Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4AtomicDeexcitation.cc,v 1.11 >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ 27 // 29 // 28 // Authors: Elena Guardincerri (Elena.Guardinc 30 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it) 29 // Alfonso Mantero (Alfonso.Mantero@g 31 // Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 30 // 32 // 31 // History: 33 // History: 32 // ----------- 34 // ----------- 33 // 35 // 34 // 16 Sept 2001 First committed to cvs 36 // 16 Sept 2001 First committed to cvs 35 // 12 Sep 2003 Bug in auger production fixe 37 // 12 Sep 2003 Bug in auger production fixed 36 // 38 // 37 // ------------------------------------------- 39 // ------------------------------------------------------------------- 38 40 39 #include "G4AtomicDeexcitation.hh" 41 #include "G4AtomicDeexcitation.hh" 40 #include "Randomize.hh" 42 #include "Randomize.hh" 41 #include "G4PhysicalConstants.hh" << 42 #include "G4SystemOfUnits.hh" << 43 #include "G4Gamma.hh" 43 #include "G4Gamma.hh" 44 #include "G4Electron.hh" 44 #include "G4Electron.hh" 45 #include "G4AtomicTransitionManager.hh" 45 #include "G4AtomicTransitionManager.hh" 46 #include "G4FluoTransition.hh" 46 #include "G4FluoTransition.hh" 47 47 48 G4AtomicDeexcitation::G4AtomicDeexcitation(): 48 G4AtomicDeexcitation::G4AtomicDeexcitation(): 49 minGammaEnergy(100.*eV), 49 minGammaEnergy(100.*eV), 50 minElectronEnergy(100.*eV), 50 minElectronEnergy(100.*eV), 51 fAuger(false) 51 fAuger(false) 52 { << 52 {} 53 << 54 G4cout << " ******************************** << 55 G4cout << " * W A R N I N G << 56 G4cout << " ******************************** << 57 G4cout << " * << 58 G4cout << " * Class G4AtomicDeexcitation is << 59 G4cout << " * discontinued and is going to b << 60 G4cout << " * release please migrate to << 61 G4cout << " * << 62 G4cout << " ******************************** << 63 << 64 augerVacancyId=0; << 65 newShellId=0; << 66 } << 67 53 68 G4AtomicDeexcitation::~G4AtomicDeexcitation() 54 G4AtomicDeexcitation::~G4AtomicDeexcitation() 69 {} 55 {} 70 56 71 std::vector<G4DynamicParticle*>* G4AtomicDeexc 57 std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId) 72 { 58 { 73 59 74 std::vector<G4DynamicParticle*>* vectorOfPar 60 std::vector<G4DynamicParticle*>* vectorOfParticles; >> 61 75 vectorOfParticles = new std::vector<G4Dynami 62 vectorOfParticles = new std::vector<G4DynamicParticle*>; 76 << 63 G4DynamicParticle* aParticle; 77 G4DynamicParticle* aParticle = nullptr; << 78 G4int provShellId = 0; 64 G4int provShellId = 0; 79 G4int counter = 0; 65 G4int counter = 0; 80 66 81 // The aim of this loop is to generate more 67 // The aim of this loop is to generate more than one fluorecence photon 82 // from the same ionizing event 68 // from the same ionizing event 83 do 69 do 84 { 70 { 85 if (counter == 0) 71 if (counter == 0) 86 // First call to GenerateParticles(...): 72 // First call to GenerateParticles(...): 87 // givenShellId is given by the process 73 // givenShellId is given by the process 88 { 74 { 89 provShellId = SelectTypeOfTransition(Z, gi 75 provShellId = SelectTypeOfTransition(Z, givenShellId); 90 76 91 if ( provShellId >0) 77 if ( provShellId >0) 92 { 78 { 93 aParticle = GenerateFluorescence(Z,giv 79 aParticle = GenerateFluorescence(Z,givenShellId,provShellId); 94 } 80 } 95 else if ( provShellId == -1) 81 else if ( provShellId == -1) 96 { 82 { 97 aParticle = GenerateAuger(Z, givenShel 83 aParticle = GenerateAuger(Z, givenShellId); 98 } 84 } 99 else 85 else 100 { 86 { 101 G4Exception("G4AtomicDeexcitation::Con << 87 G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it"); 102 } 88 } 103 } 89 } 104 else 90 else 105 // Following calls to GenerateParticles(...) 91 // Following calls to GenerateParticles(...): 106 // newShellId is given by GenerateFluorescen 92 // newShellId is given by GenerateFluorescence(...) 107 { 93 { 108 provShellId = SelectTypeOfTransition(Z,new 94 provShellId = SelectTypeOfTransition(Z,newShellId); 109 if (provShellId >0) 95 if (provShellId >0) 110 { 96 { 111 aParticle = GenerateFluorescence(Z,new 97 aParticle = GenerateFluorescence(Z,newShellId,provShellId); 112 } 98 } 113 else if ( provShellId == -1) 99 else if ( provShellId == -1) 114 { 100 { 115 aParticle = GenerateAuger(Z, newShellI 101 aParticle = GenerateAuger(Z, newShellId); 116 } 102 } 117 else 103 else 118 { 104 { 119 G4Exception("G4AtomicDeexcitation::con << 105 G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it"); 120 } 106 } 121 } 107 } 122 counter++; 108 counter++; 123 if (aParticle != nullptr) {vectorOfParti << 109 if (aParticle != 0) {vectorOfParticles->push_back(aParticle);} 124 else {provShellId = -2;} 110 else {provShellId = -2;} 125 } 111 } 126 112 127 // Look this in a particular way: only one a << 113 // Look this in a particular way: only one auger emitted! // 128 while (provShellId > -2); 114 while (provShellId > -2); 129 << 115 130 // debug << 131 // if (vectorOfParticles->size() > 0) { << 132 // G4cout << " DEEXCITATION!" << G4endl; << 133 // } << 134 << 135 return vectorOfParticles; 116 return vectorOfParticles; 136 } 117 } 137 118 138 G4int G4AtomicDeexcitation::SelectTypeOfTransi 119 G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId) 139 { 120 { 140 if (shellId <=0 ) 121 if (shellId <=0 ) 141 {G4Exception("G4AtomicDeexcitation::Select << 122 {G4Exception("G4AtomicDeexcitation: zero or negative shellId");} 142 123 143 //G4bool fluoTransitionFoundFlag = false; << 124 G4bool fluoTransitionFoundFlag = false; 144 125 145 const G4AtomicTransitionManager* transition 126 const G4AtomicTransitionManager* transitionManager = 146 G4AtomicTransitionManager::Instance(); 127 G4AtomicTransitionManager::Instance(); 147 G4int provShellId = -1; 128 G4int provShellId = -1; 148 G4int shellNum = 0; 129 G4int shellNum = 0; 149 G4int maxNumOfShells = transitionManager->Nu 130 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 150 131 151 const G4FluoTransition* refShell = transitio 132 const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1); 152 133 153 // This loop gives shellNum the value of the 134 // This loop gives shellNum the value of the index of shellId 154 // in the vector storing the list of the she 135 // in the vector storing the list of the shells reachable through 155 // a radiative transition 136 // a radiative transition 156 if ( shellId <= refShell->FinalShellId()) 137 if ( shellId <= refShell->FinalShellId()) 157 { 138 { 158 while (shellId != transitionManager->Rea 139 while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId()) 159 { 140 { 160 if(shellNum ==maxNumOfShells-1) 141 if(shellNum ==maxNumOfShells-1) 161 { 142 { 162 break; 143 break; 163 } 144 } 164 shellNum++; 145 shellNum++; 165 } 146 } 166 G4int transProb = 0; //AM change 29/6/07 147 G4int transProb = 0; //AM change 29/6/07 was 1 167 148 168 G4double partialProb = G4UniformRand(); 149 G4double partialProb = G4UniformRand(); 169 G4double partSum = 0; 150 G4double partSum = 0; 170 const G4FluoTransition* aShell = transit 151 const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum); 171 G4int trSize = (G4int)(aShell->Transitio << 152 G4int trSize = (aShell->TransitionProbabilities()).size(); 172 153 173 // Loop over the shells wich can provide 154 // Loop over the shells wich can provide an electron for a 174 // radiative transition towards shellId: 155 // radiative transition towards shellId: 175 // in every loop the partial sum of the 156 // in every loop the partial sum of the first transProb shells 176 // is calculated and compared with a ran 157 // is calculated and compared with a random number [0,1]. 177 // If the partial sum is greater, the sh 158 // If the partial sum is greater, the shell whose index is transProb 178 // is chosen as the starting shell for a 159 // is chosen as the starting shell for a radiative transition 179 // and its identity is returned 160 // and its identity is returned 180 // Else, terminateded the loop, -1 is re 161 // Else, terminateded the loop, -1 is returned 181 while(transProb < trSize){ 162 while(transProb < trSize){ 182 163 183 partSum += aShell->TransitionProbability(tr 164 partSum += aShell->TransitionProbability(transProb); 184 165 185 if(partialProb <= partSum) 166 if(partialProb <= partSum) 186 { 167 { 187 provShellId = aShell->OriginatingShellI 168 provShellId = aShell->OriginatingShellId(transProb); 188 //fluoTransitionFoundFlag = true; << 169 fluoTransitionFoundFlag = true; 189 170 190 break; 171 break; 191 } 172 } 192 transProb++; 173 transProb++; 193 } 174 } 194 175 195 // here provShellId is the right one or 176 // here provShellId is the right one or is -1. 196 // if -1, the control is passed to the A 177 // if -1, the control is passed to the Auger generation part of the package 197 } 178 } >> 179 >> 180 >> 181 198 else 182 else 199 provShellId = -1; << 183 { >> 184 >> 185 provShellId = -1; 200 186 >> 187 } 201 return provShellId; 188 return provShellId; 202 } 189 } 203 190 204 G4DynamicParticle* G4AtomicDeexcitation::Gener 191 G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z, 205 G4int shellId, 192 G4int shellId, 206 G4int provShellId ) 193 G4int provShellId ) 207 { 194 { >> 195 >> 196 208 const G4AtomicTransitionManager* transition 197 const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance(); 209 // G4int provenienceShell = provShellId; 198 // G4int provenienceShell = provShellId; 210 199 211 //isotropic angular distribution for the out 200 //isotropic angular distribution for the outcoming photon 212 G4double newcosTh = 1.-2.*G4UniformRand(); 201 G4double newcosTh = 1.-2.*G4UniformRand(); 213 G4double newsinTh = std::sqrt(1.-newcosTh*n 202 G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh); 214 G4double newPhi = twopi*G4UniformRand(); 203 G4double newPhi = twopi*G4UniformRand(); 215 204 216 G4double xDir = newsinTh*std::sin(newPhi); 205 G4double xDir = newsinTh*std::sin(newPhi); 217 G4double yDir = newsinTh*std::cos(newPhi); 206 G4double yDir = newsinTh*std::cos(newPhi); 218 G4double zDir = newcosTh; 207 G4double zDir = newcosTh; 219 208 220 G4ThreeVector newGammaDirection(xDir,yDir,zD 209 G4ThreeVector newGammaDirection(xDir,yDir,zDir); 221 210 222 G4int shellNum = 0; 211 G4int shellNum = 0; 223 G4int maxNumOfShells = transitionManager->Nu 212 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 224 213 225 // find the index of the shell named shellId 214 // find the index of the shell named shellId 226 while (shellId != transitionManager-> 215 while (shellId != transitionManager-> 227 ReachableShell(Z,shellNum)->FinalShellId()) 216 ReachableShell(Z,shellNum)->FinalShellId()) 228 { 217 { 229 if(shellNum == maxNumOfShells-1) 218 if(shellNum == maxNumOfShells-1) 230 { 219 { 231 break; 220 break; 232 } 221 } 233 shellNum++; 222 shellNum++; 234 } 223 } 235 // number of shell from wich an electron can 224 // number of shell from wich an electron can reach shellId 236 G4int transitionSize = (G4int)transitionMana << 225 size_t transitionSize = transitionManager-> 237 ReachableShell(Z,shellNum)->OriginatingShe 226 ReachableShell(Z,shellNum)->OriginatingShellIds().size(); 238 227 239 G4int index = 0; << 228 size_t index = 0; 240 229 241 // find the index of the shell named provShe 230 // find the index of the shell named provShellId in the vector 242 // storing the shells from which shellId can 231 // storing the shells from which shellId can be reached 243 while (provShellId != transitionManager-> 232 while (provShellId != transitionManager-> 244 ReachableShell(Z,shellNum)->OriginatingShel 233 ReachableShell(Z,shellNum)->OriginatingShellId(index)) 245 { 234 { 246 if(index == transitionSize-1) 235 if(index == transitionSize-1) 247 { 236 { 248 break; 237 break; 249 } 238 } 250 index++; 239 index++; 251 } 240 } 252 // energy of the gamma leaving provShellId f 241 // energy of the gamma leaving provShellId for shellId 253 G4double transitionEnergy = transitionManage 242 G4double transitionEnergy = transitionManager-> 254 ReachableShell(Z,shellNum)->TransitionEner 243 ReachableShell(Z,shellNum)->TransitionEnergy(index); 255 244 256 // This is the shell where the new vacancy i 245 // This is the shell where the new vacancy is: it is the same 257 // shell where the electron came from 246 // shell where the electron came from 258 newShellId = transitionManager-> 247 newShellId = transitionManager-> 259 ReachableShell(Z,shellNum)->OriginatingShe 248 ReachableShell(Z,shellNum)->OriginatingShellId(index); 260 249 >> 250 261 G4DynamicParticle* newPart = new G4DynamicPa 251 G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 262 newGammaDirection, 252 newGammaDirection, 263 transitionEnergy); 253 transitionEnergy); 264 return newPart; 254 return newPart; 265 } 255 } 266 256 267 G4DynamicParticle* G4AtomicDeexcitation::Gener 257 G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId) 268 { 258 { 269 if(!fAuger) return 0; 259 if(!fAuger) return 0; 270 260 >> 261 271 const G4AtomicTransitionManager* transition 262 const G4AtomicTransitionManager* transitionManager = 272 G4AtomicTransitionManager::Instance(); 263 G4AtomicTransitionManager::Instance(); 273 264 >> 265 >> 266 274 if (shellId <=0 ) 267 if (shellId <=0 ) 275 {G4Exception("G4AtomicDeexcitation::Genera << 268 {G4Exception("G4AtomicDeexcitation: zero or negative shellId");} 276 269 277 // G4int provShellId = -1; 270 // G4int provShellId = -1; 278 G4int maxNumOfShells = transitionManager->Nu 271 G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z); 279 272 280 const G4AugerTransition* refAugerTransition 273 const G4AugerTransition* refAugerTransition = 281 transitionManager->ReachableAugerShell 274 transitionManager->ReachableAugerShell(Z,maxNumOfShells-1); 282 275 283 276 284 // This loop gives to shellNum the value of 277 // This loop gives to shellNum the value of the index of shellId 285 // in the vector storing the list of the vac 278 // in the vector storing the list of the vacancies in the variuos shells 286 // that can originate a NON-radiative transi 279 // that can originate a NON-radiative transition >> 280 >> 281 // ---- MGP ---- Next line commented out to remove compilation warning >> 282 // G4int p = refAugerTransition->FinalShellId(); >> 283 287 G4int shellNum = 0; 284 G4int shellNum = 0; 288 285 >> 286 289 if ( shellId <= refAugerTransition->FinalShe 287 if ( shellId <= refAugerTransition->FinalShellId() ) 290 //"FinalShellId" is final from the point o 288 //"FinalShellId" is final from the point of view of the elctron who makes the transition, 291 // being the Id of the shell in which ther 289 // being the Id of the shell in which there is a vacancy 292 { 290 { 293 G4int pippo = transitionManager->Reachab 291 G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId(); 294 if (shellId != pippo ) { 292 if (shellId != pippo ) { 295 do { 293 do { 296 shellNum++; 294 shellNum++; 297 if(shellNum == maxNumOfShells) 295 if(shellNum == maxNumOfShells) 298 { 296 { 299 << 297 // G4cout << "G4AtomicDeexcitation warning: No Auger transition found" << G4endl; 300 //G4Exception("G4AtomicDeexcitation: N << 298 // G4cout << "Absorbed enrgy deposited locally" << G4endl; 301 return 0; << 299 return 0; >> 300 // // G4Exception("G4AtomicDeexcitation: No Auger transition found"); 302 } 301 } 303 } 302 } 304 while (shellId != (transitionManager->Reacha 303 while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ; 305 } 304 } >> 305 /* { >> 306 >> 307 if(shellNum == maxNumOfShells-1) >> 308 { >> 309 G4Exception("G4AtomicDeexcitation: No Auger tramsition found"); >> 310 } >> 311 shellNum++; >> 312 }*/ >> 313 >> 314 >> 315 >> 316 >> 317 // Now we have that shellnum is the shellIndex of the shell named ShellId >> 318 >> 319 // G4cout << " the index of the shell is: "<<shellNum<<G4endl; >> 320 >> 321 // But we have now to select two shells: one for the transition, >> 322 // and another for the auger emission. 306 323 307 G4int transitionLoopShellIndex = 0; 324 G4int transitionLoopShellIndex = 0; 308 G4double partSum = 0; 325 G4double partSum = 0; 309 const G4AugerTransition* anAugerTransiti 326 const G4AugerTransition* anAugerTransition = 310 transitionManager->ReachableAugerS 327 transitionManager->ReachableAugerShell(Z,shellNum); 311 328 312 G4int transitionSize = (G4int) << 329 // G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl; >> 330 >> 331 >> 332 G4int transitionSize = 313 (anAugerTransition->TransitionOrig 333 (anAugerTransition->TransitionOriginatingShellIds())->size(); 314 while (transitionLoopShellIndex < transi 334 while (transitionLoopShellIndex < transitionSize) { 315 335 316 std::vector<G4int>::const_iterator pos 336 std::vector<G4int>::const_iterator pos = 317 anAugerTransition->TransitionOr 337 anAugerTransition->TransitionOriginatingShellIds()->begin(); 318 338 319 G4int transitionLoopShellId = *(pos+tr 339 G4int transitionLoopShellId = *(pos+transitionLoopShellIndex); 320 G4int numberOfPossibleAuger = (G4int) << 340 G4int numberOfPossibleAuger = 321 (anAugerTransition->AugerTransit 341 (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size(); 322 G4int augerIndex = 0; 342 G4int augerIndex = 0; >> 343 // G4int partSum2 = 0; 323 344 324 if (augerIndex < numberOfPossibleAuger) { << 345 >> 346 if (augerIndex < numberOfPossibleAuger) { >> 347 325 do 348 do 326 { 349 { 327 G4double thisProb = anAugerTransition- 350 G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 328 transitionLoopShellId); 351 transitionLoopShellId); 329 partSum += thisProb; 352 partSum += thisProb; 330 augerIndex++; 353 augerIndex++; 331 354 332 } while (augerIndex < numberOfPossibleAu 355 } while (augerIndex < numberOfPossibleAuger); 333 } 356 } 334 transitionLoopShellIndex++; 357 transitionLoopShellIndex++; 335 } 358 } 336 359 337 360 >> 361 338 // Now we have the entire probability of 362 // Now we have the entire probability of an auger transition for the vacancy 339 // located in shellNum (index of shellId 363 // located in shellNum (index of shellId) >> 364 >> 365 // AM *********************** F I X E D **************************** AM >> 366 // Here we duplicate the previous loop, this time looking to the sum of the probabilities >> 367 // to be under the random number shoot by G4 UniformRdandom. This could have been done in the >> 368 // previuos loop, while integrating the probabilities. There is a bug that will be fixed >> 369 // 5 minutes from now: a line: >> 370 // G4int numberOfPossibleAuger = (anAugerTransition-> >> 371 // AugerTransitionProbabilities(transitionLoopShellId))->size(); >> 372 // to be inserted. >> 373 // AM *********************** F I X E D **************************** AM >> 374 >> 375 // Remains to get the same result with a single loop. >> 376 >> 377 // AM *********************** F I X E D **************************** AM >> 378 // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from >> 379 // a vacancy in one shell, but not all of these are present in data tables. So if a transition >> 380 // doesn't occur in the main one a local energy deposition must occur, instead of (like now) >> 381 // generating the last transition present in EADL data. >> 382 // AM *********************** F I X E D **************************** AM >> 383 >> 384 340 G4double totalVacancyAugerProbability = 385 G4double totalVacancyAugerProbability = partSum; 341 386 >> 387 342 //And now we start to select the right a 388 //And now we start to select the right auger transition and emission 343 G4int transitionRandomShellIndex = 0; 389 G4int transitionRandomShellIndex = 0; 344 G4int transitionRandomShellId = 1; 390 G4int transitionRandomShellId = 1; 345 G4int augerIndex = 0; 391 G4int augerIndex = 0; 346 partSum = 0; 392 partSum = 0; 347 G4double partialProb = G4UniformRand(); 393 G4double partialProb = G4UniformRand(); 348 // G4int augerOriginatingShellId = 0; 394 // G4int augerOriginatingShellId = 0; 349 395 350 G4int numberOfPossibleAuger = 0; << 396 G4int numberOfPossibleAuger = 351 << 397 (anAugerTransition->AugerTransitionProbabilities(transitionRandomShellId))->size(); 352 G4bool foundFlag = false; 398 G4bool foundFlag = false; 353 399 354 while (transitionRandomShellIndex < tran 400 while (transitionRandomShellIndex < transitionSize) { >> 401 355 std::vector<G4int>::const_iterator pos 402 std::vector<G4int>::const_iterator pos = 356 anAugerTransition->TransitionOr 403 anAugerTransition->TransitionOriginatingShellIds()->begin(); 357 404 358 transitionRandomShellId = *(pos+transi 405 transitionRandomShellId = *(pos+transitionRandomShellIndex); 359 406 360 augerIndex = 0; 407 augerIndex = 0; 361 numberOfPossibleAuger = (G4int)(anAugerTrans << 408 numberOfPossibleAuger = (anAugerTransition-> 362 AugerTransitionProbabilities(transiti 409 AugerTransitionProbabilities(transitionRandomShellId))->size(); 363 410 364 while (augerIndex < numberOfPossibleAu 411 while (augerIndex < numberOfPossibleAuger) { 365 G4double thisProb =anAugerTransition->Auge 412 G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 366 transitionRandomShellId); 413 transitionRandomShellId); 367 414 368 partSum += thisProb; 415 partSum += thisProb; 369 416 370 if (partSum >= (partialProb*totalVac 417 if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was / 371 foundFlag = true; 418 foundFlag = true; 372 break; 419 break; 373 } 420 } 374 augerIndex++; 421 augerIndex++; 375 } 422 } 376 if (partSum >= (partialProb*totalVacan 423 if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was / 377 transitionRandomShellIndex++; 424 transitionRandomShellIndex++; 378 } 425 } 379 426 380 // Now we have the index of the shell fr 427 // Now we have the index of the shell from wich comes the auger electron (augerIndex), 381 // and the id of the shell, from which t 428 // and the id of the shell, from which the transition e- come (transitionRandomShellid) 382 // If no Transition has been found, 0 is 429 // If no Transition has been found, 0 is returned. 383 430 384 if (!foundFlag) {return 0;} 431 if (!foundFlag) {return 0;} 385 432 386 // Isotropic angular distribution for th 433 // Isotropic angular distribution for the outcoming e- 387 G4double newcosTh = 1.-2.*G4UniformRand( 434 G4double newcosTh = 1.-2.*G4UniformRand(); 388 G4double newsinTh = std::sqrt(1.-newcos 435 G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh); 389 G4double newPhi = twopi*G4UniformRand(); 436 G4double newPhi = twopi*G4UniformRand(); 390 437 391 G4double xDir = newsinTh*std::sin(newPh 438 G4double xDir = newsinTh*std::sin(newPhi); 392 G4double yDir = newsinTh*std::cos(newPhi 439 G4double yDir = newsinTh*std::cos(newPhi); 393 G4double zDir = newcosTh; 440 G4double zDir = newcosTh; 394 441 395 G4ThreeVector newElectronDirection(xDir, 442 G4ThreeVector newElectronDirection(xDir,yDir,zDir); 396 443 397 // energy of the auger electron emitted 444 // energy of the auger electron emitted 398 << 445 >> 446 399 G4double transitionEnergy = anAugerTrans 447 G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId); 400 /* 448 /* 401 G4cout << "AUger TransitionId " << anAugerTr 449 G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl; 402 G4cout << "augerIndex: " << augerIndex << G4 450 G4cout << "augerIndex: " << augerIndex << G4endl; 403 G4cout << "transitionShellId: " << transitio 451 G4cout << "transitionShellId: " << transitionRandomShellId << G4endl; 404 */ 452 */ 405 453 406 // This is the shell where the new vacan 454 // This is the shell where the new vacancy is: it is the same 407 // shell where the electron came from 455 // shell where the electron came from 408 newShellId = transitionRandomShellId; 456 newShellId = transitionRandomShellId; 409 << 457 >> 458 410 G4DynamicParticle* newPart = new G4Dynam 459 G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 411 newElectronDirection, 460 newElectronDirection, 412 transitionEnergy); 461 transitionEnergy); 413 return newPart; 462 return newPart; >> 463 414 } 464 } 415 else 465 else 416 { 466 { 417 //G4Exception("G4AtomicDeexcitation: no 467 //G4Exception("G4AtomicDeexcitation: no auger transition found"); 418 return 0; 468 return 0; 419 } 469 } >> 470 420 } 471 } 421 472 422 void G4AtomicDeexcitation::SetCutForSecondaryP 473 void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut) 423 { 474 { 424 minGammaEnergy = cut; 475 minGammaEnergy = cut; 425 } 476 } 426 477 427 void G4AtomicDeexcitation::SetCutForAugerElect 478 void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut) 428 { 479 { 429 minElectronEnergy = cut; 480 minElectronEnergy = cut; 430 } 481 } 431 482 432 void G4AtomicDeexcitation::ActivateAugerElectr 483 void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val) 433 { 484 { 434 fAuger = val; 485 fAuger = val; 435 } 486 } 436 487 437 488 438 489 439 490 440 491 441 492 442 493 443 494