Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PenelopeIonisationModel.hh,v 1.5 2010-04-15 10:02:10 pandola Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // Author: Luciano Pandola 29 // Author: Luciano Pandola 28 // 30 // 29 // History: 31 // History: 30 // ----------- 32 // ----------- 31 // 30 Mar 2010 L. Pandola 1st implementati << 33 // 26 Nov 2008 L. Pandola 1st implementation. Migration from EM process 32 // 25 May 2011 L. Pandola Renamed (make v2 << 34 // to EM model. Physics is unchanged. 33 // 09 Mar 2012 L. Pandola Moved the manage << 35 // 21 Oct 2009 L. Pandola Remove un-necessary methods and variables to handle 34 // cross sections t << 36 // AtomicDeexcitationFlag - now demanded to G4VEmModel 35 // 07 Oct 2013 L. Pandola Migration to MT << 37 // Add ActivateAuger() method 36 // 23 Jun 2015 L. Pandola Added private me << 38 // 29 Mar 2010 L. Pandola Added a dummy ComputeCrossSectioPerAtom() method issueing a >> 39 // warning if users try to access atomic cross sections via >> 40 // G4EmCalculator >> 41 // 15 Apr 2010 L. Pandola Implemented model's own version of MinEnergyCut() 37 // 42 // 38 // ------------------------------------------- 43 // ------------------------------------------------------------------- 39 // 44 // 40 // Class description: 45 // Class description: 41 // Low Energy Electromagnetic Physics, e+ and 46 // Low Energy Electromagnetic Physics, e+ and e- ionisation 42 // with Penelope Model, version 2008 << 47 // with Penelope Model 43 // ------------------------------------------- 48 // ------------------------------------------------------------------- 44 49 45 #ifndef G4PENELOPEIONISATIONMODEL_HH 50 #ifndef G4PENELOPEIONISATIONMODEL_HH 46 #define G4PENELOPEIONISATIONMODEL_HH 1 51 #define G4PENELOPEIONISATIONMODEL_HH 1 47 52 48 #include "globals.hh" 53 #include "globals.hh" 49 #include "G4VEmModel.hh" 54 #include "G4VEmModel.hh" 50 #include "G4DataVector.hh" 55 #include "G4DataVector.hh" 51 #include "G4ParticleChangeForLoss.hh" 56 #include "G4ParticleChangeForLoss.hh" 52 #include "G4VAtomDeexcitation.hh" << 57 #include "G4VCrossSectionHandler.hh" >> 58 #include "G4PhysicsLogVector.hh" >> 59 #include "G4AtomicDeexcitation.hh" 53 60 54 class G4PhysicsFreeVector; << 55 class G4PhysicsLogVector; << 56 class G4ParticleDefinition; 61 class G4ParticleDefinition; 57 class G4DynamicParticle; 62 class G4DynamicParticle; 58 class G4MaterialCutsCouple; 63 class G4MaterialCutsCouple; 59 class G4Material; 64 class G4Material; 60 class G4PenelopeOscillatorManager; << 65 class G4VEMDataSet; 61 class G4PenelopeOscillator; << 62 class G4PenelopeCrossSection; << 63 class G4PenelopeIonisationXSHandler; << 64 66 65 class G4PenelopeIonisationModel : public G4VEm 67 class G4PenelopeIonisationModel : public G4VEmModel 66 { 68 { >> 69 67 public: 70 public: 68 explicit G4PenelopeIonisationModel(const G4P << 71 69 const G4String& processName ="PenIon << 72 G4PenelopeIonisationModel(const G4ParticleDefinition* p=0, >> 73 const G4String& processName ="PenelopeIoni"); >> 74 70 virtual ~G4PenelopeIonisationModel(); 75 virtual ~G4PenelopeIonisationModel(); 71 76 72 void Initialise(const G4ParticleDefinition*, << 77 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 73 void InitialiseLocal(const G4ParticleDefinit << 74 G4VEmModel*) override; << 75 78 76 //*This is a dummy method. Never inkoved by 79 //*This is a dummy method. Never inkoved by the tracking, it just issues 77 //*a warning if one tries to get Cross Secti 80 //*a warning if one tries to get Cross Sections per Atom via the 78 //*G4EmCalculator. 81 //*G4EmCalculator. 79 G4double ComputeCrossSectionPerAtom(const G4 << 82 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 80 G4double, << 83 G4double, 81 G4double, << 84 G4double, 82 G4double, << 85 G4double, 83 G4double, << 86 G4double, 84 G4double) override; << 87 G4double); 85 << 88 86 G4double CrossSectionPerVolume(const G4Mater << 89 virtual G4double CrossSectionPerVolume(const G4Material* material, 87 const G4ParticleDefinition* << 90 const G4ParticleDefinition* theParticle, 88 theParticle, << 91 G4double kineticEnergy, 89 G4double kineticEnergy, << 92 G4double cutEnergy, 90 G4double cutEnergy, << 93 G4double maxEnergy = DBL_MAX); 91 G4double maxEnergy = DBL_MAX) overrid << 92 94 93 void SampleSecondaries(std::vector<G4Dynamic << 95 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 94 const G4MaterialCutsCouple*, << 96 const G4MaterialCutsCouple*, 95 const G4DynamicParticle*, << 97 const G4DynamicParticle*, 96 G4double tmin, << 98 G4double tmin, 97 G4double maxEnergy) override; << 99 G4double maxEnergy); 98 100 99 G4double ComputeDEDXPerVolume(const G4Materi << 101 virtual G4double ComputeDEDXPerVolume(const G4Material*, 100 const G4ParticleDefinition*, << 102 const G4ParticleDefinition*, 101 G4double kineticEnergy, << 103 G4double kineticEnergy, 102 G4double cutEnergy) override; << 104 G4double cutEnergy); 103 << 105 104 // Min cut in kinetic energy allowed by the 106 // Min cut in kinetic energy allowed by the model 105 G4double MinEnergyCut(const G4ParticleDefini << 107 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 106 const G4MaterialCutsCouple*) override; << 108 const G4MaterialCutsCouple*); 107 109 108 void SetVerbosityLevel(G4int lev){fVerboseLe << 110 void SetVerbosityLevel(G4int lev){verboseLevel = lev;}; 109 G4int GetVerbosityLevel(){return fVerboseLev << 111 G4int GetVerbosityLevel(){return verboseLevel;}; 110 << 112 111 G4PenelopeIonisationModel & operator=(const << 113 void ActivateAuger(G4bool); 112 G4PenelopeIonisationModel(const G4PenelopeIo << 113 114 114 protected: 115 protected: 115 G4ParticleChangeForLoss* fParticleChange; 116 G4ParticleChangeForLoss* fParticleChange; 116 const G4ParticleDefinition* fParticle; << 117 117 118 private: 118 private: 119 void SetParticle(const G4ParticleDefinition* << 119 120 void SampleFinalStateElectron(const G4Materi << 120 G4PenelopeIonisationModel & operator=(const G4PenelopeIonisationModel &right); 121 G4double cutEnergy, << 121 G4PenelopeIonisationModel(const G4PenelopeIonisationModel&); 122 G4double kineticEnergy); << 123 void SampleFinalStatePositron(const G4Materi << 124 G4double cutEnergy, << 125 G4double kineticEnergy); << 126 << 127 G4PenelopeOscillatorManager* fOscManager; << 128 G4PenelopeIonisationXSHandler* fCrossSection << 129 G4VAtomDeexcitation* fAtomDeexcitation; << 130 << 131 G4double fKineticEnergy1; << 132 G4double fCosThetaPrimary; << 133 G4double fEnergySecondary; << 134 G4double fCosThetaSecondary; << 135 122 >> 123 136 //Intrinsic energy limits of the model: cann 124 //Intrinsic energy limits of the model: cannot be extended by the parent process 137 G4double fIntrinsicLowEnergyLimit; 125 G4double fIntrinsicLowEnergyLimit; 138 G4double fIntrinsicHighEnergyLimit; 126 G4double fIntrinsicHighEnergyLimit; 139 127 140 G4int fVerboseLevel; << 128 G4int verboseLevel; 141 G4int fTargetOscillator; << 129 142 size_t fNBins; << 130 G4bool isInitialised; 143 G4bool fIsInitialised; << 131 144 G4bool fPIXEflag; << 132 G4double CalculateDeltaFermi(G4double kinEnergy ,G4int Z, 145 //Used only for G4EmCalculator and Unit Test << 133 G4double electronVolumeDensity); 146 G4bool fLocalTable; << 134 >> 135 //Methods and variables to calculate final state >> 136 void CalculateDiscreteForElectrons(G4double kinEnergy,G4double cutoffEnergy, >> 137 G4int Z,G4double electronVolumeDensity); >> 138 void CalculateDiscreteForPositrons(G4double kinEnergy,G4double cutoffEnergy, >> 139 G4int Z,G4double electronVolumeDensity); >> 140 >> 141 G4AtomicDeexcitation deexcitationManager; >> 142 G4double kineticEnergy1; >> 143 G4double cosThetaPrimary; >> 144 G4double energySecondary; >> 145 G4double cosThetaSecondary; >> 146 G4int iOsc; >> 147 >> 148 //These methods are used to calculate the hard-cross section (namely they >> 149 //return the hard/total cross section) >> 150 G4double CalculateCrossSectionsRatio(G4double kinEnergy, >> 151 G4double cutoffEnergy, >> 152 G4int Z, >> 153 G4double electronVolumeDensity, >> 154 const G4ParticleDefinition*); >> 155 //In fact the total cross section (hard+soft) is read from file >> 156 //The following methods give the cross section contribution (hard and soft) from each >> 157 //individual oscillator >> 158 std::pair<G4double,G4double> CrossSectionsRatioForElectrons(G4double kineticEnergy, >> 159 G4double resEnergy, >> 160 G4double densityCorrection, >> 161 G4double cutoffEnergy); >> 162 >> 163 std::pair<G4double,G4double> CrossSectionsRatioForPositrons(G4double kineticEnergy, >> 164 G4double resEnergy, >> 165 G4double densityCorrection, >> 166 G4double cutoffEnergy); >> 167 >> 168 G4VCrossSectionHandler* crossSectionHandler; >> 169 >> 170 //These methods are used to calculate the stopping power up to the cutoff >> 171 //for each individual oscillator >> 172 G4double ComputeStoppingPowerForElectrons(G4double kinEnergy, >> 173 G4double cutEnergy, >> 174 G4double deltaFermi, >> 175 G4double resEnergy); >> 176 >> 177 G4double ComputeStoppingPowerForPositrons(G4double kinEnergy, >> 178 G4double cutEnergy, >> 179 G4double deltaFermi, >> 180 G4double resEnergy); >> 181 >> 182 >> 183 //Parameters of atomic shells >> 184 void ReadData(); >> 185 std::map<G4int,G4DataVector*> *ionizationEnergy; >> 186 std::map<G4int,G4DataVector*> *resonanceEnergy; >> 187 std::map<G4int,G4DataVector*> *occupationNumber; >> 188 std::map<G4int,G4DataVector*> *shellFlag; >> 189 >> 190 //Mean free path table. This will become obsolete! For now I need something to store >> 191 //cross sections and to sample a random atom >> 192 std::vector<G4VEMDataSet*>* theXSTable; >> 193 std::vector<G4VEMDataSet*>* BuildCrossSectionTable(const G4ParticleDefinition*); >> 194 G4int SampleRandomAtom(const G4MaterialCutsCouple*,G4double energy) const; >> 195 147 }; 196 }; 148 197 149 #endif 198 #endif 150 199 151 200