Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4AtomicDeexcitation.cc,v 1.11 >> 28 // GEANT4 tag $Name: geant4-08-03-patch-01 $ 27 // 29 // 28 // Authors: Elena Guardincerri (Elena.Guardinc 30 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it) 29 // Alfonso Mantero (Alfonso.Mantero@g 31 // Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 30 // 32 // 31 // History: 33 // History: 32 // ----------- 34 // ----------- 33 // 35 // 34 // 16 Sept 2001 First committed to cvs 36 // 16 Sept 2001 First committed to cvs 35 // 12 Sep 2003 Bug in auger production fixe 37 // 12 Sep 2003 Bug in auger production fixed 36 // 38 // 37 // ------------------------------------------- 39 // ------------------------------------------------------------------- 38 40 39 #include "G4AtomicDeexcitation.hh" 41 #include "G4AtomicDeexcitation.hh" 40 #include "Randomize.hh" 42 #include "Randomize.hh" 41 #include "G4PhysicalConstants.hh" << 42 #include "G4SystemOfUnits.hh" << 43 #include "G4Gamma.hh" 43 #include "G4Gamma.hh" 44 #include "G4Electron.hh" 44 #include "G4Electron.hh" 45 #include "G4AtomicTransitionManager.hh" 45 #include "G4AtomicTransitionManager.hh" 46 #include "G4FluoTransition.hh" 46 #include "G4FluoTransition.hh" 47 47 48 G4AtomicDeexcitation::G4AtomicDeexcitation(): 48 G4AtomicDeexcitation::G4AtomicDeexcitation(): 49 minGammaEnergy(100.*eV), 49 minGammaEnergy(100.*eV), 50 minElectronEnergy(100.*eV), 50 minElectronEnergy(100.*eV), 51 fAuger(false) 51 fAuger(false) 52 { << 52 {} 53 << 54 G4cout << " ******************************** << 55 G4cout << " * W A R N I N G << 56 G4cout << " ******************************** << 57 G4cout << " * << 58 G4cout << " * Class G4AtomicDeexcitation is << 59 G4cout << " * discontinued and is going to b << 60 G4cout << " * release please migrate to << 61 G4cout << " * << 62 G4cout << " ******************************** << 63 << 64 augerVacancyId=0; << 65 newShellId=0; << 66 } << 67 53 68 G4AtomicDeexcitation::~G4AtomicDeexcitation() 54 G4AtomicDeexcitation::~G4AtomicDeexcitation() 69 {} 55 {} 70 56 71 std::vector<G4DynamicParticle*>* G4AtomicDeexc 57 std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId) 72 { 58 { 73 << 59 std::vector<G4DynamicParticle*>* vectorOfParticles = new std::vector<G4DynamicParticle*>; 74 std::vector<G4DynamicParticle*>* vectorOfPar << 60 G4DynamicParticle* aParticle; 75 vectorOfParticles = new std::vector<G4Dynami << 76 << 77 G4DynamicParticle* aParticle = nullptr; << 78 G4int provShellId = 0; 61 G4int provShellId = 0; 79 G4int counter = 0; 62 G4int counter = 0; 80 63 81 // The aim of this loop is to generate more 64 // The aim of this loop is to generate more than one fluorecence photon 82 // from the same ionizing event 65 // from the same ionizing event 83 do << 66 do 84 { 67 { 85 if (counter == 0) 68 if (counter == 0) 86 // First call to GenerateParticles(...): 69 // First call to GenerateParticles(...): 87 // givenShellId is given by the process 70 // givenShellId is given by the process 88 { 71 { 89 provShellId = SelectTypeOfTransition(Z, gi 72 provShellId = SelectTypeOfTransition(Z, givenShellId); 90 73 91 if ( provShellId >0) 74 if ( provShellId >0) 92 { 75 { 93 aParticle = GenerateFluorescence(Z,giv 76 aParticle = GenerateFluorescence(Z,givenShellId,provShellId); 94 } 77 } 95 else if ( provShellId == -1) 78 else if ( provShellId == -1) 96 { 79 { 97 aParticle = GenerateAuger(Z, givenShel 80 aParticle = GenerateAuger(Z, givenShellId); 98 } 81 } 99 else 82 else 100 { 83 { 101 G4Exception("G4AtomicDeexcitation::Con << 84 G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it"); 102 } 85 } 103 } 86 } 104 else 87 else 105 // Following calls to GenerateParticles(...) 88 // Following calls to GenerateParticles(...): 106 // newShellId is given by GenerateFluorescen 89 // newShellId is given by GenerateFluorescence(...) 107 { 90 { 108 provShellId = SelectTypeOfTransition(Z,new 91 provShellId = SelectTypeOfTransition(Z,newShellId); 109 if (provShellId >0) 92 if (provShellId >0) 110 { 93 { 111 aParticle = GenerateFluorescence(Z,new 94 aParticle = GenerateFluorescence(Z,newShellId,provShellId); 112 } 95 } 113 else if ( provShellId == -1) 96 else if ( provShellId == -1) 114 { 97 { >> 98 // controllae che newshellId porti ad una transizione fattibile, in qualche modo. 115 aParticle = GenerateAuger(Z, newShellI 99 aParticle = GenerateAuger(Z, newShellId); 116 } << 100 } 117 else 101 else 118 { 102 { 119 G4Exception("G4AtomicDeexcitation::con << 103 G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it"); 120 } 104 } 121 } 105 } 122 counter++; 106 counter++; 123 if (aParticle != nullptr) {vectorOfParti << 107 if (aParticle != 0) {vectorOfParticles->push_back(aParticle);} 124 else {provShellId = -2;} 108 else {provShellId = -2;} 125 } 109 } 126 << 127 // Look this in a particular way: only one a << 128 while (provShellId > -2); << 129 << 130 // debug << 131 // if (vectorOfParticles->size() > 0) { << 132 // G4cout << " DEEXCITATION!" << G4endl; << 133 // } << 134 110 >> 111 // Look this in a particular way: only one auger emitted! // >> 112 while (provShellId > -2); >> 113 135 return vectorOfParticles; 114 return vectorOfParticles; 136 } 115 } 137 116 138 G4int G4AtomicDeexcitation::SelectTypeOfTransi 117 G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId) 139 { 118 { 140 if (shellId <=0 ) 119 if (shellId <=0 ) 141 {G4Exception("G4AtomicDeexcitation::Select << 120 {G4Exception("G4AtomicDeexcitation: zero or negative shellId");} 142 121 143 //G4bool fluoTransitionFoundFlag = false; << 122 G4bool fluoTransitionFoundFlag = false; 144 123 145 const G4AtomicTransitionManager* transition 124 const G4AtomicTransitionManager* transitionManager = 146 G4AtomicTransitionManager::Instance(); 125 G4AtomicTransitionManager::Instance(); 147 G4int provShellId = -1; 126 G4int provShellId = -1; 148 G4int shellNum = 0; 127 G4int shellNum = 0; 149 G4int maxNumOfShells = transitionManager->Nu 128 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 150 129 151 const G4FluoTransition* refShell = transitio 130 const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1); 152 131 153 // This loop gives shellNum the value of the 132 // This loop gives shellNum the value of the index of shellId 154 // in the vector storing the list of the she 133 // in the vector storing the list of the shells reachable through 155 // a radiative transition 134 // a radiative transition 156 if ( shellId <= refShell->FinalShellId()) 135 if ( shellId <= refShell->FinalShellId()) 157 { 136 { 158 while (shellId != transitionManager->Rea 137 while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId()) 159 { 138 { 160 if(shellNum ==maxNumOfShells-1) 139 if(shellNum ==maxNumOfShells-1) 161 { 140 { 162 break; 141 break; 163 } 142 } 164 shellNum++; 143 shellNum++; 165 } 144 } 166 G4int transProb = 0; //AM change 29/6/07 << 145 G4int transProb = 1; 167 146 168 G4double partialProb = G4UniformRand(); 147 G4double partialProb = G4UniformRand(); 169 G4double partSum = 0; 148 G4double partSum = 0; 170 const G4FluoTransition* aShell = transit 149 const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum); 171 G4int trSize = (G4int)(aShell->Transitio << 150 G4int trSize = (aShell->TransitionProbabilities()).size(); 172 151 173 // Loop over the shells wich can provide 152 // Loop over the shells wich can provide an electron for a 174 // radiative transition towards shellId: 153 // radiative transition towards shellId: 175 // in every loop the partial sum of the 154 // in every loop the partial sum of the first transProb shells 176 // is calculated and compared with a ran 155 // is calculated and compared with a random number [0,1]. 177 // If the partial sum is greater, the sh 156 // If the partial sum is greater, the shell whose index is transProb 178 // is chosen as the starting shell for a 157 // is chosen as the starting shell for a radiative transition 179 // and its identity is returned 158 // and its identity is returned 180 // Else, terminateded the loop, -1 is re 159 // Else, terminateded the loop, -1 is returned 181 while(transProb < trSize){ 160 while(transProb < trSize){ 182 161 183 partSum += aShell->TransitionProbability(tr 162 partSum += aShell->TransitionProbability(transProb); 184 163 185 if(partialProb <= partSum) 164 if(partialProb <= partSum) 186 { 165 { 187 provShellId = aShell->OriginatingShellI 166 provShellId = aShell->OriginatingShellId(transProb); 188 //fluoTransitionFoundFlag = true; << 167 fluoTransitionFoundFlag = true; 189 168 190 break; 169 break; 191 } 170 } 192 transProb++; 171 transProb++; 193 } 172 } 194 173 195 // here provShellId is the right one or 174 // here provShellId is the right one or is -1. 196 // if -1, the control is passed to the A 175 // if -1, the control is passed to the Auger generation part of the package 197 } 176 } >> 177 >> 178 >> 179 198 else 180 else 199 provShellId = -1; << 181 { >> 182 >> 183 provShellId = -1; 200 184 >> 185 } 201 return provShellId; 186 return provShellId; 202 } 187 } 203 188 204 G4DynamicParticle* G4AtomicDeexcitation::Gener 189 G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z, 205 G4int shellId, 190 G4int shellId, 206 G4int provShellId ) 191 G4int provShellId ) 207 { 192 { >> 193 >> 194 208 const G4AtomicTransitionManager* transition 195 const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance(); 209 // G4int provenienceShell = provShellId; 196 // G4int provenienceShell = provShellId; 210 197 211 //isotropic angular distribution for the out 198 //isotropic angular distribution for the outcoming photon 212 G4double newcosTh = 1.-2.*G4UniformRand(); 199 G4double newcosTh = 1.-2.*G4UniformRand(); 213 G4double newsinTh = std::sqrt(1.-newcosTh*n 200 G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh); 214 G4double newPhi = twopi*G4UniformRand(); 201 G4double newPhi = twopi*G4UniformRand(); 215 202 216 G4double xDir = newsinTh*std::sin(newPhi); 203 G4double xDir = newsinTh*std::sin(newPhi); 217 G4double yDir = newsinTh*std::cos(newPhi); 204 G4double yDir = newsinTh*std::cos(newPhi); 218 G4double zDir = newcosTh; 205 G4double zDir = newcosTh; 219 206 220 G4ThreeVector newGammaDirection(xDir,yDir,zD 207 G4ThreeVector newGammaDirection(xDir,yDir,zDir); 221 208 222 G4int shellNum = 0; 209 G4int shellNum = 0; 223 G4int maxNumOfShells = transitionManager->Nu 210 G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z); 224 211 225 // find the index of the shell named shellId 212 // find the index of the shell named shellId 226 while (shellId != transitionManager-> 213 while (shellId != transitionManager-> 227 ReachableShell(Z,shellNum)->FinalShellId()) 214 ReachableShell(Z,shellNum)->FinalShellId()) 228 { 215 { 229 if(shellNum == maxNumOfShells-1) 216 if(shellNum == maxNumOfShells-1) 230 { 217 { 231 break; 218 break; 232 } 219 } 233 shellNum++; 220 shellNum++; 234 } 221 } 235 // number of shell from wich an electron can 222 // number of shell from wich an electron can reach shellId 236 G4int transitionSize = (G4int)transitionMana << 223 size_t transitionSize = transitionManager-> 237 ReachableShell(Z,shellNum)->OriginatingShe 224 ReachableShell(Z,shellNum)->OriginatingShellIds().size(); 238 225 239 G4int index = 0; << 226 size_t index = 0; 240 227 241 // find the index of the shell named provShe 228 // find the index of the shell named provShellId in the vector 242 // storing the shells from which shellId can 229 // storing the shells from which shellId can be reached 243 while (provShellId != transitionManager-> 230 while (provShellId != transitionManager-> 244 ReachableShell(Z,shellNum)->OriginatingShel 231 ReachableShell(Z,shellNum)->OriginatingShellId(index)) 245 { 232 { 246 if(index == transitionSize-1) 233 if(index == transitionSize-1) 247 { 234 { 248 break; 235 break; 249 } 236 } 250 index++; 237 index++; 251 } 238 } 252 // energy of the gamma leaving provShellId f 239 // energy of the gamma leaving provShellId for shellId 253 G4double transitionEnergy = transitionManage 240 G4double transitionEnergy = transitionManager-> 254 ReachableShell(Z,shellNum)->TransitionEner 241 ReachableShell(Z,shellNum)->TransitionEnergy(index); 255 242 256 // This is the shell where the new vacancy i 243 // This is the shell where the new vacancy is: it is the same 257 // shell where the electron came from 244 // shell where the electron came from 258 newShellId = transitionManager-> 245 newShellId = transitionManager-> 259 ReachableShell(Z,shellNum)->OriginatingShe 246 ReachableShell(Z,shellNum)->OriginatingShellId(index); 260 247 >> 248 261 G4DynamicParticle* newPart = new G4DynamicPa 249 G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 262 newGammaDirection, 250 newGammaDirection, 263 transitionEnergy); 251 transitionEnergy); 264 return newPart; 252 return newPart; 265 } 253 } 266 254 267 G4DynamicParticle* G4AtomicDeexcitation::Gener 255 G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId) 268 { 256 { 269 if(!fAuger) return 0; 257 if(!fAuger) return 0; 270 258 >> 259 271 const G4AtomicTransitionManager* transition 260 const G4AtomicTransitionManager* transitionManager = 272 G4AtomicTransitionManager::Instance(); 261 G4AtomicTransitionManager::Instance(); 273 262 >> 263 >> 264 274 if (shellId <=0 ) 265 if (shellId <=0 ) 275 {G4Exception("G4AtomicDeexcitation::Genera << 266 {G4Exception("G4AtomicDeexcitation: zero or negative shellId");} 276 267 277 // G4int provShellId = -1; 268 // G4int provShellId = -1; 278 G4int maxNumOfShells = transitionManager->Nu 269 G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z); 279 270 280 const G4AugerTransition* refAugerTransition 271 const G4AugerTransition* refAugerTransition = 281 transitionManager->ReachableAugerShell 272 transitionManager->ReachableAugerShell(Z,maxNumOfShells-1); 282 273 283 274 284 // This loop gives to shellNum the value of 275 // This loop gives to shellNum the value of the index of shellId 285 // in the vector storing the list of the vac 276 // in the vector storing the list of the vacancies in the variuos shells 286 // that can originate a NON-radiative transi 277 // that can originate a NON-radiative transition >> 278 >> 279 // ---- MGP ---- Next line commented out to remove compilation warning >> 280 // G4int p = refAugerTransition->FinalShellId(); >> 281 287 G4int shellNum = 0; 282 G4int shellNum = 0; 288 283 >> 284 289 if ( shellId <= refAugerTransition->FinalShe 285 if ( shellId <= refAugerTransition->FinalShellId() ) 290 //"FinalShellId" is final from the point o 286 //"FinalShellId" is final from the point of view of the elctron who makes the transition, 291 // being the Id of the shell in which ther 287 // being the Id of the shell in which there is a vacancy 292 { 288 { 293 G4int pippo = transitionManager->Reachab 289 G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId(); 294 if (shellId != pippo ) { 290 if (shellId != pippo ) { 295 do { 291 do { 296 shellNum++; 292 shellNum++; 297 if(shellNum == maxNumOfShells) 293 if(shellNum == maxNumOfShells) 298 { 294 { 299 << 295 // G4cout << "G4AtomicDeexcitation warning: No Auger transition found" << G4endl; 300 //G4Exception("G4AtomicDeexcitation: N << 296 // G4cout << "Absorbed enrgy deposited locally" << G4endl; 301 return 0; << 297 return 0; >> 298 // // G4Exception("G4AtomicDeexcitation: No Auger transition found"); 302 } 299 } 303 } 300 } 304 while (shellId != (transitionManager->Reacha 301 while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ; 305 } 302 } >> 303 /* { >> 304 >> 305 if(shellNum == maxNumOfShells-1) >> 306 { >> 307 G4Exception("G4AtomicDeexcitation: No Auger tramsition found"); >> 308 } >> 309 shellNum++; >> 310 }*/ >> 311 >> 312 >> 313 >> 314 >> 315 // Now we have that shellnum is the shellIndex of the shell named ShellId >> 316 >> 317 // G4cout << " the index of the shell is: "<<shellNum<<G4endl; >> 318 >> 319 // But we have now to select two shells: one for the transition, >> 320 // and another for the auger emission. 306 321 307 G4int transitionLoopShellIndex = 0; 322 G4int transitionLoopShellIndex = 0; 308 G4double partSum = 0; 323 G4double partSum = 0; 309 const G4AugerTransition* anAugerTransiti 324 const G4AugerTransition* anAugerTransition = 310 transitionManager->ReachableAugerS 325 transitionManager->ReachableAugerShell(Z,shellNum); 311 326 312 G4int transitionSize = (G4int) << 327 // G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl; >> 328 >> 329 >> 330 G4int transitionSize = 313 (anAugerTransition->TransitionOrig 331 (anAugerTransition->TransitionOriginatingShellIds())->size(); 314 while (transitionLoopShellIndex < transi 332 while (transitionLoopShellIndex < transitionSize) { 315 333 316 std::vector<G4int>::const_iterator pos 334 std::vector<G4int>::const_iterator pos = 317 anAugerTransition->TransitionOr 335 anAugerTransition->TransitionOriginatingShellIds()->begin(); 318 336 319 G4int transitionLoopShellId = *(pos+tr 337 G4int transitionLoopShellId = *(pos+transitionLoopShellIndex); 320 G4int numberOfPossibleAuger = (G4int) << 338 G4int numberOfPossibleAuger = 321 (anAugerTransition->AugerTransit 339 (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size(); 322 G4int augerIndex = 0; 340 G4int augerIndex = 0; >> 341 // G4int partSum2 = 0; 323 342 324 if (augerIndex < numberOfPossibleAuger) { << 343 >> 344 if (augerIndex < numberOfPossibleAuger) { >> 345 325 do 346 do 326 { 347 { 327 G4double thisProb = anAugerTransition- 348 G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 328 transitionLoopShellId); 349 transitionLoopShellId); 329 partSum += thisProb; 350 partSum += thisProb; 330 augerIndex++; 351 augerIndex++; 331 352 332 } while (augerIndex < numberOfPossibleAu 353 } while (augerIndex < numberOfPossibleAuger); 333 } 354 } 334 transitionLoopShellIndex++; 355 transitionLoopShellIndex++; 335 } 356 } 336 357 337 358 >> 359 338 // Now we have the entire probability of 360 // Now we have the entire probability of an auger transition for the vacancy 339 // located in shellNum (index of shellId 361 // located in shellNum (index of shellId) >> 362 >> 363 // AM *********************** F I X E D **************************** AM >> 364 // Here we duplicate the previous loop, this time looking to the sum of the probabilities >> 365 // to be under the random number shoot by G4 UniformRdandom. This could have been done in the >> 366 // previuos loop, while integrating the probabilities. There is a bug that will be fixed >> 367 // 5 minutes from now: a line: >> 368 // G4int numberOfPossibleAuger = (anAugerTransition-> >> 369 // AugerTransitionProbabilities(transitionLoopShellId))->size(); >> 370 // to be inserted. >> 371 // AM *********************** F I X E D **************************** AM >> 372 >> 373 // Remains to get the same result with a single loop. >> 374 >> 375 // AM *********************** F I X E D **************************** AM >> 376 // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from >> 377 // a vacancy in one shell, but no alla of these are present in data tables. So if a transition >> 378 // doesn't occur in the maoin onesm a local energy deposition must occur, instead of (like now) >> 379 // generating the last transition present in EADL data. >> 380 // AM *********************** F I X E D **************************** AM >> 381 >> 382 340 G4double totalVacancyAugerProbability = 383 G4double totalVacancyAugerProbability = partSum; 341 384 >> 385 342 //And now we start to select the right a 386 //And now we start to select the right auger transition and emission 343 G4int transitionRandomShellIndex = 0; 387 G4int transitionRandomShellIndex = 0; 344 G4int transitionRandomShellId = 1; 388 G4int transitionRandomShellId = 1; 345 G4int augerIndex = 0; 389 G4int augerIndex = 0; 346 partSum = 0; 390 partSum = 0; 347 G4double partialProb = G4UniformRand(); 391 G4double partialProb = G4UniformRand(); 348 // G4int augerOriginatingShellId = 0; 392 // G4int augerOriginatingShellId = 0; 349 393 350 G4int numberOfPossibleAuger = 0; << 394 G4int numberOfPossibleAuger = 351 << 395 (anAugerTransition->AugerTransitionProbabilities(transitionRandomShellId))->size(); 352 G4bool foundFlag = false; 396 G4bool foundFlag = false; 353 397 354 while (transitionRandomShellIndex < tran 398 while (transitionRandomShellIndex < transitionSize) { >> 399 355 std::vector<G4int>::const_iterator pos 400 std::vector<G4int>::const_iterator pos = 356 anAugerTransition->TransitionOr 401 anAugerTransition->TransitionOriginatingShellIds()->begin(); 357 402 358 transitionRandomShellId = *(pos+transi 403 transitionRandomShellId = *(pos+transitionRandomShellIndex); 359 404 360 augerIndex = 0; 405 augerIndex = 0; 361 numberOfPossibleAuger = (G4int)(anAugerTrans << 406 numberOfPossibleAuger = (anAugerTransition-> 362 AugerTransitionProbabilities(transiti 407 AugerTransitionProbabilities(transitionRandomShellId))->size(); 363 408 364 while (augerIndex < numberOfPossibleAu 409 while (augerIndex < numberOfPossibleAuger) { 365 G4double thisProb =anAugerTransition->Auge 410 G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 366 transitionRandomShellId); 411 transitionRandomShellId); 367 412 368 partSum += thisProb; 413 partSum += thisProb; 369 414 370 if (partSum >= (partialProb*totalVac << 415 if (partSum >= (partialProb/totalVacancyAugerProbability) ) { 371 foundFlag = true; 416 foundFlag = true; 372 break; 417 break; 373 } 418 } 374 augerIndex++; 419 augerIndex++; 375 } 420 } 376 if (partSum >= (partialProb*totalVacan << 421 if (partSum >= (partialProb/totalVacancyAugerProbability) ) {break;} 377 transitionRandomShellIndex++; 422 transitionRandomShellIndex++; 378 } 423 } 379 424 380 // Now we have the index of the shell fr 425 // Now we have the index of the shell from wich comes the auger electron (augerIndex), 381 // and the id of the shell, from which t 426 // and the id of the shell, from which the transition e- come (transitionRandomShellid) 382 // If no Transition has been found, 0 is 427 // If no Transition has been found, 0 is returned. 383 428 384 if (!foundFlag) {return 0;} 429 if (!foundFlag) {return 0;} 385 430 386 // Isotropic angular distribution for th 431 // Isotropic angular distribution for the outcoming e- 387 G4double newcosTh = 1.-2.*G4UniformRand( 432 G4double newcosTh = 1.-2.*G4UniformRand(); 388 G4double newsinTh = std::sqrt(1.-newcos 433 G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh); 389 G4double newPhi = twopi*G4UniformRand(); 434 G4double newPhi = twopi*G4UniformRand(); 390 435 391 G4double xDir = newsinTh*std::sin(newPh 436 G4double xDir = newsinTh*std::sin(newPhi); 392 G4double yDir = newsinTh*std::cos(newPhi 437 G4double yDir = newsinTh*std::cos(newPhi); 393 G4double zDir = newcosTh; 438 G4double zDir = newcosTh; 394 439 395 G4ThreeVector newElectronDirection(xDir, 440 G4ThreeVector newElectronDirection(xDir,yDir,zDir); 396 441 397 // energy of the auger electron emitted 442 // energy of the auger electron emitted 398 << 443 >> 444 399 G4double transitionEnergy = anAugerTrans 445 G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId); 400 /* 446 /* 401 G4cout << "AUger TransitionId " << anAugerTr 447 G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl; 402 G4cout << "augerIndex: " << augerIndex << G4 448 G4cout << "augerIndex: " << augerIndex << G4endl; 403 G4cout << "transitionShellId: " << transitio 449 G4cout << "transitionShellId: " << transitionRandomShellId << G4endl; 404 */ 450 */ 405 451 406 // This is the shell where the new vacan 452 // This is the shell where the new vacancy is: it is the same 407 // shell where the electron came from 453 // shell where the electron came from 408 newShellId = transitionRandomShellId; 454 newShellId = transitionRandomShellId; 409 << 455 >> 456 410 G4DynamicParticle* newPart = new G4Dynam 457 G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 411 newElectronDirection, 458 newElectronDirection, 412 transitionEnergy); 459 transitionEnergy); 413 return newPart; 460 return newPart; >> 461 414 } 462 } 415 else 463 else 416 { 464 { 417 //G4Exception("G4AtomicDeexcitation: no 465 //G4Exception("G4AtomicDeexcitation: no auger transition found"); 418 return 0; 466 return 0; 419 } 467 } >> 468 420 } 469 } 421 470 422 void G4AtomicDeexcitation::SetCutForSecondaryP 471 void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut) 423 { 472 { 424 minGammaEnergy = cut; 473 minGammaEnergy = cut; 425 } 474 } 426 475 427 void G4AtomicDeexcitation::SetCutForAugerElect 476 void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut) 428 { 477 { 429 minElectronEnergy = cut; 478 minElectronEnergy = cut; 430 } 479 } 431 480 432 void G4AtomicDeexcitation::ActivateAugerElectr 481 void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val) 433 { 482 { 434 fAuger = val; 483 fAuger = val; 435 } 484 } 436 485 437 486 438 487 439 488 440 489 441 490 442 491 443 492