Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermoreNuclearGammaConversionModel.cc (Version 10.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Author: Sebastien Incerti                   <<  26 // $Id: G4LivermoreNuclearGammaConversionModel.cc 66241 2012-12-13 18:34:42Z gunter $
 27 //         22 January 2012                     <<  27 //
 28 //         on base of G4LivermoreNuclearGammaC <<  28 // Authors: G.Depaola & F.Longo
 29 //         and G4LivermoreRayleighModel (MT ve <<  29 //
 30                                                    30 
 31 #include "G4LivermoreNuclearGammaConversionMod     31 #include "G4LivermoreNuclearGammaConversionModel.hh"
 32 #include "G4PhysicalConstants.hh"                  32 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"                      33 #include "G4SystemOfUnits.hh"
 34 #include "G4Log.hh"                            << 
 35 #include "G4Exp.hh"                            << 
 36 #include "G4AutoLock.hh"                       << 
 37                                                    34 
 38 //....oooOO0OOooo........oooOO0OOooo........oo     35 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 39                                                    36 
 40 using namespace std;                               37 using namespace std;
 41 namespace { G4Mutex LivermoreNuclearGammaConve << 
 42                                                    38 
 43 //....oooOO0OOooo........oooOO0OOooo........oo     39 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 44                                                    40 
 45 G4PhysicsFreeVector* G4LivermoreNuclearGammaCo <<  41 G4LivermoreNuclearGammaConversionModel::G4LivermoreNuclearGammaConversionModel(const G4ParticleDefinition*,
 46                                                <<  42                  const G4String& nam)
 47 G4LivermoreNuclearGammaConversionModel::G4Live <<  43   :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),
 48 (const G4ParticleDefinition*, const G4String&  <<  44    isInitialised(false),
 49   :G4VEmModel(nam),smallEnergy(2.*MeV),        <<  45    crossSectionHandler(0),meanFreePathTable(0)
 50    isInitialised(false)                        << 
 51 {                                                  46 {
 52   fParticleChange = nullptr;                   << 
 53                                                << 
 54   lowEnergyLimit = 2.0*electron_mass_c2;           47   lowEnergyLimit = 2.0*electron_mass_c2;
                                                   >>  48   highEnergyLimit = 100 * GeV;
                                                   >>  49   SetHighEnergyLimit(highEnergyLimit);
 55                                                    50      
 56   verboseLevel= 0;                                 51   verboseLevel= 0;
 57   // Verbosity scale for debugging purposes:   <<  52   // Verbosity scale:
 58   // 0 = nothing                                   53   // 0 = nothing 
 59   // 1 = calculation of cross sections, file o <<  54   // 1 = warning for energy non-conservation 
 60   // 2 = entering in methods                   <<  55   // 2 = details of energy budget
 61                                                <<  56   // 3 = calculation of cross sections, file openings, sampling of atoms
 62   if(verboseLevel > 0)                         <<  57   // 4 = entering in methods
 63   {                                            << 
 64     G4cout << "G4LivermoreNuclearGammaConversi << 
 65   }                                            << 
 66 }                                              << 
 67                                                << 
 68 //....oooOO0OOooo........oooOO0OOooo........oo << 
 69                                                << 
 70 G4LivermoreNuclearGammaConversionModel::~G4Liv << 
 71 {                                              << 
 72   if(IsMaster()) {                             << 
 73     for(G4int i=0; i<maxZ; ++i) {              << 
 74       if(data[i]) {                            << 
 75   delete data[i];                              << 
 76   data[i] = 0;                                 << 
 77       }                                        << 
 78     }                                          << 
 79   }                                            << 
 80 }                                              << 
 81                                                << 
 82 //....oooOO0OOooo........oooOO0OOooo........oo << 
 83                                                    58 
 84 void G4LivermoreNuclearGammaConversionModel::I <<  59   if(verboseLevel > 0) {
 85                                 const G4Partic <<  60     G4cout << "Livermore Nuclear Gamma conversion is constructed " << G4endl
 86         const G4DataVector& cuts)              << 
 87 {                                              << 
 88   if (verboseLevel > 1)                        << 
 89     {                                          << 
 90     G4cout << "Calling Initialise() of G4Liver << 
 91      << G4endl                                 << 
 92      << "Energy range: "                           61      << "Energy range: "
 93      << LowEnergyLimit() / MeV << " MeV - "    <<  62      << lowEnergyLimit / MeV << " MeV - "
 94      << HighEnergyLimit() / GeV << " GeV"      <<  63      << highEnergyLimit / GeV << " GeV"
 95      << G4endl;                                    64      << G4endl;
 96     }                                          << 
 97                                                << 
 98   if(IsMaster())                               << 
 99   {                                            << 
100                                                << 
101     // Initialise element selector             << 
102     InitialiseElementSelectors(particle, cuts) << 
103                                                << 
104     // Access to elements                      << 
105     const char* path = G4FindDataDir("G4LEDATA << 
106                                                << 
107     G4ProductionCutsTable* theCoupleTable =    << 
108       G4ProductionCutsTable::GetProductionCuts << 
109                                                << 
110     G4int numOfCouples = (G4int)theCoupleTable << 
111                                                << 
112     for(G4int i=0; i<numOfCouples; ++i)        << 
113     {                                          << 
114       const G4Material* material =             << 
115         theCoupleTable->GetMaterialCutsCouple( << 
116       const G4ElementVector* theElementVector  << 
117       std::size_t nelm = material->GetNumberOf << 
118                                                << 
119       for (std::size_t j=0; j<nelm; ++j)       << 
120       {                                        << 
121         G4int Z = (G4int)(*theElementVector)[j << 
122         if(Z < 1)          { Z = 1; }          << 
123         else if(Z > maxZ)  { Z = maxZ; }       << 
124         if(!data[Z]) { ReadData(Z, path); }    << 
125       }                                        << 
126     }                                          << 
127   }                                                65   }
128   if(isInitialised) { return; }                << 
129   fParticleChange = GetParticleChangeForGamma( << 
130   isInitialised = true;                        << 
131 }                                                  66 }
132                                                    67 
133 //....oooOO0OOooo........oooOO0OOooo........oo     68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
134                                                    69 
135 void G4LivermoreNuclearGammaConversionModel::I <<  70 G4LivermoreNuclearGammaConversionModel::~G4LivermoreNuclearGammaConversionModel()
136      const G4ParticleDefinition*, G4VEmModel*  <<  71 {  
137 {                                              <<  72   if (crossSectionHandler) delete crossSectionHandler;
138   SetElementSelectors(masterModel->GetElementS << 
139 }                                                  73 }
140                                                    74 
141 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142                                                    76 
143 G4double                                       <<  77 void 
144 G4LivermoreNuclearGammaConversionModel::MinPri <<  78 G4LivermoreNuclearGammaConversionModel::Initialise(const G4ParticleDefinition*,
145               const G4ParticleDefinition*,     <<  79               const G4DataVector&)
146               G4double)                        << 
147 {                                                  80 {
148   return lowEnergyLimit;                       <<  81   if (verboseLevel > 3)
149 }                                              <<  82     G4cout << "Calling G4LivermoreNuclearGammaConversionModel::Initialise()" << G4endl;
150                                                    83 
151 //....oooOO0OOooo........oooOO0OOooo........oo <<  84   if (crossSectionHandler)
152                                                << 
153 void G4LivermoreNuclearGammaConversionModel::R << 
154 {                                              << 
155   if (verboseLevel > 1)                        << 
156   {                                                85   {
157     G4cout << "Calling ReadData() of G4Livermo <<  86     crossSectionHandler->Clear();
158      << G4endl;                                <<  87     delete crossSectionHandler;
159   }                                                88   }
160                                                    89 
161                                                <<  90   // Read data tables for all materials
162   if(data[Z]) { return; }                      << 
163                                                    91   
164   const char* datadir = path;                  <<  92   crossSectionHandler = new G4CrossSectionHandler();
                                                   >>  93   crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
                                                   >>  94   G4String crossSectionFile = "pairdata/pp-pair-cs-"; // here only pair in nuclear field cs should be used
                                                   >>  95   crossSectionHandler->LoadData(crossSectionFile);
                                                   >>  96 
                                                   >>  97   //
                                                   >>  98   
                                                   >>  99   if (verboseLevel > 0) {
                                                   >> 100     G4cout << "Loaded cross section files for Livermore GammaConversion" << G4endl;
                                                   >> 101     G4cout << "To obtain the total cross section this should be used only " << G4endl 
                                                   >> 102      << "in connection with G4ElectronGammaConversion " << G4endl;
                                                   >> 103   }
165                                                   104 
166   if(!datadir)                                 << 105   if (verboseLevel > 0) { 
167   {                                            << 106     G4cout << "Livermore Nuclear Gamma Conversion model is initialized " << G4endl
168     datadir = G4FindDataDir("G4LEDATA");       << 107      << "Energy range: "
169     if(!datadir)                               << 108      << LowEnergyLimit() / MeV << " MeV - "
170     {                                          << 109      << HighEnergyLimit() / GeV << " GeV"
171       G4Exception("G4LivermoreNuclearGammaConv << 110      << G4endl;
172       "em0006",FatalException,                 << 
173       "Environment variable G4LEDATA not defin << 
174       return;                                  << 
175     }                                          << 
176   }                                               111   }
177                                                   112 
178   data[Z] = new G4PhysicsFreeVector(0,/*spline << 113   if(isInitialised) return;
179                                                << 114   fParticleChange = GetParticleChangeForGamma();
180   std::ostringstream ost;                      << 115   isInitialised = true;
181   ost << datadir << "/livermore/pairdata/pp-pa << 
182   std::ifstream fin(ost.str().c_str());        << 
183                                                << 
184   if( !fin.is_open())                          << 
185   {                                            << 
186     G4ExceptionDescription ed;                 << 
187     ed << "G4LivermoreNuclearGammaConversionMo << 
188        << "> is not opened!" << G4endl;        << 
189     G4Exception("G4LivermoreNuclearGammaConver << 
190     "em0003",FatalException,                   << 
191     ed,"G4LEDATA version should be G4EMLOW8.0  << 
192     return;                                    << 
193   }                                            << 
194   else                                         << 
195     {                                          << 
196                                                << 
197       if(verboseLevel > 3) { G4cout << "File " << 
198             << " is opened by G4LivermoreNucle << 
199                                                << 
200       data[Z]->Retrieve(fin, true);            << 
201     }                                          << 
202                                                << 
203   // Activation of spline interpolation        << 
204   data[Z] ->FillSecondDerivatives();           << 
205 }                                                 116 }
206                                                   117 
207 //....oooOO0OOooo........oooOO0OOooo........oo    118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
208                                                   119 
209 G4double                                          120 G4double 
210 G4LivermoreNuclearGammaConversionModel::Comput    121 G4LivermoreNuclearGammaConversionModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
211                   G4double GammaEnergy,           122                   G4double GammaEnergy,
212                   G4double Z, G4double,           123                   G4double Z, G4double,
213                   G4double, G4double)             124                   G4double, G4double)
214 {                                                 125 {
215   if (verboseLevel > 1)                        << 126   if (verboseLevel > 3) {
216   {                                            << 
217     G4cout << "Calling ComputeCrossSectionPerA    127     G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel" 
218      << G4endl;                                   128      << G4endl;
219   }                                               129   }
220                                                << 130   if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
221   if (GammaEnergy < lowEnergyLimit) { return 0 << 
222                                                << 
223   G4double xs = 0.0;                           << 
224                                                << 
225   G4int intZ=G4int(Z);                         << 
226                                                << 
227   if(intZ < 1 || intZ > maxZ) { return xs; }   << 
228                                                << 
229   G4PhysicsFreeVector* pv = data[intZ];        << 
230                                                   131 
231   // if element was not initialised            << 132   G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
232   // do initialisation safely for MT mode      << 133   return cs;
233   if(!pv)                                      << 
234     {                                          << 
235       InitialiseForElement(0, intZ);           << 
236       pv = data[intZ];                         << 
237       if(!pv) { return xs; }                   << 
238     }                                          << 
239   // x-section is taken from the table         << 
240   xs = pv->Value(GammaEnergy);                 << 
241                                                << 
242   if(verboseLevel > 0)                         << 
243   {                                            << 
244     std::size_t n = pv->GetVectorLength() - 1; << 
245     G4cout  <<  "****** DEBUG: tcs value for Z << 
246       << GammaEnergy/MeV << G4endl;            << 
247     G4cout  <<  "  cs (Geant4 internal unit)=" << 
248     G4cout  <<  "    -> first cs value in EADL << 
249     G4cout  <<  "    -> last  cs value in EADL << 
250     G4cout  <<  "***************************** << 
251   }                                            << 
252   return xs;                                   << 
253 }                                                 134 }
254                                                   135 
255 //....oooOO0OOooo........oooOO0OOooo........oo    136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
256                                                   137 
257 void G4LivermoreNuclearGammaConversionModel::S << 138 void G4LivermoreNuclearGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
258                                  std::vector<G << 139                 const G4MaterialCutsCouple* couple,
259          const G4MaterialCutsCouple* couple,   << 140                 const G4DynamicParticle* aDynamicGamma,
260          const G4DynamicParticle* aDynamicGamm << 141                 G4double,
261          G4double, G4double)                   << 142                 G4double)
262 {                                              << 143 {
263   // The energies of the e+ e- secondaries are << 144 
264   // cross sections with Coulomb correction. A << 145 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
265   // number techniques of Butcher & Messel is  << 146 // cross sections with Coulomb correction. A modified version of the random
266                                                << 147 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
267   // Note 1 : Effects due to the breakdown of  << 148 
268   // energy are ignored.                       << 149 // Note 1 : Effects due to the breakdown of the Born approximation at low
269   // Note 2 : The differential cross section i << 150 // energy are ignored.
270   // pair creation in both nuclear and atomic  << 151 // Note 2 : The differential cross section implicitly takes account of
271   // prodution is not generated.               << 152 // pair creation in both nuclear and atomic electron fields. However triplet
272                                                << 153 // prodution is not generated.
273   if (verboseLevel > 1) {                      << 154 
274     G4cout << "Calling SampleSecondaries() of  << 155   if (verboseLevel > 3)
275      << G4endl;                                << 156     G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel" << G4endl;
276   }                                            << 
277                                                   157 
278   G4double photonEnergy = aDynamicGamma->GetKi    158   G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
279   G4ParticleMomentum photonDirection = aDynami    159   G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
280                                                   160 
281   G4double epsilon ;                              161   G4double epsilon ;
282   G4double epsilon0Local = electron_mass_c2 /     162   G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
283                                                   163 
284   // Do it fast if photon energy < 2. MeV         164   // Do it fast if photon energy < 2. MeV
285   if (photonEnergy < smallEnergy )                165   if (photonEnergy < smallEnergy )
286   {                                            << 166     {
287     epsilon = epsilon0Local + (0.5 - epsilon0L << 167       epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
288   }                                            << 168     }
289   else                                            169   else
290   {                                            << 170     {
291     // Select randomly one element in the curr << 171       // Select randomly one element in the current material
292     const G4ParticleDefinition* particle =  aD << 172       //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
293     const G4Element* element = SelectRandomAto << 173       const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
294                                                << 174       const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
295     if (element == nullptr)                    << 175 
296       {                                        << 176       if (element == 0)
297   G4cout << "G4LivermoreNuclearGammaConversion << 177   {
298          << G4endl;                            << 178     G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0" 
299   return;                                      << 179      << G4endl;
300       }                                        << 180     return;
301     G4IonisParamElm* ionisation = element->Get << 181   }
302     if (ionisation == nullptr)                 << 182       G4IonisParamElm* ionisation = element->GetIonisation();
303       {                                        << 183       if (ionisation == 0)
304   G4cout << "G4LivermoreNuclearGammaConversion << 184   {
305          << G4endl;                            << 185     G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0" 
306   return;                                      << 186      << G4endl;
307       }                                        << 187     return;
308                                                << 188   }
309     // Extract Coulomb factor for this Element << 189 
310     G4double fZ = 8. * (ionisation->GetlogZ3() << 190       // Extract Coulomb factor for this Element
311     if (photonEnergy > 50. * MeV) fZ += 8. * ( << 191       G4double fZ = 8. * (ionisation->GetlogZ3());
312                                                << 192       if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
313     // Limits of the screening variable        << 193 
314     G4double screenFactor = 136. * epsilon0Loc << 194       // Limits of the screening variable
315     G4double screenMax = G4Exp ((42.24 - fZ)/8 << 195       G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
316     G4double screenMin = std::min(4.*screenFac << 196       G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
317                                                << 197       G4double screenMin = std::min(4.*screenFactor,screenMax) ;
318     // Limits of the energy sampling           << 198 
319     G4double epsilon1 = 0.5 - 0.5 * std::sqrt( << 199       // Limits of the energy sampling
320     G4double epsilonMin = std::max(epsilon0Loc << 200       G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
321     G4double epsilonRange = 0.5 - epsilonMin ; << 201       G4double epsilonMin = std::max(epsilon0Local,epsilon1);
322                                                << 202       G4double epsilonRange = 0.5 - epsilonMin ;
323     // Sample the energy rate of the created e << 203 
324     G4double screen;                           << 204       // Sample the energy rate of the created electron (or positron)
325     G4double gReject ;                         << 205       G4double screen;
326                                                << 206       G4double gReject ;
327     G4double f10 = ScreenFunction1(screenMin)  << 207 
328     G4double f20 = ScreenFunction2(screenMin)  << 208       G4double f10 = ScreenFunction1(screenMin) - fZ;
329     G4double normF1 = std::max(f10 * epsilonRa << 209       G4double f20 = ScreenFunction2(screenMin) - fZ;
330     G4double normF2 = std::max(1.5 * f20,0.);  << 210       G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
                                                   >> 211       G4double normF2 = std::max(1.5 * f20,0.);
331                                                   212 
332     do                                         << 213       do {
333       {                                        << 
334   if (normF1 / (normF1 + normF2) > G4UniformRa    214   if (normF1 / (normF1 + normF2) > G4UniformRand() )
335     {                                             215     {
336       epsilon = 0.5 - epsilonRange * std::pow( << 216       epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
337       screen = screenFactor / (epsilon * (1. -    217       screen = screenFactor / (epsilon * (1. - epsilon));
338       gReject = (ScreenFunction1(screen) - fZ)    218       gReject = (ScreenFunction1(screen) - fZ) / f10 ;
339     }                                             219     }
340   else                                            220   else
341     {                                             221     {
342       epsilon = epsilonMin + epsilonRange * G4    222       epsilon = epsilonMin + epsilonRange * G4UniformRand();
343       screen = screenFactor / (epsilon * (1 -     223       screen = screenFactor / (epsilon * (1 - epsilon));
344       gReject = (ScreenFunction2(screen) - fZ)    224       gReject = (ScreenFunction2(screen) - fZ) / f20 ;
345     }                                             225     }
346       } while ( gReject < G4UniformRand() );   << 226       } while ( gReject < G4UniformRand() );
347   }   //  End of epsilon sampling              << 227 
                                                   >> 228     }   //  End of epsilon sampling
348                                                   229 
349   // Fix charges randomly                         230   // Fix charges randomly
                                                   >> 231 
350   G4double electronTotEnergy;                     232   G4double electronTotEnergy;
351   G4double positronTotEnergy;                     233   G4double positronTotEnergy;
352                                                   234 
353   if (G4UniformRand() > 0.5)                   << 235   if (G4int(2*G4UniformRand()))    
354     {                                             236     {
355       electronTotEnergy = (1. - epsilon) * pho    237       electronTotEnergy = (1. - epsilon) * photonEnergy;
356       positronTotEnergy = epsilon * photonEner    238       positronTotEnergy = epsilon * photonEnergy;
357     }                                             239     }
358   else                                            240   else
359     {                                             241     {
360       positronTotEnergy = (1. - epsilon) * pho    242       positronTotEnergy = (1. - epsilon) * photonEnergy;
361       electronTotEnergy = epsilon * photonEner    243       electronTotEnergy = epsilon * photonEnergy;
362     }                                             244     }
363                                                   245 
364   // Scattered electron (positron) angles. ( Z    246   // Scattered electron (positron) angles. ( Z - axis along the parent photon)
365   // Universal distribution suggested by L. Ur    247   // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
366   // derived from Tsai distribution (Rev. Mod.    248   // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
367                                                << 249 
368   G4double u;                                     250   G4double u;
369   const G4double a1 = 0.625;                      251   const G4double a1 = 0.625;
370   G4double a2 = 3. * a1;                          252   G4double a2 = 3. * a1;
                                                   >> 253   //  G4double d = 27. ;
371                                                   254 
                                                   >> 255   //  if (9. / (9. + d) > G4UniformRand())
372   if (0.25 > G4UniformRand())                     256   if (0.25 > G4UniformRand())
373     {                                             257     {
374       u = - G4Log(G4UniformRand() * G4UniformR << 258       u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
375     }                                             259     }
376   else                                            260   else
377     {                                             261     {
378       u = - G4Log(G4UniformRand() * G4UniformR << 262       u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
379     }                                             263     }
380                                                   264 
381   G4double thetaEle = u*electron_mass_c2/elect    265   G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
382   G4double thetaPos = u*electron_mass_c2/posit    266   G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
383   G4double phi  = twopi * G4UniformRand();        267   G4double phi  = twopi * G4UniformRand();
384                                                   268 
385   G4double dxEle= std::sin(thetaEle)*std::cos(    269   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
386   G4double dxPos=-std::sin(thetaPos)*std::cos(    270   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
387                                                << 271   
                                                   >> 272   
388   // Kinematics of the created pair:              273   // Kinematics of the created pair:
389   // the electron and positron are assumed to     274   // the electron and positron are assumed to have a symetric angular 
390   // distribution with respect to the Z axis a    275   // distribution with respect to the Z axis along the parent photon
391                                                   276   
392   G4double electronKineEnergy = std::max(0.,el    277   G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
393                                                   278   
                                                   >> 279   // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
                                                   >> 280 
394   G4ThreeVector electronDirection (dxEle, dyEl    281   G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
395   electronDirection.rotateUz(photonDirection);    282   electronDirection.rotateUz(photonDirection);
396                                                   283       
397   G4DynamicParticle* particle1 = new G4Dynamic    284   G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
398               electronDirection,               << 285                   electronDirection,
399               electronKineEnergy);             << 286                   electronKineEnergy);
400                                                   287 
401   // The e+ is always created                  << 288   // The e+ is always created (even with kinetic energy = 0) for further annihilation
402   G4double positronKineEnergy = std::max(0.,po    289   G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
403                                                   290 
                                                   >> 291   // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
                                                   >> 292 
404   G4ThreeVector positronDirection (dxPos, dyPo    293   G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
405   positronDirection.rotateUz(photonDirection);    294   positronDirection.rotateUz(photonDirection);   
406                                                   295   
407   // Create G4DynamicParticle object for the p    296   // Create G4DynamicParticle object for the particle2 
408   G4DynamicParticle* particle2 = new G4Dynamic    297   G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
409                    positronDirection,          << 298                    positronDirection, positronKineEnergy);
410                    positronKineEnergy);        << 
411   // Fill output vector                           299   // Fill output vector
                                                   >> 300 
412   fvect->push_back(particle1);                    301   fvect->push_back(particle1);
413   fvect->push_back(particle2);                    302   fvect->push_back(particle2);
414                                                   303 
415   // kill incident photon                         304   // kill incident photon
416   fParticleChange->SetProposedKineticEnergy(0.    305   fParticleChange->SetProposedKineticEnergy(0.);
417   fParticleChange->ProposeTrackStatus(fStopAnd    306   fParticleChange->ProposeTrackStatus(fStopAndKill);   
418                                                   307 
419 }                                                 308 }
420                                                   309 
421 //....oooOO0OOooo........oooOO0OOooo........oo    310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
422                                                   311 
423 G4double                                       << 312 G4double G4LivermoreNuclearGammaConversionModel::ScreenFunction1(G4double screenVariable)
424 G4LivermoreNuclearGammaConversionModel::Screen << 
425 {                                                 313 {
426   // Compute the value of the screening functi    314   // Compute the value of the screening function 3*phi1 - phi2
427                                                   315 
428   G4double value;                                 316   G4double value;
429                                                   317   
430   if (screenVariable > 1.)                        318   if (screenVariable > 1.)
431     value = 42.24 - 8.368 * G4Log(screenVariab << 319     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
432   else                                            320   else
433     value = 42.392 - screenVariable * (7.796 -    321     value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
434                                                   322   
435   return value;                                   323   return value;
436 }                                                 324 } 
437                                                   325 
438 //....oooOO0OOooo........oooOO0OOooo........oo    326 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
439                                                   327 
440 G4double                                       << 328 G4double G4LivermoreNuclearGammaConversionModel::ScreenFunction2(G4double screenVariable)
441 G4LivermoreNuclearGammaConversionModel::Screen << 
442 {                                                 329 {
443   // Compute the value of the screening functi    330   // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
                                                   >> 331   
444   G4double value;                                 332   G4double value;
445                                                   333   
446   if (screenVariable > 1.)                        334   if (screenVariable > 1.)
447     value = 42.24 - 8.368 * G4Log(screenVariab << 335     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
448   else                                            336   else
449     value = 41.405 - screenVariable * (5.828 -    337     value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
450                                                   338   
451   return value;                                   339   return value;
452 }                                                 340 } 
453                                                   341 
454 //....oooOO0OOooo........oooOO0OOooo........oo << 
455                                                << 
456 void G4LivermoreNuclearGammaConversionModel::I << 
457                     const G4ParticleDefinition << 
458                     G4int Z)                   << 
459 {                                              << 
460   G4AutoLock l(&LivermoreNuclearGammaConversio << 
461   if(!data[Z]) { ReadData(Z); }                << 
462   l.unlock();                                  << 
463 }                                              << 
464                                                << 
465 //....oooOO0OOooo........oooOO0OOooo........oo << 
466                                                   342