Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc (Version 9.4.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4AtomicDeexcitation.cc,v 1.11 
                                                   >>  28 // GEANT4 tag $Name: not supported by cvs2svn $
 27 //                                                 29 //
 28 // Authors: Elena Guardincerri (Elena.Guardinc     30 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it)
 29 //          Alfonso Mantero (Alfonso.Mantero@g     31 //          Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 30 //                                                 32 //
 31 // History:                                        33 // History:
 32 // -----------                                     34 // -----------
 33 //                                                 35 //  
 34 //  16 Sept 2001  First committed to cvs           36 //  16 Sept 2001  First committed to cvs
 35 //  12 Sep  2003  Bug in auger production fixe     37 //  12 Sep  2003  Bug in auger production fixed
 36 //                                                 38 //
 37 // -------------------------------------------     39 // -------------------------------------------------------------------
 38                                                    40 
 39 #include "G4AtomicDeexcitation.hh"                 41 #include "G4AtomicDeexcitation.hh"
 40 #include "Randomize.hh"                            42 #include "Randomize.hh"
 41 #include "G4PhysicalConstants.hh"              << 
 42 #include "G4SystemOfUnits.hh"                  << 
 43 #include "G4Gamma.hh"                              43 #include "G4Gamma.hh"
 44 #include "G4Electron.hh"                           44 #include "G4Electron.hh"
 45 #include "G4AtomicTransitionManager.hh"            45 #include "G4AtomicTransitionManager.hh"
 46 #include "G4FluoTransition.hh"                     46 #include "G4FluoTransition.hh"
 47                                                    47 
 48 G4AtomicDeexcitation::G4AtomicDeexcitation():      48 G4AtomicDeexcitation::G4AtomicDeexcitation():
 49   minGammaEnergy(100.*eV),                         49   minGammaEnergy(100.*eV),
 50   minElectronEnergy(100.*eV),                      50   minElectronEnergy(100.*eV),
 51   fAuger(false)                                    51   fAuger(false)
 52 {                                              <<  52 {}
 53                                                << 
 54   G4cout << " ******************************** << 
 55   G4cout << " *                  W A R N I N G << 
 56   G4cout << " ******************************** << 
 57   G4cout << " *                                << 
 58   G4cout << " *  Class G4AtomicDeexcitation is << 
 59   G4cout << " * discontinued and is going to b << 
 60   G4cout << " *     release please migrate to  << 
 61   G4cout << " *                                << 
 62   G4cout << " ******************************** << 
 63                                                << 
 64   augerVacancyId=0;                            << 
 65   newShellId=0;                                << 
 66 }                                              << 
 67                                                    53 
 68 G4AtomicDeexcitation::~G4AtomicDeexcitation()      54 G4AtomicDeexcitation::~G4AtomicDeexcitation()
 69 {}                                                 55 {}
 70                                                    56 
 71 std::vector<G4DynamicParticle*>* G4AtomicDeexc     57 std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId)
 72 {                                                  58 { 
 73                                                    59 
 74   std::vector<G4DynamicParticle*>* vectorOfPar     60   std::vector<G4DynamicParticle*>* vectorOfParticles;
 75   vectorOfParticles = new std::vector<G4Dynami     61   vectorOfParticles = new std::vector<G4DynamicParticle*>;
 76                                                    62 
 77   G4DynamicParticle* aParticle = nullptr;      <<  63   G4DynamicParticle* aParticle;
 78   G4int provShellId = 0;                           64   G4int provShellId = 0;
 79   G4int counter = 0;                               65   G4int counter = 0;
 80                                                    66   
 81   // The aim of this loop is to generate more      67   // The aim of this loop is to generate more than one fluorecence photon 
 82   // from the same ionizing event                  68   // from the same ionizing event 
 83   do                                               69   do
 84     {                                              70     {
 85       if (counter == 0)                            71       if (counter == 0) 
 86   // First call to GenerateParticles(...):         72   // First call to GenerateParticles(...):
 87   // givenShellId is given by the process          73   // givenShellId is given by the process
 88   {                                                74   {
 89     provShellId = SelectTypeOfTransition(Z, gi     75     provShellId = SelectTypeOfTransition(Z, givenShellId);
 90                                                    76     
 91     if  ( provShellId >0)                          77     if  ( provShellId >0) 
 92       {                                            78       {
 93         aParticle = GenerateFluorescence(Z,giv     79         aParticle = GenerateFluorescence(Z,givenShellId,provShellId);  
 94       }                                            80       }
 95     else if ( provShellId == -1)                   81     else if ( provShellId == -1)
 96       {                                            82       {
 97         aParticle = GenerateAuger(Z, givenShel     83         aParticle = GenerateAuger(Z, givenShellId);
 98       }                                            84       }
 99     else                                           85     else
100       {                                            86       {
101         G4Exception("G4AtomicDeexcitation::Con <<  87         G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it");
102       }                                            88       }
103   }                                                89   }
104       else                                         90       else 
105   // Following calls to GenerateParticles(...)     91   // Following calls to GenerateParticles(...):
106   // newShellId is given by GenerateFluorescen     92   // newShellId is given by GenerateFluorescence(...)
107   {                                                93   {
108     provShellId = SelectTypeOfTransition(Z,new     94     provShellId = SelectTypeOfTransition(Z,newShellId);
109     if  (provShellId >0)                           95     if  (provShellId >0)
110       {                                            96       {
111         aParticle = GenerateFluorescence(Z,new     97         aParticle = GenerateFluorescence(Z,newShellId,provShellId);
112       }                                            98       }
113     else if ( provShellId == -1)                   99     else if ( provShellId == -1)
114       {                                           100       {
115         aParticle = GenerateAuger(Z, newShellI    101         aParticle = GenerateAuger(Z, newShellId);
116       }                                           102       }
117     else                                          103     else
118       {                                           104       {
119         G4Exception("G4AtomicDeexcitation::con << 105         G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it");
120       }                                           106       }
121   }                                               107   }
122       counter++;                                  108       counter++;
123       if (aParticle != nullptr) {vectorOfParti << 109       if (aParticle != 0) {vectorOfParticles->push_back(aParticle);}
124       else {provShellId = -2;}                    110       else {provShellId = -2;}
125     }                                             111     }
126                                                   112   
127   // Look this in a particular way: only one a    113   // Look this in a particular way: only one auger emitted! // ????
128   while (provShellId > -2);                       114   while (provShellId > -2); 
129                                                   115 
130   // debug                                        116   // debug  
131   // if (vectorOfParticles->size() > 0) {         117   // if (vectorOfParticles->size() > 0) {
132   //   G4cout << " DEEXCITATION!" << G4endl;      118   //   G4cout << " DEEXCITATION!" << G4endl;
133   // }                                            119   // }
134                                                   120 
135   return vectorOfParticles;                       121   return vectorOfParticles;
136 }                                                 122 }
137                                                   123 
138 G4int G4AtomicDeexcitation::SelectTypeOfTransi    124 G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
139 {                                                 125 {
140   if (shellId <=0 )                               126   if (shellId <=0 ) 
141     {G4Exception("G4AtomicDeexcitation::Select << 127     {G4Exception("G4AtomicDeexcitation: zero or negative shellId");}
142                                                   128 
143   //G4bool fluoTransitionFoundFlag = false;    << 129   G4bool fluoTransitionFoundFlag = false;
144                                                   130   
145   const G4AtomicTransitionManager*  transition    131   const G4AtomicTransitionManager*  transitionManager = 
146         G4AtomicTransitionManager::Instance();    132         G4AtomicTransitionManager::Instance();
147   G4int provShellId = -1;                         133   G4int provShellId = -1;
148   G4int shellNum = 0;                             134   G4int shellNum = 0;
149   G4int maxNumOfShells = transitionManager->Nu    135   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
150                                                   136   
151   const G4FluoTransition* refShell = transitio    137   const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
152                                                   138 
153   // This loop gives shellNum the value of the    139   // This loop gives shellNum the value of the index of shellId
154   // in the vector storing the list of the she    140   // in the vector storing the list of the shells reachable through
155   // a radiative transition                       141   // a radiative transition
156   if ( shellId <= refShell->FinalShellId())       142   if ( shellId <= refShell->FinalShellId())
157     {                                             143     {
158       while (shellId != transitionManager->Rea    144       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
159   {                                               145   {
160     if(shellNum ==maxNumOfShells-1)               146     if(shellNum ==maxNumOfShells-1)
161       {                                           147       {
162         break;                                    148         break;
163       }                                           149       }
164     shellNum++;                                   150     shellNum++;
165   }                                               151   }
166       G4int transProb = 0; //AM change 29/6/07    152       G4int transProb = 0; //AM change 29/6/07 was 1
167                                                   153    
168       G4double partialProb = G4UniformRand();     154       G4double partialProb = G4UniformRand();      
169       G4double partSum = 0;                       155       G4double partSum = 0;
170       const G4FluoTransition* aShell = transit    156       const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);      
171       G4int trSize = (G4int)(aShell->Transitio << 157       G4int trSize =  (aShell->TransitionProbabilities()).size();
172                                                   158     
173       // Loop over the shells wich can provide    159       // Loop over the shells wich can provide an electron for a 
174       // radiative transition towards shellId:    160       // radiative transition towards shellId:
175       // in every loop the partial sum of the     161       // in every loop the partial sum of the first transProb shells
176       // is calculated and compared with a ran    162       // is calculated and compared with a random number [0,1].
177       // If the partial sum is greater, the sh    163       // If the partial sum is greater, the shell whose index is transProb
178       // is chosen as the starting shell for a    164       // is chosen as the starting shell for a radiative transition
179       // and its identity is returned             165       // and its identity is returned
180       // Else, terminateded the loop, -1 is re    166       // Else, terminateded the loop, -1 is returned
181       while(transProb < trSize){                  167       while(transProb < trSize){
182                                                   168   
183    partSum += aShell->TransitionProbability(tr    169    partSum += aShell->TransitionProbability(transProb);
184                                                   170 
185    if(partialProb <= partSum)                     171    if(partialProb <= partSum)
186      {                                            172      {
187        provShellId = aShell->OriginatingShellI    173        provShellId = aShell->OriginatingShellId(transProb);
188        //fluoTransitionFoundFlag = true;       << 174        fluoTransitionFoundFlag = true;
189                                                   175 
190        break;                                     176        break;
191      }                                            177      }
192    transProb++;                                   178    transProb++;
193       }                                           179       }
194                                                   180 
195       // here provShellId is the right one or     181       // here provShellId is the right one or is -1.
196       // if -1, the control is passed to the A    182       // if -1, the control is passed to the Auger generation part of the package 
197     }                                             183     }
                                                   >> 184 
                                                   >> 185 
                                                   >> 186 
198   else                                            187   else 
199     provShellId = -1;                          << 188     {
                                                   >> 189  
                                                   >> 190      provShellId = -1;
200                                                   191 
                                                   >> 192     }
201   return provShellId;                             193   return provShellId;
202 }                                                 194 }
203                                                   195 
204 G4DynamicParticle* G4AtomicDeexcitation::Gener    196 G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z, 
205                     G4int shellId,                197                     G4int shellId,
206                     G4int provShellId )           198                     G4int provShellId )
207 {                                                 199 { 
                                                   >> 200 
                                                   >> 201 
208   const G4AtomicTransitionManager*  transition    202   const G4AtomicTransitionManager*  transitionManager = G4AtomicTransitionManager::Instance();
209   //  G4int provenienceShell = provShellId;       203   //  G4int provenienceShell = provShellId;
210                                                   204 
211   //isotropic angular distribution for the out    205   //isotropic angular distribution for the outcoming photon
212   G4double newcosTh = 1.-2.*G4UniformRand();      206   G4double newcosTh = 1.-2.*G4UniformRand();
213   G4double  newsinTh = std::sqrt(1.-newcosTh*n    207   G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
214   G4double newPhi = twopi*G4UniformRand();        208   G4double newPhi = twopi*G4UniformRand();
215                                                   209   
216   G4double xDir =  newsinTh*std::sin(newPhi);     210   G4double xDir =  newsinTh*std::sin(newPhi);
217   G4double yDir = newsinTh*std::cos(newPhi);      211   G4double yDir = newsinTh*std::cos(newPhi);
218   G4double zDir = newcosTh;                       212   G4double zDir = newcosTh;
219                                                   213   
220   G4ThreeVector newGammaDirection(xDir,yDir,zD    214   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
221                                                   215   
222   G4int shellNum = 0;                             216   G4int shellNum = 0;
223   G4int maxNumOfShells = transitionManager->Nu    217   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
224                                                   218   
225   // find the index of the shell named shellId    219   // find the index of the shell named shellId
226   while (shellId != transitionManager->           220   while (shellId != transitionManager->
227    ReachableShell(Z,shellNum)->FinalShellId())    221    ReachableShell(Z,shellNum)->FinalShellId())
228     {                                             222     {
229       if(shellNum == maxNumOfShells-1)            223       if(shellNum == maxNumOfShells-1)
230   {                                               224   {
231     break;                                        225     break;
232   }                                               226   }
233       shellNum++;                                 227       shellNum++;
234     }                                             228     }
235   // number of shell from wich an electron can    229   // number of shell from wich an electron can reach shellId
236   G4int transitionSize = (G4int)transitionMana << 230   size_t transitionSize = transitionManager->
237     ReachableShell(Z,shellNum)->OriginatingShe    231     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
238                                                   232   
239   G4int index = 0;                             << 233   size_t index = 0;
240                                                   234   
241   // find the index of the shell named provShe    235   // find the index of the shell named provShellId in the vector
242   // storing the shells from which shellId can    236   // storing the shells from which shellId can be reached 
243   while (provShellId != transitionManager->       237   while (provShellId != transitionManager->
244    ReachableShell(Z,shellNum)->OriginatingShel    238    ReachableShell(Z,shellNum)->OriginatingShellId(index))
245     {                                             239     {
246       if(index ==  transitionSize-1)              240       if(index ==  transitionSize-1)
247   {                                               241   {
248     break;                                        242     break;
249   }                                               243   }
250       index++;                                    244       index++;
251     }                                             245     }
252   // energy of the gamma leaving provShellId f    246   // energy of the gamma leaving provShellId for shellId
253   G4double transitionEnergy = transitionManage    247   G4double transitionEnergy = transitionManager->
254     ReachableShell(Z,shellNum)->TransitionEner    248     ReachableShell(Z,shellNum)->TransitionEnergy(index);
255                                                   249   
256   // This is the shell where the new vacancy i    250   // This is the shell where the new vacancy is: it is the same
257   // shell where the electron came from           251   // shell where the electron came from
258   newShellId = transitionManager->                252   newShellId = transitionManager->
259     ReachableShell(Z,shellNum)->OriginatingShe    253     ReachableShell(Z,shellNum)->OriginatingShellId(index);
260                                                   254   
                                                   >> 255   
261   G4DynamicParticle* newPart = new G4DynamicPa    256   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
262                  newGammaDirection,               257                  newGammaDirection,
263                  transitionEnergy);               258                  transitionEnergy);
264   return newPart;                                 259   return newPart;
265 }                                                 260 }
266                                                   261 
267 G4DynamicParticle* G4AtomicDeexcitation::Gener    262 G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
268 {                                                 263 {
269   if(!fAuger) return 0;                           264   if(!fAuger) return 0;
270                                                   265   
                                                   >> 266 
271   const G4AtomicTransitionManager*  transition    267   const G4AtomicTransitionManager*  transitionManager = 
272         G4AtomicTransitionManager::Instance();    268         G4AtomicTransitionManager::Instance();
273                                                   269 
                                                   >> 270 
                                                   >> 271 
274   if (shellId <=0 )                               272   if (shellId <=0 ) 
275     {G4Exception("G4AtomicDeexcitation::Genera << 273     {G4Exception("G4AtomicDeexcitation: zero or negative shellId");}
276                                                   274   
277   // G4int provShellId = -1;                      275   // G4int provShellId = -1;
278   G4int maxNumOfShells = transitionManager->Nu    276   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
279                                                   277   
280   const G4AugerTransition* refAugerTransition     278   const G4AugerTransition* refAugerTransition = 
281         transitionManager->ReachableAugerShell    279         transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
282                                                   280 
283                                                   281 
284   // This loop gives to shellNum the value of     282   // This loop gives to shellNum the value of the index of shellId
285   // in the vector storing the list of the vac    283   // in the vector storing the list of the vacancies in the variuos shells 
286   // that can originate a NON-radiative transi    284   // that can originate a NON-radiative transition
                                                   >> 285   
                                                   >> 286   // ---- MGP ---- Next line commented out to remove compilation warning
                                                   >> 287   // G4int p = refAugerTransition->FinalShellId();
                                                   >> 288 
287   G4int shellNum = 0;                             289   G4int shellNum = 0;
288                                                   290 
                                                   >> 291 
289   if ( shellId <= refAugerTransition->FinalShe    292   if ( shellId <= refAugerTransition->FinalShellId() ) 
290     //"FinalShellId" is final from the point o    293     //"FinalShellId" is final from the point of view of the elctron who makes the transition, 
291     // being the Id of the shell in which ther    294     // being the Id of the shell in which there is a vacancy
292     {                                             295     {
293       G4int pippo = transitionManager->Reachab    296       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
294       if (shellId  != pippo ) {                   297       if (shellId  != pippo ) {
295   do {                                            298   do { 
296     shellNum++;                                   299     shellNum++;
297     if(shellNum == maxNumOfShells)                300     if(shellNum == maxNumOfShells)
298       {                                           301       {
299                                                   302 
300         //G4Exception("G4AtomicDeexcitation: N    303         //G4Exception("G4AtomicDeexcitation: No Auger transition found");
301         return 0;                                 304         return 0;
302       }                                           305       }
303   }                                               306   }
304   while (shellId != (transitionManager->Reacha    307   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
305       }                                           308       }
306                                                   309 
                                                   >> 310 
                                                   >> 311       // Now we have that shellnum is the shellIndex of the shell named ShellId
                                                   >> 312 
                                                   >> 313       //      G4cout << " the index of the shell is: "<<shellNum<<G4endl;
                                                   >> 314 
                                                   >> 315       // But we have now to select two shells: one for the transition, 
                                                   >> 316       // and another for the auger emission.
                                                   >> 317 
307       G4int transitionLoopShellIndex = 0;         318       G4int transitionLoopShellIndex = 0;      
308       G4double partSum = 0;                       319       G4double partSum = 0;
309       const G4AugerTransition* anAugerTransiti    320       const G4AugerTransition* anAugerTransition = 
310             transitionManager->ReachableAugerS    321             transitionManager->ReachableAugerShell(Z,shellNum);
311                                                   322 
312       G4int transitionSize = (G4int)           << 323       //      G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl;
                                                   >> 324 
                                                   >> 325 
                                                   >> 326       G4int transitionSize = 
313             (anAugerTransition->TransitionOrig    327             (anAugerTransition->TransitionOriginatingShellIds())->size();
314       while (transitionLoopShellIndex < transi    328       while (transitionLoopShellIndex < transitionSize) {
315                                                   329 
316         std::vector<G4int>::const_iterator pos    330         std::vector<G4int>::const_iterator pos = 
317                anAugerTransition->TransitionOr    331                anAugerTransition->TransitionOriginatingShellIds()->begin();
318                                                   332 
319         G4int transitionLoopShellId = *(pos+tr    333         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
320         G4int numberOfPossibleAuger = (G4int)  << 334         G4int numberOfPossibleAuger = 
321               (anAugerTransition->AugerTransit    335               (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
322         G4int augerIndex = 0;                     336         G4int augerIndex = 0;
                                                   >> 337         //      G4int partSum2 = 0;
323                                                   338 
324   if (augerIndex < numberOfPossibleAuger) {    << 339 
                                                   >> 340   if (augerIndex < numberOfPossibleAuger) {
                                                   >> 341     
325     do                                            342     do 
326       {                                           343       {
327         G4double thisProb = anAugerTransition-    344         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
328                     transitionLoopShellId);       345                     transitionLoopShellId);
329         partSum += thisProb;                      346         partSum += thisProb;
330         augerIndex++;                             347         augerIndex++;
331                                                   348         
332       } while (augerIndex < numberOfPossibleAu    349       } while (augerIndex < numberOfPossibleAuger);
333     }                                             350     }
334         transitionLoopShellIndex++;               351         transitionLoopShellIndex++;
335       }                                           352       }
336                                                   353       
337                                                   354 
                                                   >> 355 
338       // Now we have the entire probability of    356       // Now we have the entire probability of an auger transition for the vacancy 
339       // located in shellNum (index of shellId    357       // located in shellNum (index of shellId) 
                                                   >> 358 
                                                   >> 359       // AM *********************** F I X E D **************************** AM
                                                   >> 360       // Here we duplicate the previous loop, this time looking to the sum of the probabilities 
                                                   >> 361       // to be under the random number shoot by G4 UniformRdandom. This could have been done in the 
                                                   >> 362       // previuos loop, while integrating the probabilities. There is a bug that will be fixed 
                                                   >> 363       // 5 minutes from now: a line:
                                                   >> 364       // G4int numberOfPossibleAuger = (anAugerTransition->
                                                   >> 365       // AugerTransitionProbabilities(transitionLoopShellId))->size();
                                                   >> 366       // to be inserted.
                                                   >> 367       // AM *********************** F I X E D **************************** AM
                                                   >> 368 
                                                   >> 369       // Remains to get the same result with a single loop.
                                                   >> 370 
                                                   >> 371       // AM *********************** F I X E D **************************** AM
                                                   >> 372       // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from 
                                                   >> 373       // a vacancy in one shell, but not all of these are present in data tables. So if a transition 
                                                   >> 374       // doesn't occur in the main one a local energy deposition must occur, instead of (like now) 
                                                   >> 375       // generating the last transition present in EADL data.
                                                   >> 376       // AM *********************** F I X E D **************************** AM
                                                   >> 377 
                                                   >> 378 
340       G4double totalVacancyAugerProbability =     379       G4double totalVacancyAugerProbability = partSum;
341                                                   380 
                                                   >> 381 
342       //And now we start to select the right a    382       //And now we start to select the right auger transition and emission
343       G4int transitionRandomShellIndex = 0;       383       G4int transitionRandomShellIndex = 0;
344       G4int transitionRandomShellId = 1;          384       G4int transitionRandomShellId = 1;
345       G4int augerIndex = 0;                       385       G4int augerIndex = 0;
346       partSum = 0;                                386       partSum = 0; 
347       G4double partialProb = G4UniformRand();     387       G4double partialProb = G4UniformRand();
348       // G4int augerOriginatingShellId = 0;       388       // G4int augerOriginatingShellId = 0;
349                                                   389       
350       G4int numberOfPossibleAuger = 0;            390       G4int numberOfPossibleAuger = 0;
351                                                   391       
352       G4bool foundFlag = false;                   392       G4bool foundFlag = false;
353                                                   393 
354       while (transitionRandomShellIndex < tran    394       while (transitionRandomShellIndex < transitionSize) {
                                                   >> 395 
355         std::vector<G4int>::const_iterator pos    396         std::vector<G4int>::const_iterator pos = 
356                anAugerTransition->TransitionOr    397                anAugerTransition->TransitionOriginatingShellIds()->begin();
357                                                   398 
358         transitionRandomShellId = *(pos+transi    399         transitionRandomShellId = *(pos+transitionRandomShellIndex);
359                                                   400         
360   augerIndex = 0;                                 401   augerIndex = 0;
361   numberOfPossibleAuger = (G4int)(anAugerTrans << 402   numberOfPossibleAuger = (anAugerTransition-> 
362          AugerTransitionProbabilities(transiti    403          AugerTransitionProbabilities(transitionRandomShellId))->size();
363                                                   404 
364         while (augerIndex < numberOfPossibleAu    405         while (augerIndex < numberOfPossibleAuger) {
365     G4double thisProb =anAugerTransition->Auge    406     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
366                      transitionRandomShellId);    407                      transitionRandomShellId);
367                                                   408 
368           partSum += thisProb;                    409           partSum += thisProb;
369                                                   410           
370           if (partSum >= (partialProb*totalVac    411           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
371       foundFlag = true;                           412       foundFlag = true;
372       break;                                      413       break;
373     }                                             414     }
374           augerIndex++;                           415           augerIndex++;
375         }                                         416         }
376         if (partSum >= (partialProb*totalVacan    417         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
377         transitionRandomShellIndex++;             418         transitionRandomShellIndex++;
378       }                                           419       }
379                                                   420 
380       // Now we have the index of the shell fr    421       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
381       // and the id of the shell, from which t    422       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
382       // If no Transition has been found, 0 is    423       // If no Transition has been found, 0 is returned.  
383                                                   424 
384       if (!foundFlag) {return 0;}                 425       if (!foundFlag) {return 0;}      
385                                                   426       
386       // Isotropic angular distribution for th    427       // Isotropic angular distribution for the outcoming e-
387       G4double newcosTh = 1.-2.*G4UniformRand(    428       G4double newcosTh = 1.-2.*G4UniformRand();
388       G4double  newsinTh = std::sqrt(1.-newcos    429       G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
389       G4double newPhi = twopi*G4UniformRand();    430       G4double newPhi = twopi*G4UniformRand();
390                                                   431       
391       G4double xDir =  newsinTh*std::sin(newPh    432       G4double xDir =  newsinTh*std::sin(newPhi);
392       G4double yDir = newsinTh*std::cos(newPhi    433       G4double yDir = newsinTh*std::cos(newPhi);
393       G4double zDir = newcosTh;                   434       G4double zDir = newcosTh;
394                                                   435       
395       G4ThreeVector newElectronDirection(xDir,    436       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
396                                                   437       
397       // energy of the auger electron emitted     438       // energy of the auger electron emitted
398                                                << 439       
                                                   >> 440       
399       G4double transitionEnergy = anAugerTrans    441       G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
400       /*                                          442       /*
401   G4cout << "AUger TransitionId " << anAugerTr    443   G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
402   G4cout << "augerIndex: " << augerIndex << G4    444   G4cout << "augerIndex: " << augerIndex << G4endl;
403   G4cout << "transitionShellId: " << transitio    445   G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
404       */                                          446       */
405                                                   447       
406       // This is the shell where the new vacan    448       // This is the shell where the new vacancy is: it is the same
407       // shell where the electron came from       449       // shell where the electron came from
408       newShellId = transitionRandomShellId;       450       newShellId = transitionRandomShellId;
409                                                << 451       
                                                   >> 452       
410       G4DynamicParticle* newPart = new G4Dynam    453       G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 
411                newElectronDirection,              454                newElectronDirection,
412                transitionEnergy);                 455                transitionEnergy);
413       return newPart;                             456       return newPart;
                                                   >> 457 
414     }                                             458     }
415   else                                            459   else 
416     {                                             460     {
417       //G4Exception("G4AtomicDeexcitation: no     461       //G4Exception("G4AtomicDeexcitation: no auger transition found");
418       return 0;                                   462       return 0;
419     }                                             463     }
                                                   >> 464   
420 }                                                 465 }
421                                                   466 
422 void G4AtomicDeexcitation::SetCutForSecondaryP    467 void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
423 {                                                 468 {
424   minGammaEnergy = cut;                           469   minGammaEnergy = cut;
425 }                                                 470 }
426                                                   471 
427 void G4AtomicDeexcitation::SetCutForAugerElect    472 void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
428 {                                                 473 {
429   minElectronEnergy = cut;                        474   minElectronEnergy = cut;
430 }                                                 475 }
431                                                   476 
432 void G4AtomicDeexcitation::ActivateAugerElectr    477 void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val)
433 {                                                 478 {
434   fAuger = val;                                   479   fAuger = val;
435 }                                                 480 }
436                                                   481 
437                                                   482 
438                                                   483 
439                                                   484 
440                                                   485 
441                                                   486 
442                                                   487 
443                                                   488