Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // Geant4 Header G4UAtomicDeexcitation 29 // Geant4 Header G4UAtomicDeexcitation 30 // 30 // 31 // Authors: Alfonso Mantero (Alfonso.Mantero@g 31 // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 32 // 32 // 33 // Created 22 April 2010 from old G4AtomicDeex 33 // Created 22 April 2010 from old G4AtomicDeexcitation class 34 // 34 // 35 // Modified: 35 // Modified: 36 // --------- 36 // --------- 37 // 37 // 38 // 38 // 39 // ------------------------------------------- 39 // ------------------------------------------------------------------- 40 // 40 // 41 // Class description: 41 // Class description: 42 // Implementation of atomic deexcitation 42 // Implementation of atomic deexcitation 43 // 43 // 44 // ------------------------------------------- 44 // ------------------------------------------------------------------- 45 45 46 #ifndef G4UAtomicDeexcitation_h 46 #ifndef G4UAtomicDeexcitation_h 47 #define G4UAtomicDeexcitation_h 1 47 #define G4UAtomicDeexcitation_h 1 48 48 49 #include "G4VAtomDeexcitation.hh" 49 #include "G4VAtomDeexcitation.hh" 50 #include "G4AtomicShell.hh" 50 #include "G4AtomicShell.hh" 51 #include "globals.hh" 51 #include "globals.hh" 52 #include "G4DynamicParticle.hh" 52 #include "G4DynamicParticle.hh" 53 #include <vector> 53 #include <vector> 54 54 55 class G4AtomicTransitionManager; 55 class G4AtomicTransitionManager; 56 class G4VhShellCrossSection; 56 class G4VhShellCrossSection; 57 class G4EmCorrections; 57 class G4EmCorrections; 58 class G4Material; 58 class G4Material; 59 59 60 class G4UAtomicDeexcitation : public G4VAtomDe 60 class G4UAtomicDeexcitation : public G4VAtomDeexcitation 61 { 61 { 62 public: 62 public: 63 explicit G4UAtomicDeexcitation(); << 63 >> 64 G4UAtomicDeexcitation(); 64 virtual ~G4UAtomicDeexcitation(); 65 virtual ~G4UAtomicDeexcitation(); 65 66 66 //========================================== 67 //================================================================= 67 // methods that are requested to be implemen 68 // methods that are requested to be implemented by the interface 68 //========================================== 69 //================================================================= 69 /// initialisation methods << 70 void InitialiseForNewRun() override; << 71 void InitialiseForExtraAtom(G4int Z) overrid << 72 70 73 /// Set threshold energy for fluorescence << 71 // initialisation methods >> 72 virtual void InitialiseForNewRun(); >> 73 virtual void InitialiseForExtraAtom(G4int Z); >> 74 >> 75 >> 76 // Set threshold energy for fluorescence 74 void SetCutForSecondaryPhotons(G4double cut) 77 void SetCutForSecondaryPhotons(G4double cut); 75 78 76 /// Set threshold energy for Auger electron << 79 // Set threshold energy for Auger electron production 77 void SetCutForAugerElectrons(G4double cut); 80 void SetCutForAugerElectrons(G4double cut); 78 81 79 82 80 /// Get atomic shell by shell index, used by << 83 // Get atomic shell by shell index, used by discrete processes 81 /// (for example, photoelectric), when shell << 84 // (for example, photoelectric), when shell vacancy sampled by the model >> 85 virtual 82 const G4AtomicShell* GetAtomicShell(G4int Z, 86 const G4AtomicShell* GetAtomicShell(G4int Z, 83 G4AtomicShellEnumerator shell) o << 87 G4AtomicShellEnumerator shell); 84 88 85 /// generation of deexcitation for given ato << 89 // generation of deexcitation for given atom, shell vacancy and cuts 86 void GenerateParticles(std::vector<G4Dynamic << 90 virtual void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 87 const G4AtomicShell*, << 91 const G4AtomicShell*, 88 G4int Z, << 92 G4int Z, 89 G4double gammaCut, << 93 G4double gammaCut, 90 G4double eCut) override; << 94 G4double eCut); 91 << 95 92 /// access or compute PIXE cross section << 96 // access or compute PIXE cross section >> 97 virtual 93 G4double GetShellIonisationCrossSectionPerAt 98 G4double GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 94 G4int Z, 99 G4int Z, 95 G4AtomicShellEnumerator shell, 100 G4AtomicShellEnumerator shell, 96 G4double kinE, 101 G4double kinE, 97 << 102 const G4Material* mat = 0); 98 103 99 /// access or compute PIXE cross section << 104 // access or compute PIXE cross section >> 105 virtual 100 G4double ComputeShellIonisationCrossSectionP 106 G4double ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 101 G4int Z, 107 G4int Z, 102 G4AtomicShellEnumerator shell 108 G4AtomicShellEnumerator shell, 103 G4double kinE, 109 G4double kinE, 104 const G4Material* mat = nullp << 110 const G4Material* mat = 0); 105 111 106 G4UAtomicDeexcitation(G4UAtomicDeexcitation << 112 //================================================================= 107 G4UAtomicDeexcitation & operator=(const G4UA << 113 // concrete methods of the deextation class >> 114 //================================================================= 108 115 109 private: 116 private: 110 /// Decides wether a radiative transition is << 117 111 /// returns the identity of the starting she << 118 // Decides wether a radiative transition is possible and, if it is, >> 119 // returns the identity of the starting shell for the transition 112 G4int SelectTypeOfTransition(G4int Z, G4int 120 G4int SelectTypeOfTransition(G4int Z, G4int shellId); 113 121 114 /// Generates a particle from a radiative tr << 122 // Generates a particle from a radiative transition and returns it 115 G4DynamicParticle* GenerateFluorescence(G4in 123 G4DynamicParticle* GenerateFluorescence(G4int Z, G4int shellId, 116 G4int provShellId); 124 G4int provShellId); 117 125 118 /// Generates a particle from a non-radiativ << 126 // Generates a particle from a non-radiative transition and returns it 119 G4DynamicParticle* GenerateAuger(G4int Z, G4 127 G4DynamicParticle* GenerateAuger(G4int Z, G4int shellId); 120 128 121 ///Auger cascade by Burkhant Suerfu on March << 129 //SI 122 ///Generates auger electron cascade. << 130 //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) >> 131 //Generates auger electron cascade. 123 G4DynamicParticle* GenerateAuger(G4int Z, G4 132 G4DynamicParticle* GenerateAuger(G4int Z, G4int shellId, G4int& newAugerShellId); >> 133 //ENDSI >> 134 >> 135 // copy constructor and hide assignment operator >> 136 G4UAtomicDeexcitation(G4UAtomicDeexcitation &); >> 137 G4UAtomicDeexcitation & operator=(const G4UAtomicDeexcitation &right); >> 138 124 G4AtomicTransitionManager* transitionManager 139 G4AtomicTransitionManager* transitionManager; >> 140 >> 141 // Data member which stores the shells to be filled by >> 142 // the radiative transition >> 143 G4int newShellId; >> 144 >> 145 G4double minGammaEnergy; >> 146 G4double minElectronEnergy; >> 147 >> 148 // Data member wich stores the id of the shell where is the vacancy >> 149 // left from the Auger electron >> 150 G4int augerVacancyId; >> 151 >> 152 // Data member for the calculation of the proton and alpha ionisation XS 125 153 126 /// Data member for the calculation of the p << 127 G4VhShellCrossSection* PIXEshellCS; 154 G4VhShellCrossSection* PIXEshellCS; 128 G4VhShellCrossSection* anaPIXEshellCS; 155 G4VhShellCrossSection* anaPIXEshellCS; 129 G4VhShellCrossSection* ePIXEshellCS; 156 G4VhShellCrossSection* ePIXEshellCS; 130 G4EmCorrections* emcorr; 157 G4EmCorrections* emcorr; 131 158 132 const G4ParticleDefinition* theElectron; 159 const G4ParticleDefinition* theElectron; 133 const G4ParticleDefinition* thePositron; 160 const G4ParticleDefinition* thePositron; 134 161 >> 162 //SI 135 //Auger cascade by Burkhant Suerfu on March 163 //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727) 136 //Data member to keep track of cascading vac 164 //Data member to keep track of cascading vacancies. 137 std::vector<int> vacancyArray; 165 std::vector<int> vacancyArray; 138 << 166 //ENDSI 139 /// Data member which stores the shells to b << 140 /// the radiative transition << 141 G4double minGammaEnergy; << 142 G4double minElectronEnergy; << 143 G4int newShellId; << 144 }; 167 }; 145 168 146 #endif 169 #endif 147 170 148 171 149 172 150 173 151 174