Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4ANSTOecpssrMixsModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/src/G4ANSTOecpssrMixsModel.cc (Version 11.3.0) and /processes/electromagnetic/lowenergy/src/G4ANSTOecpssrMixsModel.cc (Version 11.2.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // History:                                        26 // History:
 27 // -----------                                     27 // -----------
 28 //  10 Nov 2021   S. Guatelli & S. Bakr, Wollo     28 //  10 Nov 2021   S. Guatelli & S. Bakr, Wollongong University - 1st implementation
 29 //                                                 29 //
 30 // Class description                               30 // Class description
 31 // ----------------                                31 // ----------------
 32 //  Computation of K, L & M shell ECPSSR ionis     32 //  Computation of K, L & M shell ECPSSR ionisation cross sections for protons and alphas
 33 //  Based on the work of                           33 //  Based on the work of
 34 //  - S. Bakr et al. (2021) NIM B, 507:11-19.      34 //  - S. Bakr et al. (2021) NIM B, 507:11-19.
 35 //  - S. Bakr et al (2018), NIMB B, 436: 285-2     35 //  - S. Bakr et al (2018), NIMB B, 436: 285-291. 
 36 // -------------------------------------------     36 // ---------------------------------------------------------------------------------------
 37                                                    37 
 38 #include <fstream>                                 38 #include <fstream>
 39 #include <iomanip>                                 39 #include <iomanip>
 40                                                    40 
 41 #include "globals.hh"                              41 #include "globals.hh"
 42 #include "G4ios.hh"                                42 #include "G4ios.hh"
 43 #include "G4SystemOfUnits.hh"                      43 #include "G4SystemOfUnits.hh"
 44                                                    44 
 45 #include "G4EMDataSet.hh"                          45 #include "G4EMDataSet.hh"
 46 #include "G4LinInterpolation.hh"                   46 #include "G4LinInterpolation.hh"
 47 #include "G4Proton.hh"                             47 #include "G4Proton.hh"
 48 #include "G4Alpha.hh"                              48 #include "G4Alpha.hh"
 49                                                    49 
 50 #include "G4ANSTOecpssrMixsModel.hh"               50 #include "G4ANSTOecpssrMixsModel.hh"
 51                                                    51 
 52 //....oooOO0OOooo........oooOO0OOooo........oo     52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 53                                                    53 
 54 G4ANSTOecpssrMixsModel::G4ANSTOecpssrMixsModel     54 G4ANSTOecpssrMixsModel::G4ANSTOecpssrMixsModel()
 55 {                                                  55 {
 56   G4cout << "Using ANSTO M Cross Sections! "<<     56   G4cout << "Using ANSTO M Cross Sections! "<< G4endl;
 57                                                    57 
 58   interpolation = new G4LinInterpolation();        58   interpolation = new G4LinInterpolation();
 59                                                    59 
 60   for (G4int i=67; i<93; i++)                      60   for (G4int i=67; i<93; i++)
 61   {                                                61   {
 62       protonM1DataSetMap[i] = new G4EMDataSet(     62       protonM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
 63       protonM1DataSetMap[i]->LoadData("pixe_AN     63       protonM1DataSetMap[i]->LoadData("pixe_ANSTO/proton/m1-");
 64                                                    64 
 65       protonM2DataSetMap[i] = new G4EMDataSet(     65       protonM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
 66       protonM2DataSetMap[i]->LoadData("pixe_AN     66       protonM2DataSetMap[i]->LoadData("pixe_ANSTO/proton/m2-");
 67                                                    67 
 68       protonM3DataSetMap[i] = new G4EMDataSet(     68       protonM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
 69       protonM3DataSetMap[i]->LoadData("pixe_AN     69       protonM3DataSetMap[i]->LoadData("pixe_ANSTO/proton/m3-");
 70                                                    70 
 71       protonM4DataSetMap[i] = new G4EMDataSet(     71       protonM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
 72       protonM4DataSetMap[i]->LoadData("pixe_AN     72       protonM4DataSetMap[i]->LoadData("pixe_ANSTO/proton/m4-");
 73                                                    73 
 74       protonM5DataSetMap[i] = new G4EMDataSet(     74       protonM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
 75       protonM5DataSetMap[i]->LoadData("pixe_AN     75       protonM5DataSetMap[i]->LoadData("pixe_ANSTO/proton/m5-");
 76   }                                                76   }
 77                                                    77 
 78   protonMiXsVector.push_back(protonM1DataSetMa     78   protonMiXsVector.push_back(protonM1DataSetMap);
 79   protonMiXsVector.push_back(protonM2DataSetMa     79   protonMiXsVector.push_back(protonM2DataSetMap);
 80   protonMiXsVector.push_back(protonM3DataSetMa     80   protonMiXsVector.push_back(protonM3DataSetMap);
 81   protonMiXsVector.push_back(protonM4DataSetMa     81   protonMiXsVector.push_back(protonM4DataSetMap);
 82   protonMiXsVector.push_back(protonM5DataSetMa     82   protonMiXsVector.push_back(protonM5DataSetMap);
 83                                                    83 
 84                                                    84 
 85   for (G4int i=67; i<93; i++)                      85   for (G4int i=67; i<93; i++)
 86   {                                                86   {
 87       alphaM1DataSetMap[i] = new G4EMDataSet(i     87       alphaM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
 88       alphaM1DataSetMap[i]->LoadData("pixe_ANS     88       alphaM1DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m1-");
 89                                                    89 
 90       alphaM2DataSetMap[i] = new G4EMDataSet(i     90       alphaM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
 91       alphaM2DataSetMap[i]->LoadData("pixe_ANS     91       alphaM2DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m2-");
 92                                                    92 
 93       alphaM3DataSetMap[i] = new G4EMDataSet(i     93       alphaM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
 94       alphaM3DataSetMap[i]->LoadData("pixe_ANS     94       alphaM3DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m3-");
 95                                                    95 
 96       alphaM4DataSetMap[i] = new G4EMDataSet(i     96       alphaM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
 97       alphaM4DataSetMap[i]->LoadData("pixe_ANS     97       alphaM4DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m4-");
 98                                                    98 
 99       alphaM5DataSetMap[i] = new G4EMDataSet(i     99       alphaM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
100       alphaM5DataSetMap[i]->LoadData("pixe_ANS    100       alphaM5DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m5-");
101   }                                               101   }
102                                                   102 
103   alphaMiXsVector.push_back(alphaM1DataSetMap)    103   alphaMiXsVector.push_back(alphaM1DataSetMap);
104   alphaMiXsVector.push_back(alphaM2DataSetMap)    104   alphaMiXsVector.push_back(alphaM2DataSetMap);
105   alphaMiXsVector.push_back(alphaM3DataSetMap)    105   alphaMiXsVector.push_back(alphaM3DataSetMap);
106   alphaMiXsVector.push_back(alphaM4DataSetMap)    106   alphaMiXsVector.push_back(alphaM4DataSetMap);
107   alphaMiXsVector.push_back(alphaM5DataSetMap)    107   alphaMiXsVector.push_back(alphaM5DataSetMap);
108 }                                                 108 }
109                                                   109 
110 //....oooOO0OOooo........oooOO0OOooo........oo    110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111                                                   111 
112 G4ANSTOecpssrMixsModel::~G4ANSTOecpssrMixsMode    112 G4ANSTOecpssrMixsModel::~G4ANSTOecpssrMixsModel()
113 {                                                 113 {
114   protonM1DataSetMap.clear();                     114   protonM1DataSetMap.clear();
115   alphaM1DataSetMap.clear();                      115   alphaM1DataSetMap.clear();
116                                                   116 
117   protonM2DataSetMap.clear();                     117   protonM2DataSetMap.clear();
118   alphaM2DataSetMap.clear();                      118   alphaM2DataSetMap.clear();
119                                                   119 
120   protonM3DataSetMap.clear();                     120   protonM3DataSetMap.clear();
121   alphaM3DataSetMap.clear();                      121   alphaM3DataSetMap.clear();
122                                                   122 
123   protonM4DataSetMap.clear();                     123   protonM4DataSetMap.clear();
124   alphaM4DataSetMap.clear();                      124   alphaM4DataSetMap.clear();
125                                                   125 
126   protonM5DataSetMap.clear();                     126   protonM5DataSetMap.clear();
127   alphaM5DataSetMap.clear();                      127   alphaM5DataSetMap.clear();
128                                                   128 
129   delete interpolation;                           129   delete interpolation;
130 }                                                 130 }
131                                                   131 
132 //....oooOO0OOooo........oooOO0OOooo........oo    132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
133                                                   133 
134 G4double G4ANSTOecpssrMixsModel::CalculateMiCr    134 G4double G4ANSTOecpssrMixsModel::CalculateMiCrossSection(G4int zTarget,G4double massIncident, G4double energyIncident, G4int mShellId)
135 {                                                 135 {
136   G4Proton* aProton = G4Proton::Proton();         136   G4Proton* aProton = G4Proton::Proton();
137   G4Alpha* aAlpha = G4Alpha::Alpha();             137   G4Alpha* aAlpha = G4Alpha::Alpha();
138   G4double sigma = 0;                             138   G4double sigma = 0;
139   G4int mShellIndex = mShellId -1;                139   G4int mShellIndex = mShellId -1;
140                                                   140 
141   if (massIncident == aProton->GetPDGMass())      141   if (massIncident == aProton->GetPDGMass())
142      {                                            142      {
143      if (energyIncident > 0.2*MeV && energyInc    143      if (energyIncident > 0.2*MeV && energyIncident < 5.*MeV && zTarget < 93 && zTarget > 66) {
144                                                   144 
145       sigma = protonMiXsVector[mShellIndex][zT    145       sigma = protonMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
146         if (sigma !=0 && energyIncident > prot    146         if (sigma !=0 && energyIncident > protonMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
147         }                                         147         }
148      }                                            148      }
149                                                   149      
150     else if (massIncident == aAlpha->GetPDGMas    150     else if (massIncident == aAlpha->GetPDGMass())
151            {                                      151            {
152             if (energyIncident > 0.2*MeV && en    152             if (energyIncident > 0.2*MeV && energyIncident < 10.*MeV && zTarget < 93 && zTarget > 66) {
153                                                   153 
154             sigma = alphaMiXsVector[mShellInde    154             sigma = alphaMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
155             if (sigma !=0 && energyIncident >     155             if (sigma !=0 && energyIncident > alphaMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
156                 }                                 156                 }
157            }                                      157            }
158                                                   158     
159     else                                          159     else
160       {                                           160       {
161         sigma = 0.;                               161         sigma = 0.;
162       }                                           162       }
163                                                   163 
164                                                   164 
165   // sigma is in internal units: it has been c    165   // sigma is in internal units: it has been converted from
166   // the input file in barns bt the EmDataset     166   // the input file in barns bt the EmDataset
167   return sigma;                                   167   return sigma;
168 }                                                 168 }
169                                                   169 
170 //....oooOO0OOooo........oooOO0OOooo........oo    170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171                                                   171 
172 G4double G4ANSTOecpssrMixsModel::CalculateM1Cr    172 G4double G4ANSTOecpssrMixsModel::CalculateM1CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
173 {                                                 173 {
174                                                   174 
175   // mShellId                                     175   // mShellId
176   return  CalculateMiCrossSection (zTarget, ma    176   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 1);
177                                                   177 
178 }                                                 178 }
179                                                   179 
180 //....oooOO0OOooo........oooOO0OOooo........oo    180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
181                                                   181 
182 G4double G4ANSTOecpssrMixsModel::CalculateM2Cr    182 G4double G4ANSTOecpssrMixsModel::CalculateM2CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
183 {                                                 183 {
184                                                   184 
185   // mShellId                                     185   // mShellId
186   return  CalculateMiCrossSection (zTarget, ma    186   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 2);
187                                                   187 
188   /*                                              188   /*
189                                                   189 
190   G4Proton* aProton = G4Proton::Proton();         190   G4Proton* aProton = G4Proton::Proton();
191   G4Alpha* aAlpha = G4Alpha::Alpha();             191   G4Alpha* aAlpha = G4Alpha::Alpha();
192   G4double sigma = 0;                             192   G4double sigma = 0;
193                                                   193 
194   if (energyIncident > 0.1*MeV && energyIncide    194   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
195                                                   195 
196     if (massIncident == aProton->GetPDGMass())    196     if (massIncident == aProton->GetPDGMass())
197       {                                           197       {
198   sigma = protonM2DataSetMap[zTarget]->FindVal    198   sigma = protonM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
199         if (sigma !=0 && energyIncident > prot    199         if (sigma !=0 && energyIncident > protonM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
200       }                                           200       }
201     else if (massIncident == aAlpha->GetPDGMas    201     else if (massIncident == aAlpha->GetPDGMass())
202       {                                           202       {
203         sigma = alphaM2DataSetMap[zTarget]->Fi    203         sigma = alphaM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
204         if (sigma !=0 && energyIncident > alph    204         if (sigma !=0 && energyIncident > alphaM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
205       }                                           205       }
206     else                                          206     else
207       {                                           207       {
208   sigma = 0.;                                     208   sigma = 0.;
209       }                                           209       }
210   }                                               210   }
211                                                   211 
212   // sigma is in internal units: it has been c    212   // sigma is in internal units: it has been converted from
213   // the input file in barns bt the EmDataset     213   // the input file in barns bt the EmDataset
214   return sigma;                                   214   return sigma;
215   */                                              215   */
216 }                                                 216 }
217                                                   217 
218 //....oooOO0OOooo........oooOO0OOooo........oo    218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
219                                                   219 
220 G4double G4ANSTOecpssrMixsModel::CalculateM3Cr    220 G4double G4ANSTOecpssrMixsModel::CalculateM3CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
221 {                                                 221 {
222                                                   222 
223   return  CalculateMiCrossSection (zTarget, ma    223   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 3);
224   /*                                              224   /*
225                                                   225 
226                                                   226 
227   G4Proton* aProton = G4Proton::Proton();         227   G4Proton* aProton = G4Proton::Proton();
228   G4Alpha* aAlpha = G4Alpha::Alpha();             228   G4Alpha* aAlpha = G4Alpha::Alpha();
229   G4double sigma = 0;                             229   G4double sigma = 0;
230                                                   230 
231   if (energyIncident > 0.1*MeV && energyIncide    231   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
232                                                   232 
233     if (massIncident == aProton->GetPDGMass())    233     if (massIncident == aProton->GetPDGMass())
234       {                                           234       {
235   sigma = protonM3DataSetMap[zTarget]->FindVal    235   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
236         if (sigma !=0 && energyIncident > prot    236         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
237       }                                           237       }
238     else if (massIncident == aAlpha->GetPDGMas    238     else if (massIncident == aAlpha->GetPDGMass())
239       {                                           239       {
240         sigma = alphaM3DataSetMap[zTarget]->Fi    240         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
241         if (sigma !=0 && energyIncident > alph    241         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
242       }                                           242       }
243     else                                          243     else
244       {                                           244       {
245   sigma = 0.;                                     245   sigma = 0.;
246       }                                           246       }
247   }                                               247   }
248                                                   248 
249   // sigma is in internal units: it has been c    249   // sigma is in internal units: it has been converted from
250   // the input file in barns bt the EmDataset     250   // the input file in barns bt the EmDataset
251   return sigma;                                   251   return sigma;
252   */                                              252   */
253 }                                                 253 }
254                                                   254 
255 //....oooOO0OOooo........oooOO0OOooo........oo    255 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256                                                   256 
257 G4double G4ANSTOecpssrMixsModel::CalculateM4Cr    257 G4double G4ANSTOecpssrMixsModel::CalculateM4CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
258 {                                                 258 {
259                                                   259 
260   return  CalculateMiCrossSection (zTarget, ma    260   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 4);
261   /*                                              261   /*
262   G4Proton* aProton = G4Proton::Proton();         262   G4Proton* aProton = G4Proton::Proton();
263   G4Alpha* aAlpha = G4Alpha::Alpha();             263   G4Alpha* aAlpha = G4Alpha::Alpha();
264   G4double sigma = 0;                             264   G4double sigma = 0;
265                                                   265 
266   if (energyIncident > 0.1*MeV && energyIncide    266   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
267                                                   267 
268     if (massIncident == aProton->GetPDGMass())    268     if (massIncident == aProton->GetPDGMass())
269       {                                           269       {
270   sigma = protonM3DataSetMap[zTarget]->FindVal    270   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
271         if (sigma !=0 && energyIncident > prot    271         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
272       }                                           272       }
273     else if (massIncident == aAlpha->GetPDGMas    273     else if (massIncident == aAlpha->GetPDGMass())
274       {                                           274       {
275         sigma = alphaM3DataSetMap[zTarget]->Fi    275         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
276         if (sigma !=0 && energyIncident > alph    276         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
277       }                                           277       }
278     else                                          278     else
279       {                                           279       {
280   sigma = 0.;                                     280   sigma = 0.;
281       }                                           281       }
282   }                                               282   }
283                                                   283 
284   // sigma is in internal units: it has been c    284   // sigma is in internal units: it has been converted from
285   // the input file in barns bt the EmDataset     285   // the input file in barns bt the EmDataset
286   return sigma;                                   286   return sigma;
287   */                                              287   */
288 }                                                 288 }
289                                                   289 
290 //....oooOO0OOooo........oooOO0OOooo........oo    290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
291                                                   291 
292 G4double G4ANSTOecpssrMixsModel::CalculateM5Cr    292 G4double G4ANSTOecpssrMixsModel::CalculateM5CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
293 {                                                 293 {
294                                                   294 
295   return  CalculateMiCrossSection (zTarget, ma    295   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 5);
296   /*                                              296   /*
297   G4Proton* aProton = G4Proton::Proton();         297   G4Proton* aProton = G4Proton::Proton();
298   G4Alpha* aAlpha = G4Alpha::Alpha();             298   G4Alpha* aAlpha = G4Alpha::Alpha();
299   G4double sigma = 0;                             299   G4double sigma = 0;
300                                                   300 
301   if (energyIncident > 0.1*MeV && energyIncide    301   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
302                                                   302 
303     if (massIncident == aProton->GetPDGMass())    303     if (massIncident == aProton->GetPDGMass())
304       {                                           304       {
305   sigma = protonM3DataSetMap[zTarget]->FindVal    305   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
306         if (sigma !=0 && energyIncident > prot    306         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
307       }                                           307       }
308     else if (massIncident == aAlpha->GetPDGMas    308     else if (massIncident == aAlpha->GetPDGMass())
309       {                                           309       {
310         sigma = alphaM3DataSetMap[zTarget]->Fi    310         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
311         if (sigma !=0 && energyIncident > alph    311         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
312       }                                           312       }
313     else                                          313     else
314       {                                           314       {
315   sigma = 0.;                                     315   sigma = 0.;
316       }                                           316       }
317   }                                               317   }
318                                                   318 
319   // sigma is in internal units: it has been c    319   // sigma is in internal units: it has been converted from
320   // the input file in barns bt the EmDataset     320   // the input file in barns bt the EmDataset
321   return sigma;                                   321   return sigma;
322   */                                              322   */
323 }                                                 323 }
324                                                   324