOO0OOooo........oo    142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142                                                   143 
143 G4double                                          144 G4double 
144 G4LivermoreNuclearGammaConversionModel::MinPri    145 G4LivermoreNuclearGammaConversionModel::MinPrimaryEnergy(const G4Material*,
145               const G4ParticleDefinition*,        146               const G4ParticleDefinition*,
146               G4double)                           147               G4double)
147 {                                                 148 {
148   return lowEnergyLimit;                          149   return lowEnergyLimit;
149 }                                                 150 }
150                                                   151 
151 //....oooOO0OOooo........oooOO0OOooo........oo    152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
152                                                   153 
153 void G4LivermoreNuclearGammaConversionModel::R    154 void G4LivermoreNuclearGammaConversionModel::ReadData(size_t Z, const char* path)
154 {                                                 155 {
155   if (verboseLevel > 1)                           156   if (verboseLevel > 1) 
156   {                                               157   {
157     G4cout << "Calling ReadData() of G4Livermo    158     G4cout << "Calling ReadData() of G4LivermoreNuclearGammaConversionModel" 
158      << G4endl;                                   159      << G4endl;
159   }                                               160   }
160                                                   161 
161                                                   162     
162   if(data[Z]) { return; }                         163   if(data[Z]) { return; }
163                                                   164   
164   const char* datadir = path;                     165   const char* datadir = path;
165                                                   166 
166   if(!datadir)                                    167   if(!datadir) 
167   {                                               168   {
168     datadir = G4FindDataDir("G4LEDATA");       << 169     datadir = std::getenv("G4LEDATA");
169     if(!datadir)                                  170     if(!datadir) 
170     {                                             171     {
171       G4Exception("G4LivermoreNuclearGammaConv    172       G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
172       "em0006",FatalException,                    173       "em0006",FatalException,
173       "Environment variable G4LEDATA not defin    174       "Environment variable G4LEDATA not defined");
174       return;                                     175       return;
175     }                                             176     }
176   }                                               177   }
177                                                   178 
178   data[Z] = new G4PhysicsFreeVector(0,/*spline << 179   //
                                                   >> 180   
                                                   >> 181   data[Z] = new G4LPhysicsFreeVector();
                                                   >> 182   
                                                   >> 183   //
179                                                   184   
180   std::ostringstream ost;                         185   std::ostringstream ost;
181   ost << datadir << "/livermore/pairdata/pp-pa    186   ost << datadir << "/livermore/pairdata/pp-pair-cs-" << Z <<".dat";
182   std::ifstream fin(ost.str().c_str());           187   std::ifstream fin(ost.str().c_str());
183                                                   188   
184   if( !fin.is_open())                             189   if( !fin.is_open()) 
185   {                                               190   {
186     G4ExceptionDescription ed;                    191     G4ExceptionDescription ed;
187     ed << "G4LivermoreNuclearGammaConversionMo    192     ed << "G4LivermoreNuclearGammaConversionModel data file <" << ost.str().c_str()
188        << "> is not opened!" << G4endl;           193        << "> is not opened!" << G4endl;
189     G4Exception("G4LivermoreNuclearGammaConver    194     G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
190     "em0003",FatalException,                      195     "em0003",FatalException,
191     ed,"G4LEDATA version should be G4EMLOW8.0  << 196     ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
192     return;                                       197     return;
193   }                                               198   } 
194   else                                         << 
195     {                                          << 
196                                                << 
197       if(verboseLevel > 3) { G4cout << "File " << 
198             << " is opened by G4LivermoreNucle << 
199                                                << 
200       data[Z]->Retrieve(fin, true);            << 
201     }                                          << 
202                                                   199   
                                                   >> 200   else 
                                                   >> 201   {
                                                   >> 202     
                                                   >> 203     if(verboseLevel > 3) { G4cout << "File " << ost.str() 
                                                   >> 204        << " is opened by G4LivermoreNuclearGammaConversionModel" << G4endl;}
                                                   >> 205     
                                                   >> 206     data[Z]->Retrieve(fin, true);
                                                   >> 207   } 
                                                   >> 208 
203   // Activation of spline interpolation           209   // Activation of spline interpolation
204   data[Z] ->FillSecondDerivatives();           << 210   data[Z] ->SetSpline(true);  
                                                   >> 211   
205 }                                                 212 }
206                                                   213 
207 //....oooOO0OOooo........oooOO0OOooo........oo    214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
208                                                   215 
209 G4double                                          216 G4double 
210 G4LivermoreNuclearGammaConversionModel::Comput    217 G4LivermoreNuclearGammaConversionModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
211                   G4double GammaEnergy,           218                   G4double GammaEnergy,
212                   G4double Z, G4double,           219                   G4double Z, G4double,
213                   G4double, G4double)             220                   G4double, G4double)
214 {                                                 221 {
215   if (verboseLevel > 1)                           222   if (verboseLevel > 1) 
216   {                                               223   {
217     G4cout << "Calling ComputeCrossSectionPerA    224     G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel" 
218      << G4endl;                                   225      << G4endl;
219   }                                               226   }
220                                                   227   
221   if (GammaEnergy < lowEnergyLimit) { return 0    228   if (GammaEnergy < lowEnergyLimit) { return 0.0; } 
222                                                   229   
223   G4double xs = 0.0;                              230   G4double xs = 0.0;
224                                                   231   
225   G4int intZ=G4int(Z);                            232   G4int intZ=G4int(Z);
226                                                   233   
227   if(intZ < 1 || intZ > maxZ) { return xs; }      234   if(intZ < 1 || intZ > maxZ) { return xs; }
228                                                   235 
229   G4PhysicsFreeVector* pv = data[intZ];        << 236   G4LPhysicsFreeVector* pv = data[intZ];
230                                                   237 
231   // if element was not initialised               238   // if element was not initialised
232   // do initialisation safely for MT mode         239   // do initialisation safely for MT mode
233   if(!pv)                                         240   if(!pv) 
234     {                                             241     {
235       InitialiseForElement(0, intZ);              242       InitialiseForElement(0, intZ);
236       pv = data[intZ];                            243       pv = data[intZ];
237       if(!pv) { return xs; }                      244       if(!pv) { return xs; }
238     }                                             245     }
239   // x-section is taken from the table            246   // x-section is taken from the table
240   xs = pv->Value(GammaEnergy);                    247   xs = pv->Value(GammaEnergy); 
241                                                   248   
242   if(verboseLevel > 0)                            249   if(verboseLevel > 0)
243   {                                            << 250     {
244     std::size_t n = pv->GetVectorLength() - 1; << 251     G4int n = pv->GetVectorLength() - 1;
245     G4cout  <<  "****** DEBUG: tcs value for Z    252     G4cout  <<  "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)=" 
246       << GammaEnergy/MeV << G4endl;               253       << GammaEnergy/MeV << G4endl;
247     G4cout  <<  "  cs (Geant4 internal unit)="    254     G4cout  <<  "  cs (Geant4 internal unit)=" << xs << G4endl;
248     G4cout  <<  "    -> first cs value in EADL    255     G4cout  <<  "    -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
249     G4cout  <<  "    -> last  cs value in EADL    256     G4cout  <<  "    -> last  cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
250     G4cout  <<  "*****************************    257     G4cout  <<  "*********************************************************" << G4endl;
251   }                                            << 258     }
                                                   >> 259 
252   return xs;                                      260   return xs;
                                                   >> 261 
253 }                                                 262 }
254                                                   263 
255 //....oooOO0OOooo........oooOO0OOooo........oo    264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
256                                                   265 
257 void G4LivermoreNuclearGammaConversionModel::S    266 void G4LivermoreNuclearGammaConversionModel::SampleSecondaries(
258                                  std::vector<G    267                                  std::vector<G4DynamicParticle*>* fvect,
259          const G4MaterialCutsCouple* couple,      268          const G4MaterialCutsCouple* couple,
260          const G4DynamicParticle* aDynamicGamm    269          const G4DynamicParticle* aDynamicGamma,
261          G4double, G4double)                      270          G4double, G4double)
262 {                                                 271 {
263   // The energies of the e+ e- secondaries are << 272 
264   // cross sections with Coulomb correction. A << 273 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
265   // number techniques of Butcher & Messel is  << 274 // cross sections with Coulomb correction. A modified version of the random
266                                                << 275 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
267   // Note 1 : Effects due to the breakdown of  << 276 
268   // energy are ignored.                       << 277 // Note 1 : Effects due to the breakdown of the Born approximation at low
269   // Note 2 : The differential cross section i << 278 // energy are ignored.
270   // pair creation in both nuclear and atomic  << 279 // Note 2 : The differential cross section implicitly takes account of
271   // prodution is not generated.               << 280 // pair creation in both nuclear and atomic electron fields. However triplet
272                                                << 281 // prodution is not generated.
                                                   >> 282 
273   if (verboseLevel > 1) {                         283   if (verboseLevel > 1) {
274     G4cout << "Calling SampleSecondaries() of     284     G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel" 
275      << G4endl;                                   285      << G4endl;
276   }                                               286   }
277                                                   287 
278   G4double photonEnergy = aDynamicGamma->GetKi    288   G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
279   G4ParticleMomentum photonDirection = aDynami    289   G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
280                                                   290 
281   G4double epsilon ;                              291   G4double epsilon ;
282   G4double epsilon0Local = electron_mass_c2 /     292   G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
283                                                   293 
284   // Do it fast if photon energy < 2. MeV         294   // Do it fast if photon energy < 2. MeV
285   if (photonEnergy < smallEnergy )                295   if (photonEnergy < smallEnergy )
286   {                                               296   {
287     epsilon = epsilon0Local + (0.5 - epsilon0L    297     epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
288   }                                               298   }
289   else                                            299   else
290   {                                               300   {
291     // Select randomly one element in the curr    301     // Select randomly one element in the current material
                                                   >> 302 
292     const G4ParticleDefinition* particle =  aD    303     const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
293     const G4Element* element = SelectRandomAto    304     const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
294                                                   305 
295     if (element == nullptr)                    << 306     if (element == 0)
296       {                                           307       {
297   G4cout << "G4LivermoreNuclearGammaConversion    308   G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0" 
298          << G4endl;                               309          << G4endl;
299   return;                                         310   return;
300       }                                           311       }
301     G4IonisParamElm* ionisation = element->Get    312     G4IonisParamElm* ionisation = element->GetIonisation();
302     if (ionisation == nullptr)                 << 313     if (ionisation == 0)
303       {                                           314       {
304   G4cout << "G4LivermoreNuclearGammaConversion    315   G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0" 
305          << G4endl;                               316          << G4endl;
306   return;                                         317   return;
307       }                                           318       }
308                                                   319 
309     // Extract Coulomb factor for this Element    320     // Extract Coulomb factor for this Elements
310     G4double fZ = 8. * (ionisation->GetlogZ3()    321     G4double fZ = 8. * (ionisation->GetlogZ3());
311     if (photonEnergy > 50. * MeV) fZ += 8. * (    322     if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
312                                                   323 
313     // Limits of the screening variable           324     // Limits of the screening variable
314     G4double screenFactor = 136. * epsilon0Loc    325     G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
315     G4double screenMax = G4Exp ((42.24 - fZ)/8    326     G4double screenMax = G4Exp ((42.24 - fZ)/8.368) - 0.952 ;
316     G4double screenMin = std::min(4.*screenFac    327     G4double screenMin = std::min(4.*screenFactor,screenMax) ;
317                                                   328 
318     // Limits of the energy sampling              329     // Limits of the energy sampling
319     G4double epsilon1 = 0.5 - 0.5 * std::sqrt(    330     G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
320     G4double epsilonMin = std::max(epsilon0Loc    331     G4double epsilonMin = std::max(epsilon0Local,epsilon1);
321     G4double epsilonRange = 0.5 - epsilonMin ;    332     G4double epsilonRange = 0.5 - epsilonMin ;
322                                                   333 
323     // Sample the energy rate of the created e    334     // Sample the energy rate of the created electron (or positron)
324     G4double screen;                              335     G4double screen;
325     G4double gReject ;                            336     G4double gReject ;
326                                                   337 
327     G4double f10 = ScreenFunction1(screenMin)     338     G4double f10 = ScreenFunction1(screenMin) - fZ;
328     G4double f20 = ScreenFunction2(screenMin)     339     G4double f20 = ScreenFunction2(screenMin) - fZ;
329     G4double normF1 = std::max(f10 * epsilonRa    340     G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
330     G4double normF2 = std::max(1.5 * f20,0.);     341     G4double normF2 = std::max(1.5 * f20,0.);
331                                                   342 
332     do                                            343     do 
333       {                                           344       {
334   if (normF1 / (normF1 + normF2) > G4UniformRa    345   if (normF1 / (normF1 + normF2) > G4UniformRand() )
335     {                                             346     {
336       epsilon = 0.5 - epsilonRange * std::pow(    347       epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
337       screen = screenFactor / (epsilon * (1. -    348       screen = screenFactor / (epsilon * (1. - epsilon));
338       gReject = (ScreenFunction1(screen) - fZ)    349       gReject = (ScreenFunction1(screen) - fZ) / f10 ;
339     }                                             350     }
340   else                                            351   else
341     {                                             352     {
342       epsilon = epsilonMin + epsilonRange * G4    353       epsilon = epsilonMin + epsilonRange * G4UniformRand();
343       screen = screenFactor / (epsilon * (1 -     354       screen = screenFactor / (epsilon * (1 - epsilon));
344       gReject = (ScreenFunction2(screen) - fZ)    355       gReject = (ScreenFunction2(screen) - fZ) / f20 ;
345     }                                             356     }
346       } while ( gReject < G4UniformRand() );   << 357       } while ( gReject < G4UniformRand() );
                                                   >> 358     
347   }   //  End of epsilon sampling                 359   }   //  End of epsilon sampling
348                                                   360 
349   // Fix charges randomly                         361   // Fix charges randomly
                                                   >> 362 
350   G4double electronTotEnergy;                     363   G4double electronTotEnergy;
351   G4double positronTotEnergy;                     364   G4double positronTotEnergy;
352                                                   365 
353   if (G4UniformRand() > 0.5)                      366   if (G4UniformRand() > 0.5)
354     {                                             367     {
355       electronTotEnergy = (1. - epsilon) * pho    368       electronTotEnergy = (1. - epsilon) * photonEnergy;
356       positronTotEnergy = epsilon * photonEner    369       positronTotEnergy = epsilon * photonEnergy;
357     }                                             370     }
358   else                                            371   else
359     {                                             372     {
360       positronTotEnergy = (1. - epsilon) * pho    373       positronTotEnergy = (1. - epsilon) * photonEnergy;
361       electronTotEnergy = epsilon * photonEner    374       electronTotEnergy = epsilon * photonEnergy;
362     }                                             375     }
363                                                   376 
364   // Scattered electron (positron) angles. ( Z    377   // Scattered electron (positron) angles. ( Z - axis along the parent photon)
365   // Universal distribution suggested by L. Ur    378   // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
366   // derived from Tsai distribution (Rev. Mod.    379   // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
367                                                << 380 
368   G4double u;                                     381   G4double u;
369   const G4double a1 = 0.625;                      382   const G4double a1 = 0.625;
370   G4double a2 = 3. * a1;                          383   G4double a2 = 3. * a1;
                                                   >> 384   //  G4double d = 27. ;
371                                                   385 
                                                   >> 386   //  if (9. / (9. + d) > G4UniformRand())
372   if (0.25 > G4UniformRand())                     387   if (0.25 > G4UniformRand())
373     {                                             388     {
374       u = - G4Log(G4UniformRand() * G4UniformR    389       u = - G4Log(G4UniformRand() * G4UniformRand()) / a1 ;
375     }                                             390     }
376   else                                            391   else
377     {                                             392     {
378       u = - G4Log(G4UniformRand() * G4UniformR    393       u = - G4Log(G4UniformRand() * G4UniformRand()) / a2 ;
379     }                                             394     }
380                                                   395 
381   G4double thetaEle = u*electron_mass_c2/elect    396   G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
382   G4double thetaPos = u*electron_mass_c2/posit    397   G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
383   G4double phi  = twopi * G4UniformRand();        398   G4double phi  = twopi * G4UniformRand();
384                                                   399 
385   G4double dxEle= std::sin(thetaEle)*std::cos(    400   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
386   G4double dxPos=-std::sin(thetaPos)*std::cos(    401   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
387                                                << 402   
                                                   >> 403   
388   // Kinematics of the created pair:              404   // Kinematics of the created pair:
389   // the electron and positron are assumed to     405   // the electron and positron are assumed to have a symetric angular 
390   // distribution with respect to the Z axis a    406   // distribution with respect to the Z axis along the parent photon
391                                                   407   
392   G4double electronKineEnergy = std::max(0.,el    408   G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
393                                                   409   
394   G4ThreeVector electronDirection (dxEle, dyEl    410   G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
395   electronDirection.rotateUz(photonDirection);    411   electronDirection.rotateUz(photonDirection);
396                                                   412       
397   G4DynamicParticle* particle1 = new G4Dynamic    413   G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
398               electronDirection,                  414               electronDirection,
399               electronKineEnergy);                415               electronKineEnergy);
400                                                   416 
401   // The e+ is always created                     417   // The e+ is always created 
402   G4double positronKineEnergy = std::max(0.,po    418   G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
403                                                   419 
404   G4ThreeVector positronDirection (dxPos, dyPo    420   G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
405   positronDirection.rotateUz(photonDirection);    421   positronDirection.rotateUz(photonDirection);   
406                                                   422   
407   // Create G4DynamicParticle object for the p    423   // Create G4DynamicParticle object for the particle2 
408   G4DynamicParticle* particle2 = new G4Dynamic    424   G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
409                    positronDirection,             425                    positronDirection, 
410                    positronKineEnergy);           426                    positronKineEnergy);
411   // Fill output vector                           427   // Fill output vector
412   fvect->push_back(particle1);                    428   fvect->push_back(particle1);
413   fvect->push_back(particle2);                    429   fvect->push_back(particle2);
414                                                   430 
415   // kill incident photon                         431   // kill incident photon
416   fParticleChange->SetProposedKineticEnergy(0.    432   fParticleChange->SetProposedKineticEnergy(0.);
417   fParticleChange->ProposeTrackStatus(fStopAnd    433   fParticleChange->ProposeTrackStatus(fStopAndKill);   
418                                                   434 
419 }                                                 435 }
420                                                   436 
421 //....oooOO0OOooo........oooOO0OOooo........oo    437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
422                                                   438 
423 G4double                                          439 G4double 
424 G4LivermoreNuclearGammaConversionModel::Screen    440 G4LivermoreNuclearGammaConversionModel::ScreenFunction1(G4double screenVariable)
425 {                                                 441 {
426   // Compute the value of the screening functi    442   // Compute the value of the screening function 3*phi1 - phi2
427                                                   443 
428   G4double value;                                 444   G4double value;
429                                                   445   
430   if (screenVariable > 1.)                        446   if (screenVariable > 1.)
431     value = 42.24 - 8.368 * G4Log(screenVariab    447     value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
432   else                                            448   else
433     value = 42.392 - screenVariable * (7.796 -    449     value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
434                                                   450   
435   return value;                                   451   return value;
436 }                                                 452 } 
437                                                   453 
438 //....oooOO0OOooo........oooOO0OOooo........oo    454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
439                                                   455 
440 G4double                                          456 G4double 
441 G4LivermoreNuclearGammaConversionModel::Screen    457 G4LivermoreNuclearGammaConversionModel::ScreenFunction2(G4double screenVariable)
442 {                                                 458 {
443   // Compute the value of the screening functi    459   // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
                                                   >> 460   
444   G4double value;                                 461   G4double value;
445                                                   462   
446   if (screenVariable > 1.)                        463   if (screenVariable > 1.)
447     value = 42.24 - 8.368 * G4Log(screenVariab    464     value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
448   else                                            465   else
449     value = 41.405 - screenVariable * (5.828 -    466     value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
450                                                   467   
451   return value;                                   468   return value;
452 }                                                 469 } 
453                                                   470 
454 //....oooOO0OOooo........oooOO0OOooo........oo    471 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
455                                                   472 
                                                   >> 473 #include "G4AutoLock.hh"
                                                   >> 474 namespace { G4Mutex LivermoreNuclearGammaConversionModelMutex = G4MUTEX_INITIALIZER; }
                                                   >> 475 
456 void G4LivermoreNuclearGammaConversionModel::I    476 void G4LivermoreNuclearGammaConversionModel::InitialiseForElement(
457                     const G4ParticleDefinition    477                     const G4ParticleDefinition*, 
458                     G4int Z)                      478                     G4int Z)
459 {                                                 479 {
460   G4AutoLock l(&LivermoreNuclearGammaConversio << 480   G4AutoLock l(&LivermoreNuclearGammaConversionModelMutex);
                                                   >> 481   //  G4cout << "G4LivermoreNuclearGammaConversionModel::InitialiseForElement Z= " 
                                                   >> 482   //   << Z << G4endl;
461   if(!data[Z]) { ReadData(Z); }                   483   if(!data[Z]) { ReadData(Z); }
462   l.unlock();                                     484   l.unlock();
463 }                                                 485 }
464                                                   486 
465 //....oooOO0OOooo........oooOO0OOooo........oo    487 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
466                                                   488