Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermoreGammaConversionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4LivermoreGammaConversionModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4LivermoreGammaConversionModel.cc (Version 9.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Author: Sebastien Incerti                   <<  26 // $Id: G4LivermoreGammaConversionModel.cc,v 1.8 2009/06/11 15:47:08 mantero Exp $
 27 //         22 January 2012                     <<  27 // GEANT4 tag $Name: geant4-09-03-patch-01 $
 28 //         on base of G4LivermoreGammaConversi << 
 29 //         and G4LivermoreRayleighModel (MT ve << 
 30 //                                                 28 //
 31 // Modifications: Zhuxin Li@CENBG              <<  29 //
 32 //                11 March 2020                <<  30 // Author: Sebastien Inserti
 33 //                derives from G4PairProductio <<  31 //         30 October 2008
 34 // ------------------------------------------- <<  32 //
                                                   >>  33 // History:
                                                   >>  34 // --------
                                                   >>  35 // 12 Apr 2009   V Ivanchenko Cleanup initialisation and generation of secondaries:
                                                   >>  36 //                  - apply internal high-energy limit only in constructor 
                                                   >>  37 //                  - do not apply low-energy limit (default is 0)
                                                   >>  38 //                  - use CLHEP electron mass for low-enegry limit
                                                   >>  39 //                  - remove MeanFreePath method and table
                                                   >>  40 
 35                                                    41 
 36 #include "G4LivermoreGammaConversionModel.hh"      42 #include "G4LivermoreGammaConversionModel.hh"
 37                                                    43 
 38 #include "G4AutoLock.hh"                       <<  44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 39 #include "G4Electron.hh"                       << 
 40 #include "G4EmParameters.hh"                   << 
 41 #include "G4Exp.hh"                            << 
 42 #include "G4ParticleChangeForGamma.hh"         << 
 43 #include "G4PhysicalConstants.hh"              << 
 44 #include "G4PhysicsFreeVector.hh"              << 
 45 #include "G4SystemOfUnits.hh"                  << 
 46                                                    45 
 47 namespace                                      <<  46 using namespace std;
 48 {                                              << 
 49 G4Mutex LivermoreGammaConversionModelMutex = G << 
 50 }                                              << 
 51                                                    47 
 52 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 53 //....oooOO0OOooo........oooOO0OOooo........oo << 
 54                                                << 
 55 G4PhysicsFreeVector* G4LivermoreGammaConversio << 
 56 G4String G4LivermoreGammaConversionModel::gDat << 
 57                                                    49 
 58 G4LivermoreGammaConversionModel::G4LivermoreGa <<  50 G4LivermoreGammaConversionModel::G4LivermoreGammaConversionModel(const G4ParticleDefinition*,
 59                                                <<  51                  const G4String& nam)
 60   : G4PairProductionRelModel(p, nam)           <<  52   :G4VEmModel(nam),smallEnergy(2.*MeV),isInitialised(false),
 61 {                                              <<  53    crossSectionHandler(0),meanFreePathTable(0)
 62   fParticleChange = nullptr;                   <<  54 {
 63   lowEnergyLimit = 2. * CLHEP::electron_mass_c <<  55   lowEnergyLimit = 2.0*electron_mass_c2;
 64   verboseLevel = 0;                            <<  56   highEnergyLimit = 100 * GeV;
 65   // Verbosity scale for debugging purposes:   <<  57   SetHighEnergyLimit(highEnergyLimit);
 66   // 0 = nothing                               <<  58      
 67   // 1 = calculation of cross sections, file o <<  59   verboseLevel= 0;
 68   // 2 = entering in methods                   <<  60   // Verbosity scale:
 69   if (verboseLevel > 0) {                      <<  61   // 0 = nothing 
 70     G4cout << "G4LivermoreGammaConversionModel <<  62   // 1 = warning for energy non-conservation 
                                                   >>  63   // 2 = details of energy budget
                                                   >>  64   // 3 = calculation of cross sections, file openings, sampling of atoms
                                                   >>  65   // 4 = entering in methods
                                                   >>  66 
                                                   >>  67   if(verboseLevel > 0) {
                                                   >>  68     G4cout << "Livermore Gamma conversion is constructed " << G4endl
                                                   >>  69      << "Energy range: "
                                                   >>  70      << lowEnergyLimit / MeV << " MeV - "
                                                   >>  71      << highEnergyLimit / GeV << " GeV"
                                                   >>  72      << G4endl;
 71   }                                                73   }
 72 }                                                  74 }
 73                                                    75 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 75                                                    77 
 76 G4LivermoreGammaConversionModel::~G4LivermoreG     78 G4LivermoreGammaConversionModel::~G4LivermoreGammaConversionModel()
 77 {                                              <<  79 {  
 78   if (IsMaster()) {                            <<  80   if (crossSectionHandler) delete crossSectionHandler;
 79     for (G4int i = 0; i <= maxZ; ++i) {        << 
 80       if (data[i]) {                           << 
 81         delete data[i];                        << 
 82         data[i] = nullptr;                     << 
 83       }                                        << 
 84     }                                          << 
 85   }                                            << 
 86 }                                                  81 }
 87                                                    82 
 88 //....oooOO0OOooo........oooOO0OOooo........oo     83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 89                                                    84 
 90 void G4LivermoreGammaConversionModel::Initiali <<  85 void 
 91                                                <<  86 G4LivermoreGammaConversionModel::Initialise(const G4ParticleDefinition*,
                                                   >>  87               const G4DataVector&)
 92 {                                                  88 {
 93   G4PairProductionRelModel::Initialise(particl <<  89   if (verboseLevel > 3)
 94   if (verboseLevel > 1) {                      <<  90     G4cout << "Calling G4LivermoreGammaConversionModel::Initialise()" << G4endl;
 95     G4cout << "Calling Initialise() of G4Liver << 
 96            << "Energy range: " << LowEnergyLim << 
 97            << " GeV isMater: " << IsMaster() < << 
 98   }                                            << 
 99                                                    91 
100   if (IsMaster()) {                            <<  92   if (crossSectionHandler)
101     // Initialise element selector             <<  93   {
102     InitialiseElementSelectors(particle, cuts) <<  94     crossSectionHandler->Clear();
103                                                <<  95     delete crossSectionHandler;
104     // Access to elements                      <<  96   }
105     const G4ElementTable* elemTable = G4Elemen <<  97 
106     std::size_t numElems = (*elemTable).size() <<  98   // Read data tables for all materials
107     for (std::size_t ie = 0; ie < numElems; ++ <<  99   
108       const G4Element* elem = (*elemTable)[ie] << 100   crossSectionHandler = new G4CrossSectionHandler();
109       const G4int Z = std::min(maxZ, elem->Get << 101   crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
110       if (data[Z] == nullptr) {                << 102   G4String crossSectionFile = "pair/pp-cs-";
111         ReadData(Z);                           << 103   crossSectionHandler->LoadData(crossSectionFile);
112       }                                        << 104 
113     }                                          << 105   //
114   }                                            << 106   
115   if (isInitialised) {                         << 107   if (verboseLevel > 2) 
116     return;                                    << 108     G4cout << "Loaded cross section files for PenelopeGammaConversion" << G4endl;
                                                   >> 109 
                                                   >> 110   if (verboseLevel > 0) { 
                                                   >> 111     G4cout << "Livermore Gamma Conversion model is initialized " << G4endl
                                                   >> 112      << "Energy range: "
                                                   >> 113      << LowEnergyLimit() / MeV << " MeV - "
                                                   >> 114      << HighEnergyLimit() / GeV << " GeV"
                                                   >> 115      << G4endl;
117   }                                               116   }
                                                   >> 117 
                                                   >> 118   if(isInitialised) return;
118   fParticleChange = GetParticleChangeForGamma(    119   fParticleChange = GetParticleChangeForGamma();
119   isInitialised = true;                           120   isInitialised = true;
120 }                                                 121 }
121                                                   122 
122 //....oooOO0OOooo........oooOO0OOooo........oo    123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123                                                   124 
124 const G4String& G4LivermoreGammaConversionMode << 125 G4double 
                                                   >> 126 G4LivermoreGammaConversionModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
                                                   >> 127                   G4double GammaEnergy,
                                                   >> 128                   G4double Z, G4double,
                                                   >> 129                   G4double, G4double)
125 {                                                 130 {
126   // no check in this method - environment var << 131   if (verboseLevel > 3) {
127   if (gDataDirectory.empty()) {                << 132     G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModel" 
128     auto param = G4EmParameters::Instance();   << 133      << G4endl;
129     std::ostringstream ost;                    << 
130     if (param->LivermoreDataDir() == "livermor << 
131       ost << param->GetDirLEDATA() << "/liverm << 
132       useSpline = true;                        << 
133     }                                          << 
134     else {                                     << 
135       ost << param->GetDirLEDATA() << "/epics2 << 
136     }                                          << 
137     gDataDirectory = ost.str();                << 
138   }                                               134   }
139   return gDataDirectory;                       << 135   if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
                                                   >> 136 
                                                   >> 137   G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
                                                   >> 138   return cs;
140 }                                                 139 }
141                                                   140 
142 //....oooOO0OOooo........oooOO0OOooo........oo    141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143                                                   142 
144 void G4LivermoreGammaConversionModel::ReadData << 143 void G4LivermoreGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
                                                   >> 144                 const G4MaterialCutsCouple* couple,
                                                   >> 145                 const G4DynamicParticle* aDynamicGamma,
                                                   >> 146                 G4double,
                                                   >> 147                 G4double)
145 {                                                 148 {
146   if (verboseLevel > 1) {                      << 
147     G4cout << "Calling ReadData() of G4Livermo << 
148   }                                            << 
149                                                << 
150   if (data[Z] != nullptr) {                    << 
151     return;                                    << 
152   }                                            << 
153                                                << 
154   std::ostringstream ost;                      << 
155   ost << FindDirectoryPath() << "pp-cs-" << Z  << 
156                                                   149 
157   data[Z] = new G4PhysicsFreeVector(useSpline) << 150 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
158                                                << 151 // cross sections with Coulomb correction. A modified version of the random
159   std::ifstream fin(ost.str().c_str());        << 152 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
                                                   >> 153 
                                                   >> 154 // Note 1 : Effects due to the breakdown of the Born approximation at low
                                                   >> 155 // energy are ignored.
                                                   >> 156 // Note 2 : The differential cross section implicitly takes account of
                                                   >> 157 // pair creation in both nuclear and atomic electron fields. However triplet
                                                   >> 158 // prodution is not generated.
                                                   >> 159 
                                                   >> 160   if (verboseLevel > 3)
                                                   >> 161     G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModel" << G4endl;
                                                   >> 162 
                                                   >> 163   G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
                                                   >> 164   G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
                                                   >> 165 
                                                   >> 166   G4double epsilon ;
                                                   >> 167   G4double epsilon0 = electron_mass_c2 / photonEnergy ;
                                                   >> 168 
                                                   >> 169   // Do it fast if photon energy < 2. MeV
                                                   >> 170   if (photonEnergy < smallEnergy )
                                                   >> 171     {
                                                   >> 172       epsilon = epsilon0 + (0.5 - epsilon0) * G4UniformRand();
                                                   >> 173     }
                                                   >> 174   else
                                                   >> 175     {
                                                   >> 176       // Select randomly one element in the current material
                                                   >> 177       //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
                                                   >> 178       const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
                                                   >> 179       const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
                                                   >> 180 
                                                   >> 181       if (element == 0)
                                                   >> 182   {
                                                   >> 183     G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - element = 0" 
                                                   >> 184      << G4endl;
                                                   >> 185     return;
                                                   >> 186   }
                                                   >> 187       G4IonisParamElm* ionisation = element->GetIonisation();
                                                   >> 188       if (ionisation == 0)
                                                   >> 189   {
                                                   >> 190     G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - ionisation = 0" 
                                                   >> 191      << G4endl;
                                                   >> 192     return;
                                                   >> 193   }
                                                   >> 194 
                                                   >> 195       // Extract Coulomb factor for this Element
                                                   >> 196       G4double fZ = 8. * (ionisation->GetlogZ3());
                                                   >> 197       if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
                                                   >> 198 
                                                   >> 199       // Limits of the screening variable
                                                   >> 200       G4double screenFactor = 136. * epsilon0 / (element->GetIonisation()->GetZ3()) ;
                                                   >> 201       G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
                                                   >> 202       G4double screenMin = std::min(4.*screenFactor,screenMax) ;
                                                   >> 203 
                                                   >> 204       // Limits of the energy sampling
                                                   >> 205       G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
                                                   >> 206       G4double epsilonMin = std::max(epsilon0,epsilon1);
                                                   >> 207       G4double epsilonRange = 0.5 - epsilonMin ;
                                                   >> 208 
                                                   >> 209       // Sample the energy rate of the created electron (or positron)
                                                   >> 210       G4double screen;
                                                   >> 211       G4double gReject ;
                                                   >> 212 
                                                   >> 213       G4double f10 = ScreenFunction1(screenMin) - fZ;
                                                   >> 214       G4double f20 = ScreenFunction2(screenMin) - fZ;
                                                   >> 215       G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
                                                   >> 216       G4double normF2 = std::max(1.5 * f20,0.);
                                                   >> 217 
                                                   >> 218       do {
                                                   >> 219   if (normF1 / (normF1 + normF2) > G4UniformRand() )
                                                   >> 220     {
                                                   >> 221       epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
                                                   >> 222       screen = screenFactor / (epsilon * (1. - epsilon));
                                                   >> 223       gReject = (ScreenFunction1(screen) - fZ) / f10 ;
                                                   >> 224     }
                                                   >> 225   else
                                                   >> 226     {
                                                   >> 227       epsilon = epsilonMin + epsilonRange * G4UniformRand();
                                                   >> 228       screen = screenFactor / (epsilon * (1 - epsilon));
                                                   >> 229       gReject = (ScreenFunction2(screen) - fZ) / f20 ;
                                                   >> 230     }
                                                   >> 231       } while ( gReject < G4UniformRand() );
                                                   >> 232 
                                                   >> 233     }   //  End of epsilon sampling
                                                   >> 234 
                                                   >> 235   // Fix charges randomly
                                                   >> 236 
                                                   >> 237   G4double electronTotEnergy;
                                                   >> 238   G4double positronTotEnergy;
                                                   >> 239 
                                                   >> 240   if (CLHEP::RandBit::shootBit())
                                                   >> 241     {
                                                   >> 242       electronTotEnergy = (1. - epsilon) * photonEnergy;
                                                   >> 243       positronTotEnergy = epsilon * photonEnergy;
                                                   >> 244     }
                                                   >> 245   else
                                                   >> 246     {
                                                   >> 247       positronTotEnergy = (1. - epsilon) * photonEnergy;
                                                   >> 248       electronTotEnergy = epsilon * photonEnergy;
                                                   >> 249     }
160                                                   250 
161   if (!fin.is_open()) {                        << 251   // Scattered electron (positron) angles. ( Z - axis along the parent photon)
162     G4ExceptionDescription ed;                 << 252   // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
163     ed << "G4LivermoreGammaConversionModel dat << 253   // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
164        << G4endl;                              << 254 
165     G4Exception("G4LivermoreGammaConversionMod << 255   G4double u;
166                 "G4LEDATA version should be G4 << 256   const G4double a1 = 0.625;
167     return;                                    << 257   G4double a2 = 3. * a1;
168   }                                            << 258   //  G4double d = 27. ;
169   else {                                       << 259 
170     if (verboseLevel > 1) {                    << 260   //  if (9. / (9. + d) > G4UniformRand())
171       G4cout << "File " << ost.str() << " is o << 261   if (0.25 > G4UniformRand())
                                                   >> 262     {
                                                   >> 263       u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
                                                   >> 264     }
                                                   >> 265   else
                                                   >> 266     {
                                                   >> 267       u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
172     }                                             268     }
173                                                   269 
174     data[Z]->Retrieve(fin, true);              << 270   G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
175   }                                            << 271   G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
176   // Activation of spline interpolation        << 272   G4double phi  = twopi * G4UniformRand();
177   if (useSpline) data[Z]->FillSecondDerivative << 273 
                                                   >> 274   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
                                                   >> 275   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
                                                   >> 276   
                                                   >> 277   
                                                   >> 278   // Kinematics of the created pair:
                                                   >> 279   // the electron and positron are assumed to have a symetric angular 
                                                   >> 280   // distribution with respect to the Z axis along the parent photon
                                                   >> 281   
                                                   >> 282   G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
                                                   >> 283   
                                                   >> 284   // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
                                                   >> 285 
                                                   >> 286   G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
                                                   >> 287   electronDirection.rotateUz(photonDirection);
                                                   >> 288       
                                                   >> 289   G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
                                                   >> 290                   electronDirection,
                                                   >> 291                   electronKineEnergy);
                                                   >> 292 
                                                   >> 293   // The e+ is always created (even with kinetic energy = 0) for further annihilation
                                                   >> 294   G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
                                                   >> 295 
                                                   >> 296   // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
                                                   >> 297 
                                                   >> 298   G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
                                                   >> 299   positronDirection.rotateUz(photonDirection);   
                                                   >> 300   
                                                   >> 301   // Create G4DynamicParticle object for the particle2 
                                                   >> 302   G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
                                                   >> 303                    positronDirection, positronKineEnergy);
                                                   >> 304   // Fill output vector
                                                   >> 305   fvect->push_back(particle1);
                                                   >> 306   fvect->push_back(particle2);
                                                   >> 307 
                                                   >> 308   // kill incident photon
                                                   >> 309   fParticleChange->SetProposedKineticEnergy(0.);
                                                   >> 310   fParticleChange->ProposeTrackStatus(fStopAndKill);   
                                                   >> 311 
178 }                                                 312 }
179                                                   313 
180 //....oooOO0OOooo........oooOO0OOooo........oo    314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
181                                                   315 
182 G4double                                       << 316 G4double G4LivermoreGammaConversionModel::ScreenFunction1(G4double screenVariable)
183 G4LivermoreGammaConversionModel::ComputeCrossS << 
184                                                << 
185                                                << 
186 {                                                 317 {
187   if (verboseLevel > 1) {                      << 318   // Compute the value of the screening function 3*phi1 - phi2
188     G4cout << "G4LivermoreGammaConversionModel << 
189   }                                            << 
190                                                << 
191   if (GammaEnergy < lowEnergyLimit) {          << 
192     return 0.0;                                << 
193   }                                            << 
194                                                   319 
195   G4double xs = 0.0;                           << 320   G4double value;
                                                   >> 321   
                                                   >> 322   if (screenVariable > 1.)
                                                   >> 323     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
                                                   >> 324   else
                                                   >> 325     value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
                                                   >> 326   
                                                   >> 327   return value;
                                                   >> 328 } 
196                                                   329 
197   G4int intZ = std::max(1, std::min(G4lrint(Z) << 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
198                                                << 
199   G4PhysicsFreeVector* pv = data[intZ];        << 
200                                                << 
201   // if element was not initialised            << 
202   // do initialisation safely for MT mode      << 
203   if (pv == nullptr) {                         << 
204     InitialiseForElement(particle, intZ);      << 
205     pv = data[intZ];                           << 
206     if (pv == nullptr) {                       << 
207       return xs;                               << 
208     }                                          << 
209   }                                            << 
210   // x-section is taken from the table         << 
211   xs = pv->Value(GammaEnergy);                 << 
212                                                << 
213   if (verboseLevel > 0) {                      << 
214     G4cout << "*** Gamma conversion xs for Z=" << 
215            << "  cs=" << xs / millibarn << " m << 
216   }                                            << 
217   return xs;                                   << 
218 }                                              << 
219                                                << 
220 //....oooOO0OOooo........oooOO0OOooo........oo << 
221                                                   331 
222 void G4LivermoreGammaConversionModel::Initiali << 332 G4double G4LivermoreGammaConversionModel::ScreenFunction2(G4double screenVariable)
223 {                                                 333 {
224   G4AutoLock l(&LivermoreGammaConversionModelM << 334   // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
225   if (data[Z] == nullptr) {                    << 335   
226     ReadData(Z);                               << 336   G4double value;
227   }                                            << 337   
228   l.unlock();                                  << 338   if (screenVariable > 1.)
229 }                                              << 339     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
                                                   >> 340   else
                                                   >> 341     value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
                                                   >> 342   
                                                   >> 343   return value;
                                                   >> 344 } 
230                                                   345 
231 //....oooOO0OOooo........oooOO0OOooo........oo << 
232                                                   346