Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4AtomicTransitionManager.hh,v 1.2 ???? >> 27 // GEANT4 tag $Name: geant4-09-04 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // Geant4 Header G4UAtomicDeexcitation 31 // Geant4 Header G4UAtomicDeexcitation 30 // 32 // 31 // Authors: Alfonso Mantero (Alfonso.Mantero@g 33 // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 32 // 34 // 33 // Created 22 April 2010 from old G4AtomicDeex 35 // Created 22 April 2010 from old G4AtomicDeexcitation class 34 // 36 // 35 // Modified: 37 // Modified: 36 // --------- 38 // --------- 37 // 39 // 38 // 40 // 39 // ------------------------------------------- 41 // ------------------------------------------------------------------- 40 // 42 // 41 // Class description: 43 // Class description: 42 // Implementation of atomic deexcitation 44 // Implementation of atomic deexcitation 43 // 45 // 44 // ------------------------------------------- 46 // ------------------------------------------------------------------- 45 47 46 #ifndef G4UAtomicDeexcitation_h 48 #ifndef G4UAtomicDeexcitation_h 47 #define G4UAtomicDeexcitation_h 1 49 #define G4UAtomicDeexcitation_h 1 48 50 49 #include "G4VAtomDeexcitation.hh" 51 #include "G4VAtomDeexcitation.hh" 50 #include "G4AtomicShell.hh" 52 #include "G4AtomicShell.hh" 51 #include "globals.hh" 53 #include "globals.hh" 52 #include "G4DynamicParticle.hh" << 53 #include <vector> 54 #include <vector> 54 << 55 #include "G4DynamicParticle.hh" >> 56 //#include "G4VhShellCrossSection.hh" >> 57 #include "G4teoCrossSection.hh" >> 58 #include "G4empCrossSection.hh" 55 class G4AtomicTransitionManager; 59 class G4AtomicTransitionManager; 56 class G4VhShellCrossSection; 60 class G4VhShellCrossSection; 57 class G4EmCorrections; << 61 //class G4teoCrossSection; 58 class G4Material; << 62 //class G4empCrossSection; 59 << 60 class G4UAtomicDeexcitation : public G4VAtomDe 63 class G4UAtomicDeexcitation : public G4VAtomDeexcitation 61 { 64 { 62 public: 65 public: 63 explicit G4UAtomicDeexcitation(); << 66 >> 67 G4UAtomicDeexcitation(); 64 virtual ~G4UAtomicDeexcitation(); 68 virtual ~G4UAtomicDeexcitation(); 65 69 66 //========================================== 70 //================================================================= 67 // methods that are requested to be implemen 71 // methods that are requested to be implemented by the interface 68 //========================================== 72 //================================================================= 69 /// initialisation methods << 70 void InitialiseForNewRun() override; << 71 void InitialiseForExtraAtom(G4int Z) overrid << 72 73 73 /// Set threshold energy for fluorescence << 74 // initialisation methods >> 75 virtual void InitialiseForNewRun(); >> 76 virtual void InitialiseForExtraAtom(G4int Z); >> 77 >> 78 >> 79 // Set threshold energy for fluorescence 74 void SetCutForSecondaryPhotons(G4double cut) 80 void SetCutForSecondaryPhotons(G4double cut); 75 81 76 /// Set threshold energy for Auger electron << 82 // Set threshold energy for Auger electron production 77 void SetCutForAugerElectrons(G4double cut); 83 void SetCutForAugerElectrons(G4double cut); 78 84 79 85 80 /// Get atomic shell by shell index, used by << 86 // Get atomic shell by shell index, used by discrete processes 81 /// (for example, photoelectric), when shell << 87 // (for example, photoelectric), when shell vacancy sampled by the model >> 88 virtual 82 const G4AtomicShell* GetAtomicShell(G4int Z, 89 const G4AtomicShell* GetAtomicShell(G4int Z, 83 G4AtomicShellEnumerator shell) o << 90 G4AtomicShellEnumerator shell); 84 91 85 /// generation of deexcitation for given ato << 92 // generation of deexcitation for given atom, shell vacancy and cuts 86 void GenerateParticles(std::vector<G4Dynamic << 93 virtual void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 87 const G4AtomicShell*, << 94 const G4AtomicShell*, 88 G4int Z, << 95 G4int Z, 89 G4double gammaCut, << 96 G4double gammaCut, 90 G4double eCut) override; << 97 G4double eCut); 91 << 98 92 /// access or compute PIXE cross section << 99 // access or compute PIXE cross section >> 100 virtual 93 G4double GetShellIonisationCrossSectionPerAt 101 G4double GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 94 G4int Z, 102 G4int Z, 95 G4AtomicShellEnumerator shell, 103 G4AtomicShellEnumerator shell, 96 G4double kinE, << 104 G4double kinE); 97 << 98 105 99 /// access or compute PIXE cross section << 106 // access or compute PIXE cross section >> 107 virtual 100 G4double ComputeShellIonisationCrossSectionP 108 G4double ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 101 G4int Z, 109 G4int Z, 102 G4AtomicShellEnumerator shell 110 G4AtomicShellEnumerator shell, 103 G4double kinE, << 111 G4double kinE); 104 const G4Material* mat = nullp << 105 112 106 G4UAtomicDeexcitation(G4UAtomicDeexcitation << 113 //================================================================= 107 G4UAtomicDeexcitation & operator=(const G4UA << 114 // concrete methods of the deextation class >> 115 //================================================================= 108 116 109 private: 117 private: 110 /// Decides wether a radiative transition is << 118 111 /// returns the identity of the starting she << 119 // Decides wether a radiative transition is possible and, if it is, >> 120 // returns the identity of the starting shell for the transition 112 G4int SelectTypeOfTransition(G4int Z, G4int 121 G4int SelectTypeOfTransition(G4int Z, G4int shellId); 113 122 114 /// Generates a particle from a radiative tr << 123 // Generates a particle from a radiative transition and returns it 115 G4DynamicParticle* GenerateFluorescence(G4in 124 G4DynamicParticle* GenerateFluorescence(G4int Z, G4int shellId, 116 G4int provShellId); 125 G4int provShellId); 117 126 118 /// Generates a particle from a non-radiativ << 127 // Generates a particle from a non-radiative transition and returns it 119 G4DynamicParticle* GenerateAuger(G4int Z, G4 128 G4DynamicParticle* GenerateAuger(G4int Z, G4int shellId); 120 129 121 ///Auger cascade by Burkhant Suerfu on March << 130 // copy constructor and hide assignment operator 122 ///Generates auger electron cascade. << 131 G4UAtomicDeexcitation(G4UAtomicDeexcitation &); 123 G4DynamicParticle* GenerateAuger(G4int Z, G4 << 132 G4UAtomicDeexcitation & operator=(const G4UAtomicDeexcitation &right); 124 G4AtomicTransitionManager* transitionManager << 125 133 126 /// Data member for the calculation of the p << 134 const G4AtomicTransitionManager* transitionManager; 127 G4VhShellCrossSection* PIXEshellCS; << 135 128 G4VhShellCrossSection* anaPIXEshellCS; << 136 // Data member which stores the shells to be filled by 129 G4VhShellCrossSection* ePIXEshellCS; << 137 // the radiative transition 130 G4EmCorrections* emcorr; << 138 G4int newShellId; 131 << 132 const G4ParticleDefinition* theElectron; << 133 const G4ParticleDefinition* thePositron; << 134 << 135 //Auger cascade by Burkhant Suerfu on March << 136 //Data member to keep track of cascading vac << 137 std::vector<int> vacancyArray; << 138 139 139 /// Data member which stores the shells to b << 140 /// the radiative transition << 141 G4double minGammaEnergy; 140 G4double minGammaEnergy; 142 G4double minElectronEnergy; 141 G4double minElectronEnergy; 143 G4int newShellId; << 142 // G4bool fAuger; >> 143 >> 144 // Data member wich stores the id of the shell where is the vacancy >> 145 // left from the Auger electron >> 146 G4int augerVacancyId; >> 147 >> 148 // Data member for the calculation of the proton and alpha ionisation XS >> 149 >> 150 G4VhShellCrossSection* PIXEshellCS; >> 151 >> 152 144 }; 153 }; 145 154 146 #endif 155 #endif 147 156 148 157 149 158 150 159 151 160