Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc (Version 10.2.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 // Authors: Elena Guardincerri (Elena.Guardinc     28 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it)
 29 //          Alfonso Mantero (Alfonso.Mantero@g     29 //          Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 30 //                                                 30 //
 31 // History:                                        31 // History:
 32 // -----------                                     32 // -----------
 33 //                                                 33 //  
 34 //  16 Sept 2001  First committed to cvs           34 //  16 Sept 2001  First committed to cvs
 35 //  12 Sep  2003  Bug in auger production fixe     35 //  12 Sep  2003  Bug in auger production fixed
 36 //                                                 36 //
 37 // -------------------------------------------     37 // -------------------------------------------------------------------
 38                                                    38 
 39 #include "G4AtomicDeexcitation.hh"                 39 #include "G4AtomicDeexcitation.hh"
 40 #include "Randomize.hh"                            40 #include "Randomize.hh"
 41 #include "G4PhysicalConstants.hh"                  41 #include "G4PhysicalConstants.hh"
 42 #include "G4SystemOfUnits.hh"                      42 #include "G4SystemOfUnits.hh"
 43 #include "G4Gamma.hh"                              43 #include "G4Gamma.hh"
 44 #include "G4Electron.hh"                           44 #include "G4Electron.hh"
 45 #include "G4AtomicTransitionManager.hh"            45 #include "G4AtomicTransitionManager.hh"
 46 #include "G4FluoTransition.hh"                     46 #include "G4FluoTransition.hh"
 47                                                    47 
 48 G4AtomicDeexcitation::G4AtomicDeexcitation():      48 G4AtomicDeexcitation::G4AtomicDeexcitation():
 49   minGammaEnergy(100.*eV),                         49   minGammaEnergy(100.*eV),
 50   minElectronEnergy(100.*eV),                      50   minElectronEnergy(100.*eV),
 51   fAuger(false)                                    51   fAuger(false)
 52 {                                                  52 {
 53                                                    53 
 54   G4cout << " ********************************     54   G4cout << " ********************************************************** " << G4endl; 
 55   G4cout << " *                  W A R N I N G     55   G4cout << " *                  W A R N I N G ! ! !                   * " << G4endl;
 56   G4cout << " ********************************     56   G4cout << " ********************************************************** " << G4endl;
 57   G4cout << " *                                    57   G4cout << " *                                                        * " << G4endl; 
 58   G4cout << " *  Class G4AtomicDeexcitation is     58   G4cout << " *  Class G4AtomicDeexcitation is obsolete. It has been   * " << G4endl;
 59   G4cout << " * discontinued and is going to b     59   G4cout << " * discontinued and is going to be removed by next Geant4 * " << G4endl; 
 60   G4cout << " *     release please migrate to      60   G4cout << " *     release please migrate to G4UAtomDeexcitation.     * " << G4endl;
 61   G4cout << " *                                    61   G4cout << " *                                                        * " << G4endl;
 62   G4cout << " ********************************     62   G4cout << " ********************************************************** " << G4endl; 
 63                                                    63 
 64   augerVacancyId=0;                                64   augerVacancyId=0;
 65   newShellId=0;                                    65   newShellId=0;
 66 }                                                  66 }
 67                                                    67 
 68 G4AtomicDeexcitation::~G4AtomicDeexcitation()      68 G4AtomicDeexcitation::~G4AtomicDeexcitation()
 69 {}                                                 69 {}
 70                                                    70 
 71 std::vector<G4DynamicParticle*>* G4AtomicDeexc     71 std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId)
 72 {                                                  72 { 
 73                                                    73 
 74   std::vector<G4DynamicParticle*>* vectorOfPar     74   std::vector<G4DynamicParticle*>* vectorOfParticles;
 75   vectorOfParticles = new std::vector<G4Dynami     75   vectorOfParticles = new std::vector<G4DynamicParticle*>;
 76                                                    76 
 77   G4DynamicParticle* aParticle = nullptr;      <<  77   G4DynamicParticle* aParticle;
 78   G4int provShellId = 0;                           78   G4int provShellId = 0;
 79   G4int counter = 0;                               79   G4int counter = 0;
 80                                                    80   
 81   // The aim of this loop is to generate more      81   // The aim of this loop is to generate more than one fluorecence photon 
 82   // from the same ionizing event                  82   // from the same ionizing event 
 83   do                                               83   do
 84     {                                              84     {
 85       if (counter == 0)                            85       if (counter == 0) 
 86   // First call to GenerateParticles(...):         86   // First call to GenerateParticles(...):
 87   // givenShellId is given by the process          87   // givenShellId is given by the process
 88   {                                                88   {
 89     provShellId = SelectTypeOfTransition(Z, gi     89     provShellId = SelectTypeOfTransition(Z, givenShellId);
 90                                                    90     
 91     if  ( provShellId >0)                          91     if  ( provShellId >0) 
 92       {                                            92       {
 93         aParticle = GenerateFluorescence(Z,giv     93         aParticle = GenerateFluorescence(Z,givenShellId,provShellId);  
 94       }                                            94       }
 95     else if ( provShellId == -1)                   95     else if ( provShellId == -1)
 96       {                                            96       {
 97         aParticle = GenerateAuger(Z, givenShel     97         aParticle = GenerateAuger(Z, givenShellId);
 98       }                                            98       }
 99     else                                           99     else
100       {                                           100       {
101         G4Exception("G4AtomicDeexcitation::Con    101         G4Exception("G4AtomicDeexcitation::Constructor", "de0002", JustWarning, "Transition selection invalid, energy local deposited");
102       }                                           102       }
103   }                                               103   }
104       else                                        104       else 
105   // Following calls to GenerateParticles(...)    105   // Following calls to GenerateParticles(...):
106   // newShellId is given by GenerateFluorescen    106   // newShellId is given by GenerateFluorescence(...)
107   {                                               107   {
108     provShellId = SelectTypeOfTransition(Z,new    108     provShellId = SelectTypeOfTransition(Z,newShellId);
109     if  (provShellId >0)                          109     if  (provShellId >0)
110       {                                           110       {
111         aParticle = GenerateFluorescence(Z,new    111         aParticle = GenerateFluorescence(Z,newShellId,provShellId);
112       }                                           112       }
113     else if ( provShellId == -1)                  113     else if ( provShellId == -1)
114       {                                           114       {
115         aParticle = GenerateAuger(Z, newShellI    115         aParticle = GenerateAuger(Z, newShellId);
116       }                                           116       }
117     else                                          117     else
118       {                                           118       {
119         G4Exception("G4AtomicDeexcitation::con    119         G4Exception("G4AtomicDeexcitation::constructor", "de0002", JustWarning, "Transition selection invalid, energy local deposited" );
120       }                                           120       }
121   }                                               121   }
122       counter++;                                  122       counter++;
123       if (aParticle != nullptr) {vectorOfParti << 123       if (aParticle != 0) {vectorOfParticles->push_back(aParticle);}
124       else {provShellId = -2;}                    124       else {provShellId = -2;}
125     }                                             125     }
126                                                   126   
127   // Look this in a particular way: only one a    127   // Look this in a particular way: only one auger emitted! // ????
128   while (provShellId > -2);                       128   while (provShellId > -2); 
129                                                   129 
130   // debug                                        130   // debug  
131   // if (vectorOfParticles->size() > 0) {         131   // if (vectorOfParticles->size() > 0) {
132   //   G4cout << " DEEXCITATION!" << G4endl;      132   //   G4cout << " DEEXCITATION!" << G4endl;
133   // }                                            133   // }
134                                                   134 
135   return vectorOfParticles;                       135   return vectorOfParticles;
136 }                                                 136 }
137                                                   137 
138 G4int G4AtomicDeexcitation::SelectTypeOfTransi    138 G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
139 {                                                 139 {
140   if (shellId <=0 )                               140   if (shellId <=0 ) 
141     {G4Exception("G4AtomicDeexcitation::Select    141     {G4Exception("G4AtomicDeexcitation::SelectTypeOfTransition()","de0002", JustWarning ,"zero or negative shellId");}
142                                                   142 
143   //G4bool fluoTransitionFoundFlag = false;       143   //G4bool fluoTransitionFoundFlag = false;
144                                                   144   
145   const G4AtomicTransitionManager*  transition    145   const G4AtomicTransitionManager*  transitionManager = 
146         G4AtomicTransitionManager::Instance();    146         G4AtomicTransitionManager::Instance();
147   G4int provShellId = -1;                         147   G4int provShellId = -1;
148   G4int shellNum = 0;                             148   G4int shellNum = 0;
149   G4int maxNumOfShells = transitionManager->Nu    149   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
150                                                   150   
151   const G4FluoTransition* refShell = transitio    151   const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
152                                                   152 
153   // This loop gives shellNum the value of the    153   // This loop gives shellNum the value of the index of shellId
154   // in the vector storing the list of the she    154   // in the vector storing the list of the shells reachable through
155   // a radiative transition                       155   // a radiative transition
156   if ( shellId <= refShell->FinalShellId())       156   if ( shellId <= refShell->FinalShellId())
157     {                                             157     {
158       while (shellId != transitionManager->Rea    158       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
159   {                                               159   {
160     if(shellNum ==maxNumOfShells-1)               160     if(shellNum ==maxNumOfShells-1)
161       {                                           161       {
162         break;                                    162         break;
163       }                                           163       }
164     shellNum++;                                   164     shellNum++;
165   }                                               165   }
166       G4int transProb = 0; //AM change 29/6/07    166       G4int transProb = 0; //AM change 29/6/07 was 1
167                                                   167    
168       G4double partialProb = G4UniformRand();     168       G4double partialProb = G4UniformRand();      
169       G4double partSum = 0;                       169       G4double partSum = 0;
170       const G4FluoTransition* aShell = transit    170       const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);      
171       G4int trSize = (G4int)(aShell->Transitio << 171       G4int trSize =  (aShell->TransitionProbabilities()).size();
172                                                   172     
173       // Loop over the shells wich can provide    173       // Loop over the shells wich can provide an electron for a 
174       // radiative transition towards shellId:    174       // radiative transition towards shellId:
175       // in every loop the partial sum of the     175       // in every loop the partial sum of the first transProb shells
176       // is calculated and compared with a ran    176       // is calculated and compared with a random number [0,1].
177       // If the partial sum is greater, the sh    177       // If the partial sum is greater, the shell whose index is transProb
178       // is chosen as the starting shell for a    178       // is chosen as the starting shell for a radiative transition
179       // and its identity is returned             179       // and its identity is returned
180       // Else, terminateded the loop, -1 is re    180       // Else, terminateded the loop, -1 is returned
181       while(transProb < trSize){                  181       while(transProb < trSize){
182                                                   182   
183    partSum += aShell->TransitionProbability(tr    183    partSum += aShell->TransitionProbability(transProb);
184                                                   184 
185    if(partialProb <= partSum)                     185    if(partialProb <= partSum)
186      {                                            186      {
187        provShellId = aShell->OriginatingShellI    187        provShellId = aShell->OriginatingShellId(transProb);
188        //fluoTransitionFoundFlag = true;          188        //fluoTransitionFoundFlag = true;
189                                                   189 
190        break;                                     190        break;
191      }                                            191      }
192    transProb++;                                   192    transProb++;
193       }                                           193       }
194                                                   194 
195       // here provShellId is the right one or     195       // here provShellId is the right one or is -1.
196       // if -1, the control is passed to the A    196       // if -1, the control is passed to the Auger generation part of the package 
197     }                                             197     }
                                                   >> 198 
                                                   >> 199 
                                                   >> 200 
198   else                                            201   else 
199     provShellId = -1;                          << 202     {
                                                   >> 203  
                                                   >> 204      provShellId = -1;
200                                                   205 
                                                   >> 206     }
201   return provShellId;                             207   return provShellId;
202 }                                                 208 }
203                                                   209 
204 G4DynamicParticle* G4AtomicDeexcitation::Gener    210 G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z, 
205                     G4int shellId,                211                     G4int shellId,
206                     G4int provShellId )           212                     G4int provShellId )
207 {                                                 213 { 
                                                   >> 214 
                                                   >> 215 
208   const G4AtomicTransitionManager*  transition    216   const G4AtomicTransitionManager*  transitionManager = G4AtomicTransitionManager::Instance();
209   //  G4int provenienceShell = provShellId;       217   //  G4int provenienceShell = provShellId;
210                                                   218 
211   //isotropic angular distribution for the out    219   //isotropic angular distribution for the outcoming photon
212   G4double newcosTh = 1.-2.*G4UniformRand();      220   G4double newcosTh = 1.-2.*G4UniformRand();
213   G4double  newsinTh = std::sqrt(1.-newcosTh*n    221   G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
214   G4double newPhi = twopi*G4UniformRand();        222   G4double newPhi = twopi*G4UniformRand();
215                                                   223   
216   G4double xDir =  newsinTh*std::sin(newPhi);     224   G4double xDir =  newsinTh*std::sin(newPhi);
217   G4double yDir = newsinTh*std::cos(newPhi);      225   G4double yDir = newsinTh*std::cos(newPhi);
218   G4double zDir = newcosTh;                       226   G4double zDir = newcosTh;
219                                                   227   
220   G4ThreeVector newGammaDirection(xDir,yDir,zD    228   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
221                                                   229   
222   G4int shellNum = 0;                             230   G4int shellNum = 0;
223   G4int maxNumOfShells = transitionManager->Nu    231   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
224                                                   232   
225   // find the index of the shell named shellId    233   // find the index of the shell named shellId
226   while (shellId != transitionManager->           234   while (shellId != transitionManager->
227    ReachableShell(Z,shellNum)->FinalShellId())    235    ReachableShell(Z,shellNum)->FinalShellId())
228     {                                             236     {
229       if(shellNum == maxNumOfShells-1)            237       if(shellNum == maxNumOfShells-1)
230   {                                               238   {
231     break;                                        239     break;
232   }                                               240   }
233       shellNum++;                                 241       shellNum++;
234     }                                             242     }
235   // number of shell from wich an electron can    243   // number of shell from wich an electron can reach shellId
236   G4int transitionSize = (G4int)transitionMana << 244   size_t transitionSize = transitionManager->
237     ReachableShell(Z,shellNum)->OriginatingShe    245     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
238                                                   246   
239   G4int index = 0;                             << 247   size_t index = 0;
240                                                   248   
241   // find the index of the shell named provShe    249   // find the index of the shell named provShellId in the vector
242   // storing the shells from which shellId can    250   // storing the shells from which shellId can be reached 
243   while (provShellId != transitionManager->       251   while (provShellId != transitionManager->
244    ReachableShell(Z,shellNum)->OriginatingShel    252    ReachableShell(Z,shellNum)->OriginatingShellId(index))
245     {                                             253     {
246       if(index ==  transitionSize-1)              254       if(index ==  transitionSize-1)
247   {                                               255   {
248     break;                                        256     break;
249   }                                               257   }
250       index++;                                    258       index++;
251     }                                             259     }
252   // energy of the gamma leaving provShellId f    260   // energy of the gamma leaving provShellId for shellId
253   G4double transitionEnergy = transitionManage    261   G4double transitionEnergy = transitionManager->
254     ReachableShell(Z,shellNum)->TransitionEner    262     ReachableShell(Z,shellNum)->TransitionEnergy(index);
255                                                   263   
256   // This is the shell where the new vacancy i    264   // This is the shell where the new vacancy is: it is the same
257   // shell where the electron came from           265   // shell where the electron came from
258   newShellId = transitionManager->                266   newShellId = transitionManager->
259     ReachableShell(Z,shellNum)->OriginatingShe    267     ReachableShell(Z,shellNum)->OriginatingShellId(index);
260                                                   268   
                                                   >> 269   
261   G4DynamicParticle* newPart = new G4DynamicPa    270   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
262                  newGammaDirection,               271                  newGammaDirection,
263                  transitionEnergy);               272                  transitionEnergy);
264   return newPart;                                 273   return newPart;
265 }                                                 274 }
266                                                   275 
267 G4DynamicParticle* G4AtomicDeexcitation::Gener    276 G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
268 {                                                 277 {
269   if(!fAuger) return 0;                           278   if(!fAuger) return 0;
270                                                   279   
                                                   >> 280 
271   const G4AtomicTransitionManager*  transition    281   const G4AtomicTransitionManager*  transitionManager = 
272         G4AtomicTransitionManager::Instance();    282         G4AtomicTransitionManager::Instance();
273                                                   283 
                                                   >> 284 
                                                   >> 285 
274   if (shellId <=0 )                               286   if (shellId <=0 ) 
275     {G4Exception("G4AtomicDeexcitation::Genera    287     {G4Exception("G4AtomicDeexcitation::GenerateAuger()","de0002", JustWarning ,"zero or negative shellId");}
276                                                   288   
277   // G4int provShellId = -1;                      289   // G4int provShellId = -1;
278   G4int maxNumOfShells = transitionManager->Nu    290   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
279                                                   291   
280   const G4AugerTransition* refAugerTransition     292   const G4AugerTransition* refAugerTransition = 
281         transitionManager->ReachableAugerShell    293         transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
282                                                   294 
283                                                   295 
284   // This loop gives to shellNum the value of     296   // This loop gives to shellNum the value of the index of shellId
285   // in the vector storing the list of the vac    297   // in the vector storing the list of the vacancies in the variuos shells 
286   // that can originate a NON-radiative transi    298   // that can originate a NON-radiative transition
                                                   >> 299   
                                                   >> 300   // ---- MGP ---- Next line commented out to remove compilation warning
                                                   >> 301   // G4int p = refAugerTransition->FinalShellId();
                                                   >> 302 
287   G4int shellNum = 0;                             303   G4int shellNum = 0;
288                                                   304 
                                                   >> 305 
289   if ( shellId <= refAugerTransition->FinalShe    306   if ( shellId <= refAugerTransition->FinalShellId() ) 
290     //"FinalShellId" is final from the point o    307     //"FinalShellId" is final from the point of view of the elctron who makes the transition, 
291     // being the Id of the shell in which ther    308     // being the Id of the shell in which there is a vacancy
292     {                                             309     {
293       G4int pippo = transitionManager->Reachab    310       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
294       if (shellId  != pippo ) {                   311       if (shellId  != pippo ) {
295   do {                                            312   do { 
296     shellNum++;                                   313     shellNum++;
297     if(shellNum == maxNumOfShells)                314     if(shellNum == maxNumOfShells)
298       {                                           315       {
299                                                   316 
300         //G4Exception("G4AtomicDeexcitation: N    317         //G4Exception("G4AtomicDeexcitation: No Auger transition found");
301         return 0;                                 318         return 0;
302       }                                           319       }
303   }                                               320   }
304   while (shellId != (transitionManager->Reacha    321   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
305       }                                           322       }
306                                                   323 
                                                   >> 324 
                                                   >> 325       // Now we have that shellnum is the shellIndex of the shell named ShellId
                                                   >> 326 
                                                   >> 327       //      G4cout << " the index of the shell is: "<<shellNum<<G4endl;
                                                   >> 328 
                                                   >> 329       // But we have now to select two shells: one for the transition, 
                                                   >> 330       // and another for the auger emission.
                                                   >> 331 
307       G4int transitionLoopShellIndex = 0;         332       G4int transitionLoopShellIndex = 0;      
308       G4double partSum = 0;                       333       G4double partSum = 0;
309       const G4AugerTransition* anAugerTransiti    334       const G4AugerTransition* anAugerTransition = 
310             transitionManager->ReachableAugerS    335             transitionManager->ReachableAugerShell(Z,shellNum);
311                                                   336 
312       G4int transitionSize = (G4int)           << 337       //      G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl;
                                                   >> 338 
                                                   >> 339 
                                                   >> 340       G4int transitionSize = 
313             (anAugerTransition->TransitionOrig    341             (anAugerTransition->TransitionOriginatingShellIds())->size();
314       while (transitionLoopShellIndex < transi    342       while (transitionLoopShellIndex < transitionSize) {
315                                                   343 
316         std::vector<G4int>::const_iterator pos    344         std::vector<G4int>::const_iterator pos = 
317                anAugerTransition->TransitionOr    345                anAugerTransition->TransitionOriginatingShellIds()->begin();
318                                                   346 
319         G4int transitionLoopShellId = *(pos+tr    347         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
320         G4int numberOfPossibleAuger = (G4int)  << 348         G4int numberOfPossibleAuger = 
321               (anAugerTransition->AugerTransit    349               (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
322         G4int augerIndex = 0;                     350         G4int augerIndex = 0;
                                                   >> 351         //      G4int partSum2 = 0;
                                                   >> 352 
323                                                   353 
324   if (augerIndex < numberOfPossibleAuger) {    << 354   if (augerIndex < numberOfPossibleAuger) {
                                                   >> 355     
325     do                                            356     do 
326       {                                           357       {
327         G4double thisProb = anAugerTransition-    358         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
328                     transitionLoopShellId);       359                     transitionLoopShellId);
329         partSum += thisProb;                      360         partSum += thisProb;
330         augerIndex++;                             361         augerIndex++;
331                                                   362         
332       } while (augerIndex < numberOfPossibleAu    363       } while (augerIndex < numberOfPossibleAuger);
333     }                                             364     }
334         transitionLoopShellIndex++;               365         transitionLoopShellIndex++;
335       }                                           366       }
336                                                   367       
337                                                   368 
                                                   >> 369 
338       // Now we have the entire probability of    370       // Now we have the entire probability of an auger transition for the vacancy 
339       // located in shellNum (index of shellId    371       // located in shellNum (index of shellId) 
                                                   >> 372 
                                                   >> 373       // AM *********************** F I X E D **************************** AM
                                                   >> 374       // Here we duplicate the previous loop, this time looking to the sum of the probabilities 
                                                   >> 375       // to be under the random number shoot by G4 UniformRdandom. This could have been done in the 
                                                   >> 376       // previuos loop, while integrating the probabilities. There is a bug that will be fixed 
                                                   >> 377       // 5 minutes from now: a line:
                                                   >> 378       // G4int numberOfPossibleAuger = (anAugerTransition->
                                                   >> 379       // AugerTransitionProbabilities(transitionLoopShellId))->size();
                                                   >> 380       // to be inserted.
                                                   >> 381       // AM *********************** F I X E D **************************** AM
                                                   >> 382 
                                                   >> 383       // Remains to get the same result with a single loop.
                                                   >> 384 
                                                   >> 385       // AM *********************** F I X E D **************************** AM
                                                   >> 386       // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from 
                                                   >> 387       // a vacancy in one shell, but not all of these are present in data tables. So if a transition 
                                                   >> 388       // doesn't occur in the main one a local energy deposition must occur, instead of (like now) 
                                                   >> 389       // generating the last transition present in EADL data.
                                                   >> 390       // AM *********************** F I X E D **************************** AM
                                                   >> 391 
                                                   >> 392 
340       G4double totalVacancyAugerProbability =     393       G4double totalVacancyAugerProbability = partSum;
341                                                   394 
                                                   >> 395 
342       //And now we start to select the right a    396       //And now we start to select the right auger transition and emission
343       G4int transitionRandomShellIndex = 0;       397       G4int transitionRandomShellIndex = 0;
344       G4int transitionRandomShellId = 1;          398       G4int transitionRandomShellId = 1;
345       G4int augerIndex = 0;                       399       G4int augerIndex = 0;
346       partSum = 0;                                400       partSum = 0; 
347       G4double partialProb = G4UniformRand();     401       G4double partialProb = G4UniformRand();
348       // G4int augerOriginatingShellId = 0;       402       // G4int augerOriginatingShellId = 0;
349                                                   403       
350       G4int numberOfPossibleAuger = 0;            404       G4int numberOfPossibleAuger = 0;
351                                                   405       
352       G4bool foundFlag = false;                   406       G4bool foundFlag = false;
353                                                   407 
354       while (transitionRandomShellIndex < tran    408       while (transitionRandomShellIndex < transitionSize) {
                                                   >> 409 
355         std::vector<G4int>::const_iterator pos    410         std::vector<G4int>::const_iterator pos = 
356                anAugerTransition->TransitionOr    411                anAugerTransition->TransitionOriginatingShellIds()->begin();
357                                                   412 
358         transitionRandomShellId = *(pos+transi    413         transitionRandomShellId = *(pos+transitionRandomShellIndex);
359                                                   414         
360   augerIndex = 0;                                 415   augerIndex = 0;
361   numberOfPossibleAuger = (G4int)(anAugerTrans << 416   numberOfPossibleAuger = (anAugerTransition-> 
362          AugerTransitionProbabilities(transiti    417          AugerTransitionProbabilities(transitionRandomShellId))->size();
363                                                   418 
364         while (augerIndex < numberOfPossibleAu    419         while (augerIndex < numberOfPossibleAuger) {
365     G4double thisProb =anAugerTransition->Auge    420     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
366                      transitionRandomShellId);    421                      transitionRandomShellId);
367                                                   422 
368           partSum += thisProb;                    423           partSum += thisProb;
369                                                   424           
370           if (partSum >= (partialProb*totalVac    425           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
371       foundFlag = true;                           426       foundFlag = true;
372       break;                                      427       break;
373     }                                             428     }
374           augerIndex++;                           429           augerIndex++;
375         }                                         430         }
376         if (partSum >= (partialProb*totalVacan    431         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
377         transitionRandomShellIndex++;             432         transitionRandomShellIndex++;
378       }                                           433       }
379                                                   434 
380       // Now we have the index of the shell fr    435       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
381       // and the id of the shell, from which t    436       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
382       // If no Transition has been found, 0 is    437       // If no Transition has been found, 0 is returned.  
383                                                   438 
384       if (!foundFlag) {return 0;}                 439       if (!foundFlag) {return 0;}      
385                                                   440       
386       // Isotropic angular distribution for th    441       // Isotropic angular distribution for the outcoming e-
387       G4double newcosTh = 1.-2.*G4UniformRand(    442       G4double newcosTh = 1.-2.*G4UniformRand();
388       G4double  newsinTh = std::sqrt(1.-newcos    443       G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
389       G4double newPhi = twopi*G4UniformRand();    444       G4double newPhi = twopi*G4UniformRand();
390                                                   445       
391       G4double xDir =  newsinTh*std::sin(newPh    446       G4double xDir =  newsinTh*std::sin(newPhi);
392       G4double yDir = newsinTh*std::cos(newPhi    447       G4double yDir = newsinTh*std::cos(newPhi);
393       G4double zDir = newcosTh;                   448       G4double zDir = newcosTh;
394                                                   449       
395       G4ThreeVector newElectronDirection(xDir,    450       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
396                                                   451       
397       // energy of the auger electron emitted     452       // energy of the auger electron emitted
398                                                << 453       
                                                   >> 454       
399       G4double transitionEnergy = anAugerTrans    455       G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
400       /*                                          456       /*
401   G4cout << "AUger TransitionId " << anAugerTr    457   G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
402   G4cout << "augerIndex: " << augerIndex << G4    458   G4cout << "augerIndex: " << augerIndex << G4endl;
403   G4cout << "transitionShellId: " << transitio    459   G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
404       */                                          460       */
405                                                   461       
406       // This is the shell where the new vacan    462       // This is the shell where the new vacancy is: it is the same
407       // shell where the electron came from       463       // shell where the electron came from
408       newShellId = transitionRandomShellId;       464       newShellId = transitionRandomShellId;
409                                                << 465       
                                                   >> 466       
410       G4DynamicParticle* newPart = new G4Dynam    467       G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 
411                newElectronDirection,              468                newElectronDirection,
412                transitionEnergy);                 469                transitionEnergy);
413       return newPart;                             470       return newPart;
                                                   >> 471 
414     }                                             472     }
415   else                                            473   else 
416     {                                             474     {
417       //G4Exception("G4AtomicDeexcitation: no     475       //G4Exception("G4AtomicDeexcitation: no auger transition found");
418       return 0;                                   476       return 0;
419     }                                             477     }
                                                   >> 478   
420 }                                                 479 }
421                                                   480 
422 void G4AtomicDeexcitation::SetCutForSecondaryP    481 void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
423 {                                                 482 {
424   minGammaEnergy = cut;                           483   minGammaEnergy = cut;
425 }                                                 484 }
426                                                   485 
427 void G4AtomicDeexcitation::SetCutForAugerElect    486 void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
428 {                                                 487 {
429   minElectronEnergy = cut;                        488   minElectronEnergy = cut;
430 }                                                 489 }
431                                                   490 
432 void G4AtomicDeexcitation::ActivateAugerElectr    491 void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val)
433 {                                                 492 {
434   fAuger = val;                                   493   fAuger = val;
435 }                                                 494 }
436                                                   495 
437                                                   496 
438                                                   497 
439                                                   498 
440                                                   499 
441                                                   500 
442                                                   501 
443                                                   502