Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PenelopeIonisationModel.hh,v 1.3 2009/10/21 14:56:47 pandola Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-02 $ 26 // 28 // 27 // Author: Luciano Pandola 29 // Author: Luciano Pandola 28 // 30 // 29 // History: 31 // History: 30 // ----------- 32 // ----------- 31 // 30 Mar 2010 L. Pandola 1st implementati << 33 // 26 Nov 2008 L. Pandola 1st implementation. Migration from EM process 32 // 25 May 2011 L. Pandola Renamed (make v2 << 34 // to EM model. Physics is unchanged. 33 // 09 Mar 2012 L. Pandola Moved the manage << 35 // 21 Oct 2009 L. Pandola Remove un-necessary methods and variables to handle 34 // cross sections t << 36 // AtomicDeexcitationFlag - now demanded to G4VEmModel 35 // 07 Oct 2013 L. Pandola Migration to MT << 37 // Add ActivateAuger() method 36 // 23 Jun 2015 L. Pandola Added private me << 37 // 38 // 38 // ------------------------------------------- 39 // ------------------------------------------------------------------- 39 // 40 // 40 // Class description: 41 // Class description: 41 // Low Energy Electromagnetic Physics, e+ and 42 // Low Energy Electromagnetic Physics, e+ and e- ionisation 42 // with Penelope Model, version 2008 << 43 // with Penelope Model 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 45 45 #ifndef G4PENELOPEIONISATIONMODEL_HH 46 #ifndef G4PENELOPEIONISATIONMODEL_HH 46 #define G4PENELOPEIONISATIONMODEL_HH 1 47 #define G4PENELOPEIONISATIONMODEL_HH 1 47 48 48 #include "globals.hh" 49 #include "globals.hh" 49 #include "G4VEmModel.hh" 50 #include "G4VEmModel.hh" 50 #include "G4DataVector.hh" 51 #include "G4DataVector.hh" 51 #include "G4ParticleChangeForLoss.hh" 52 #include "G4ParticleChangeForLoss.hh" 52 #include "G4VAtomDeexcitation.hh" << 53 #include "G4VCrossSectionHandler.hh" >> 54 #include "G4PhysicsLogVector.hh" >> 55 #include "G4AtomicDeexcitation.hh" 53 56 54 class G4PhysicsFreeVector; << 55 class G4PhysicsLogVector; << 56 class G4ParticleDefinition; 57 class G4ParticleDefinition; 57 class G4DynamicParticle; 58 class G4DynamicParticle; 58 class G4MaterialCutsCouple; 59 class G4MaterialCutsCouple; 59 class G4Material; 60 class G4Material; 60 class G4PenelopeOscillatorManager; << 61 class G4VEMDataSet; 61 class G4PenelopeOscillator; << 62 class G4PenelopeCrossSection; << 63 class G4PenelopeIonisationXSHandler; << 64 62 65 class G4PenelopeIonisationModel : public G4VEm 63 class G4PenelopeIonisationModel : public G4VEmModel 66 { 64 { >> 65 67 public: 66 public: 68 explicit G4PenelopeIonisationModel(const G4P << 67 69 const G4String& processName ="PenIon << 68 G4PenelopeIonisationModel(const G4ParticleDefinition* p=0, >> 69 const G4String& processName ="PenelopeIoni"); >> 70 70 virtual ~G4PenelopeIonisationModel(); 71 virtual ~G4PenelopeIonisationModel(); 71 72 72 void Initialise(const G4ParticleDefinition*, << 73 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 73 void InitialiseLocal(const G4ParticleDefinit << 74 74 G4VEmModel*) override; << 75 virtual G4double CrossSectionPerVolume(const G4Material* material, 75 << 76 const G4ParticleDefinition* theParticle, 76 //*This is a dummy method. Never inkoved by << 77 G4double kineticEnergy, 77 //*a warning if one tries to get Cross Secti << 78 G4double cutEnergy, 78 //*G4EmCalculator. << 79 G4double maxEnergy = DBL_MAX); 79 G4double ComputeCrossSectionPerAtom(const G4 << 80 G4double, << 81 G4double, << 82 G4double, << 83 G4double, << 84 G4double) override; << 85 << 86 G4double CrossSectionPerVolume(const G4Mater << 87 const G4ParticleDefinition* << 88 theParticle, << 89 G4double kineticEnergy, << 90 G4double cutEnergy, << 91 G4double maxEnergy = DBL_MAX) overrid << 92 80 93 void SampleSecondaries(std::vector<G4Dynamic << 81 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 94 const G4MaterialCutsCouple*, << 82 const G4MaterialCutsCouple*, 95 const G4DynamicParticle*, << 83 const G4DynamicParticle*, 96 G4double tmin, << 84 G4double tmin, 97 G4double maxEnergy) override; << 85 G4double maxEnergy); 98 86 99 G4double ComputeDEDXPerVolume(const G4Materi << 87 virtual G4double ComputeDEDXPerVolume(const G4Material*, 100 const G4ParticleDefinition*, << 88 const G4ParticleDefinition*, 101 G4double kineticEnergy, << 89 G4double kineticEnergy, 102 G4double cutEnergy) override; << 90 G4double cutEnergy); 103 << 91 104 // Min cut in kinetic energy allowed by the << 92 void SetVerbosityLevel(G4int lev){verboseLevel = lev;}; 105 G4double MinEnergyCut(const G4ParticleDefini << 93 G4int GetVerbosityLevel(){return verboseLevel;}; 106 const G4MaterialCutsCouple*) override; << 107 94 108 void SetVerbosityLevel(G4int lev){fVerboseLe << 95 void ActivateAuger(G4bool); 109 G4int GetVerbosityLevel(){return fVerboseLev << 110 << 111 G4PenelopeIonisationModel & operator=(const << 112 G4PenelopeIonisationModel(const G4PenelopeIo << 113 96 114 protected: 97 protected: 115 G4ParticleChangeForLoss* fParticleChange; 98 G4ParticleChangeForLoss* fParticleChange; 116 const G4ParticleDefinition* fParticle; << 117 99 118 private: 100 private: 119 void SetParticle(const G4ParticleDefinition* << 101 120 void SampleFinalStateElectron(const G4Materi << 102 G4PenelopeIonisationModel & operator=(const G4PenelopeIonisationModel &right); 121 G4double cutEnergy, << 103 G4PenelopeIonisationModel(const G4PenelopeIonisationModel&); 122 G4double kineticEnergy); << 123 void SampleFinalStatePositron(const G4Materi << 124 G4double cutEnergy, << 125 G4double kineticEnergy); << 126 << 127 G4PenelopeOscillatorManager* fOscManager; << 128 G4PenelopeIonisationXSHandler* fCrossSection << 129 G4VAtomDeexcitation* fAtomDeexcitation; << 130 << 131 G4double fKineticEnergy1; << 132 G4double fCosThetaPrimary; << 133 G4double fEnergySecondary; << 134 G4double fCosThetaSecondary; << 135 104 >> 105 136 //Intrinsic energy limits of the model: cann 106 //Intrinsic energy limits of the model: cannot be extended by the parent process 137 G4double fIntrinsicLowEnergyLimit; 107 G4double fIntrinsicLowEnergyLimit; 138 G4double fIntrinsicHighEnergyLimit; 108 G4double fIntrinsicHighEnergyLimit; 139 109 140 G4int fVerboseLevel; << 110 G4int verboseLevel; 141 G4int fTargetOscillator; << 111 142 size_t fNBins; << 112 G4bool isInitialised; 143 G4bool fIsInitialised; << 113 144 G4bool fPIXEflag; << 114 G4double CalculateDeltaFermi(G4double kinEnergy ,G4int Z, 145 //Used only for G4EmCalculator and Unit Test << 115 G4double electronVolumeDensity); 146 G4bool fLocalTable; << 116 >> 117 //Methods and variables to calculate final state >> 118 void CalculateDiscreteForElectrons(G4double kinEnergy,G4double cutoffEnergy, >> 119 G4int Z,G4double electronVolumeDensity); >> 120 void CalculateDiscreteForPositrons(G4double kinEnergy,G4double cutoffEnergy, >> 121 G4int Z,G4double electronVolumeDensity); >> 122 >> 123 G4AtomicDeexcitation deexcitationManager; >> 124 G4double kineticEnergy1; >> 125 G4double cosThetaPrimary; >> 126 G4double energySecondary; >> 127 G4double cosThetaSecondary; >> 128 G4int iOsc; >> 129 >> 130 //These methods are used to calculate the hard-cross section (namely they >> 131 //return the hard/total cross section) >> 132 G4double CalculateCrossSectionsRatio(G4double kinEnergy, >> 133 G4double cutoffEnergy, >> 134 G4int Z, >> 135 G4double electronVolumeDensity, >> 136 const G4ParticleDefinition*); >> 137 //In fact the total cross section (hard+soft) is read from file >> 138 //The following methods give the cross section contribution (hard and soft) from each >> 139 //individual oscillator >> 140 std::pair<G4double,G4double> CrossSectionsRatioForElectrons(G4double kineticEnergy, >> 141 G4double resEnergy, >> 142 G4double densityCorrection, >> 143 G4double cutoffEnergy); >> 144 >> 145 std::pair<G4double,G4double> CrossSectionsRatioForPositrons(G4double kineticEnergy, >> 146 G4double resEnergy, >> 147 G4double densityCorrection, >> 148 G4double cutoffEnergy); >> 149 >> 150 G4VCrossSectionHandler* crossSectionHandler; >> 151 >> 152 //These methods are used to calculate the stopping power up to the cutoff >> 153 //for each individual oscillator >> 154 G4double ComputeStoppingPowerForElectrons(G4double kinEnergy, >> 155 G4double cutEnergy, >> 156 G4double deltaFermi, >> 157 G4double resEnergy); >> 158 >> 159 G4double ComputeStoppingPowerForPositrons(G4double kinEnergy, >> 160 G4double cutEnergy, >> 161 G4double deltaFermi, >> 162 G4double resEnergy); >> 163 >> 164 >> 165 //Parameters of atomic shells >> 166 void ReadData(); >> 167 std::map<G4int,G4DataVector*> *ionizationEnergy; >> 168 std::map<G4int,G4DataVector*> *resonanceEnergy; >> 169 std::map<G4int,G4DataVector*> *occupationNumber; >> 170 std::map<G4int,G4DataVector*> *shellFlag; >> 171 >> 172 //Mean free path table. This will become obsolete! For now I need something to store >> 173 //cross sections and to sample a random atom >> 174 std::vector<G4VEMDataSet*>* theXSTable; >> 175 std::vector<G4VEMDataSet*>* BuildCrossSectionTable(const G4ParticleDefinition*); >> 176 G4int SampleRandomAtom(const G4MaterialCutsCouple*,G4double energy) const; >> 177 147 }; 178 }; 148 179 149 #endif 180 #endif 150 181 151 182