Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4mplIonisationModel.cc,v 1.8 2010/10/26 15:40:03 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4mplIonisationModel 34 // File name: G4mplIonisationModel 33 // 35 // 34 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 06.09.2005 38 // Creation date: 06.09.2005 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 12.08.2007 Changing low energy approximatio 41 // 12.08.2007 Changing low energy approximation and extrapolation. 40 // Small bug fixing and refactoring 42 // Small bug fixing and refactoring (M. Vladymyrov) 41 // 13.11.2007 Use low-energy asymptotic from [ 43 // 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko) 42 // 44 // 43 // 45 // 44 // ------------------------------------------- 46 // ------------------------------------------------------------------- 45 // References 47 // References 46 // [1] Steven P. Ahlen: Energy loss of relativ 48 // [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles, 47 // S.P. Ahlen, Rev. Mod. Phys 52(1980), p1 49 // S.P. Ahlen, Rev. Mod. Phys 52(1980), p121 48 // [2] K.A. Milton arXiv:hep-ex/0602040 50 // [2] K.A. Milton arXiv:hep-ex/0602040 49 // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. 51 // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347 50 52 51 53 52 //....oooOO0OOooo........oooOO0OOooo........oo 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 53 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 54 56 55 #include "G4mplIonisationModel.hh" 57 #include "G4mplIonisationModel.hh" 56 #include "Randomize.hh" 58 #include "Randomize.hh" 57 #include "G4PhysicalConstants.hh" << 59 #include "G4LossTableManager.hh" 58 #include "G4SystemOfUnits.hh" << 59 #include "G4ParticleChangeForLoss.hh" 60 #include "G4ParticleChangeForLoss.hh" 60 #include "G4ProductionCutsTable.hh" << 61 #include "G4MaterialCutsCouple.hh" << 62 #include "G4Log.hh" << 63 #include "G4Pow.hh" << 64 61 65 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 66 63 67 std::vector<G4double>* G4mplIonisationModel::d << 64 using namespace std; 68 65 69 G4mplIonisationModel::G4mplIonisationModel(G4d 66 G4mplIonisationModel::G4mplIonisationModel(G4double mCharge, const G4String& nam) 70 : G4VEmModel(nam),G4VEmFluctuationModel(nam) 67 : G4VEmModel(nam),G4VEmFluctuationModel(nam), 71 magCharge(mCharge), 68 magCharge(mCharge), 72 twoln10(G4Log(100.0)), << 69 twoln10(log(100.0)), 73 betalow(0.01), 70 betalow(0.01), 74 betalim(0.1), 71 betalim(0.1), 75 beta2lim(betalim*betalim), 72 beta2lim(betalim*betalim), 76 bg2lim(beta2lim*(1.0 + beta2lim)) 73 bg2lim(beta2lim*(1.0 + beta2lim)) 77 { 74 { 78 nmpl = G4int(std::abs(magCharge) * 2 * CLHEP << 75 nmpl = G4int(abs(magCharge) * 2 * fine_structure_const + 0.5); 79 if(nmpl > 6) { nmpl = 6; } 76 if(nmpl > 6) { nmpl = 6; } 80 else if(nmpl < 1) { nmpl = 1; } 77 else if(nmpl < 1) { nmpl = 1; } 81 pi_hbarc2_over_mc2 = CLHEP::pi*CLHEP::hbarc* << 78 pi_hbarc2_over_mc2 = pi * hbarc * hbarc / electron_mass_c2; 82 chargeSquare = magCharge * magCharge; 79 chargeSquare = magCharge * magCharge; 83 dedxlim = 45.*nmpl*nmpl*CLHEP::GeV*CLHEP::cm << 80 dedxlim = 45.*nmpl*nmpl*GeV*cm2/g; >> 81 fParticleChange = 0; >> 82 mass = 0.0; 84 } 83 } 85 84 86 //....oooOO0OOooo........oooOO0OOooo........oo 85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 87 86 88 G4mplIonisationModel::~G4mplIonisationModel() 87 G4mplIonisationModel::~G4mplIonisationModel() 89 { << 88 {} 90 if(IsMaster()) { delete dedx0; } << 91 } << 92 << 93 //....oooOO0OOooo........oooOO0OOooo........oo << 94 << 95 void G4mplIonisationModel::SetParticle(const G << 96 { << 97 monopole = p; << 98 mass = monopole->GetPDGMass(); << 99 G4double emin = << 100 std::min(LowEnergyLimit(),0.1*mass*(1./std << 101 G4double emax = << 102 std::max(HighEnergyLimit(),10.*mass*(1./st << 103 SetLowEnergyLimit(emin); << 104 SetHighEnergyLimit(emax); << 105 } << 106 89 107 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 108 91 109 void G4mplIonisationModel::Initialise(const G4 92 void G4mplIonisationModel::Initialise(const G4ParticleDefinition* p, 110 const G4DataVector&) 93 const G4DataVector&) 111 { 94 { 112 if(nullptr == monopole) { SetParticle(p); } << 95 monopole = p; 113 if(nullptr == fParticleChange) { fParticleCh << 96 mass = monopole->GetPDGMass(); 114 if(IsMaster()) { << 97 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } 115 if(nullptr == dedx0) { dedx0 = new std::ve << 116 G4ProductionCutsTable* theCoupleTable= << 117 G4ProductionCutsTable::GetProductionCuts << 118 G4int numOfCouples = (G4int)theCoupleTable << 119 G4int n = (G4int)dedx0->size(); << 120 if(n < numOfCouples) { dedx0->resize(numOf << 121 << 122 G4Pow* g4calc = G4Pow::GetInstance(); << 123 << 124 // initialise vector assuming low conducti << 125 for(G4int i=0; i<numOfCouples; ++i) { << 126 << 127 const G4Material* material = << 128 theCoupleTable->GetMaterialCutsCouple( << 129 G4double eDensity = material->GetElectro << 130 G4double vF2 = 2*electron_Compton_length << 131 (*dedx0)[i] = pi_hbarc2_over_mc2*eDensit << 132 (G4Log(vF2/fine_structure_const) - 0.5 << 133 } << 134 } << 135 } 98 } 136 99 137 //....oooOO0OOooo........oooOO0OOooo........oo 100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 101 139 G4double G4mplIonisationModel::ComputeDEDXPerV 102 G4double G4mplIonisationModel::ComputeDEDXPerVolume(const G4Material* material, 140 const G4ParticleDefinition* p, << 103 const G4ParticleDefinition*, 141 G4double kineticEnergy, 104 G4double kineticEnergy, 142 G4double) 105 G4double) 143 { 106 { 144 if(nullptr == monopole) { SetParticle(p); } << 145 G4double tau = kineticEnergy / mass; 107 G4double tau = kineticEnergy / mass; 146 G4double gam = tau + 1.0; 108 G4double gam = tau + 1.0; 147 G4double bg2 = tau * (tau + 2.0); 109 G4double bg2 = tau * (tau + 2.0); 148 G4double beta2 = bg2 / (gam * gam); 110 G4double beta2 = bg2 / (gam * gam); 149 G4double beta = std::sqrt(beta2); << 111 G4double beta = sqrt(beta2); 150 112 151 // low-energy asymptotic formula 113 // low-energy asymptotic formula 152 //G4double dedx = dedxlim*beta*material->Ge << 114 G4double dedx = dedxlim*beta*material->GetDensity(); 153 G4double dedx = (*dedx0)[CurrentCouple()->Ge << 154 115 155 // above asymptotic 116 // above asymptotic 156 if(beta > betalow) { 117 if(beta > betalow) { 157 118 158 // high energy 119 // high energy 159 if(beta >= betalim) { 120 if(beta >= betalim) { 160 dedx = ComputeDEDXAhlen(material, bg2); 121 dedx = ComputeDEDXAhlen(material, bg2); 161 122 162 } else { 123 } else { 163 124 164 //G4double dedx1 = dedxlim*betalow*mater << 125 G4double dedx1 = dedxlim*betalow*material->GetDensity(); 165 G4double dedx1 = (*dedx0)[CurrentCouple( << 166 G4double dedx2 = ComputeDEDXAhlen(materi 126 G4double dedx2 = ComputeDEDXAhlen(material, bg2lim); 167 127 168 // extrapolation between two formula 128 // extrapolation between two formula 169 G4double kapa2 = beta - betalow; 129 G4double kapa2 = beta - betalow; 170 G4double kapa1 = betalim - beta; 130 G4double kapa1 = betalim - beta; 171 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa 131 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2); 172 } 132 } 173 } 133 } 174 return dedx; 134 return dedx; 175 } 135 } 176 136 177 //....oooOO0OOooo........oooOO0OOooo........oo 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 138 179 G4double G4mplIonisationModel::ComputeDEDXAhle 139 G4double G4mplIonisationModel::ComputeDEDXAhlen(const G4Material* material, 180 G4double bg2) 140 G4double bg2) 181 { 141 { 182 G4double eDensity = material->GetElectronDen 142 G4double eDensity = material->GetElectronDensity(); 183 G4double eexc = material->GetIonisation()-> 143 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 184 G4double cden = material->GetIonisation()-> 144 G4double cden = material->GetIonisation()->GetCdensity(); 185 G4double mden = material->GetIonisation()-> 145 G4double mden = material->GetIonisation()->GetMdensity(); 186 G4double aden = material->GetIonisation()-> 146 G4double aden = material->GetIonisation()->GetAdensity(); 187 G4double x0den = material->GetIonisation()-> 147 G4double x0den = material->GetIonisation()->GetX0density(); 188 G4double x1den = material->GetIonisation()-> 148 G4double x1den = material->GetIonisation()->GetX1density(); 189 149 190 // Ahlen's formula for nonconductors, [1]p15 150 // Ahlen's formula for nonconductors, [1]p157, f(5.7) 191 G4double dedx = std::log(2.0 * electron_mass << 151 G4double dedx = log(2.0 * electron_mass_c2 * bg2 / eexc) - 0.5; 192 152 193 // Kazama et al. cross-section correction 153 // Kazama et al. cross-section correction 194 G4double k = 0.406; 154 G4double k = 0.406; 195 if(nmpl > 1) k = 0.346; 155 if(nmpl > 1) k = 0.346; 196 156 197 // Bloch correction 157 // Bloch correction 198 const G4double B[7] = { 0.0, 0.248, 0.672, 1 158 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685}; 199 159 200 dedx += 0.5 * k - B[nmpl]; 160 dedx += 0.5 * k - B[nmpl]; 201 161 202 // density effect correction 162 // density effect correction 203 G4double deltam; 163 G4double deltam; 204 G4double x = std::log(bg2) / twoln10; << 164 G4double x = log(bg2) / twoln10; 205 if ( x >= x0den ) { 165 if ( x >= x0den ) { 206 deltam = twoln10 * x - cden; 166 deltam = twoln10 * x - cden; 207 if ( x < x1den ) deltam += aden * std::pow << 167 if ( x < x1den ) deltam += aden * pow((x1den-x), mden); 208 dedx -= 0.5 * deltam; 168 dedx -= 0.5 * deltam; 209 } 169 } 210 170 211 // now compute the total ionization loss 171 // now compute the total ionization loss 212 dedx *= pi_hbarc2_over_mc2 * eDensity * nmp 172 dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl; 213 173 214 if (dedx < 0.0) dedx = 0.; << 174 if (dedx < 0.0) dedx = 0; 215 return dedx; 175 return dedx; 216 } 176 } 217 177 218 //....oooOO0OOooo........oooOO0OOooo........oo 178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 219 179 220 void G4mplIonisationModel::SampleSecondaries(s 180 void G4mplIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*, 221 const G4MaterialCutsCouple*, 181 const G4MaterialCutsCouple*, 222 const G4DynamicParticle*, 182 const G4DynamicParticle*, 223 G4double, 183 G4double, 224 G4double) 184 G4double) 225 {} 185 {} 226 186 227 //....oooOO0OOooo........oooOO0OOooo........oo 187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 188 229 G4double G4mplIonisationModel::SampleFluctuati 189 G4double G4mplIonisationModel::SampleFluctuations( 230 const G4MaterialCutsCouple* cou << 190 const G4Material* material, 231 const G4DynamicParticle* dp, 191 const G4DynamicParticle* dp, 232 const G << 192 G4double& tmax, 233 const G << 193 G4double& length, 234 const G4double length, << 194 G4double& meanLoss) 235 const G4double meanLoss) << 236 { 195 { 237 G4double siga = Dispersion(couple->GetMateri << 196 G4double siga = Dispersion(material,dp,tmax,length); 238 G4double loss = meanLoss; 197 G4double loss = meanLoss; 239 siga = std::sqrt(siga); << 198 siga = sqrt(siga); 240 G4double twomeanLoss = meanLoss + meanLoss; 199 G4double twomeanLoss = meanLoss + meanLoss; 241 200 242 if(twomeanLoss < siga) { 201 if(twomeanLoss < siga) { 243 G4double x; 202 G4double x; 244 do { 203 do { 245 loss = twomeanLoss*G4UniformRand(); 204 loss = twomeanLoss*G4UniformRand(); 246 x = (loss - meanLoss)/siga; 205 x = (loss - meanLoss)/siga; 247 // Loop checking, 07-Aug-2015, Vladimir << 248 } while (1.0 - 0.5*x*x < G4UniformRand()); 206 } while (1.0 - 0.5*x*x < G4UniformRand()); 249 } else { 207 } else { 250 do { 208 do { 251 loss = G4RandGauss::shoot(meanLoss,siga) 209 loss = G4RandGauss::shoot(meanLoss,siga); 252 // Loop checking, 07-Aug-2015, Vladimir << 253 } while (0.0 > loss || loss > twomeanLoss) 210 } while (0.0 > loss || loss > twomeanLoss); 254 } 211 } 255 return loss; 212 return loss; 256 } 213 } 257 214 258 //....oooOO0OOooo........oooOO0OOooo........oo 215 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 259 216 260 G4double G4mplIonisationModel::Dispersion(cons 217 G4double G4mplIonisationModel::Dispersion(const G4Material* material, 261 const G4DynamicParticle* dp, 218 const G4DynamicParticle* dp, 262 const G4double tcut, << 219 G4double& tmax, 263 const G4double tmax, << 220 G4double& length) 264 const G4double length) << 265 { 221 { 266 G4double siga = 0.0; 222 G4double siga = 0.0; 267 G4double tau = dp->GetKineticEnergy()/mass 223 G4double tau = dp->GetKineticEnergy()/mass; 268 if(tau > 0.0) { 224 if(tau > 0.0) { 269 const G4double beta = dp->GetBeta(); << 225 G4double electronDensity = material->GetElectronDensity(); 270 siga = (tmax/(beta*beta) - 0.5*tcut) * tw << 226 G4double gam = tau + 1.0; 271 * material->GetElectronDensity() * charg << 227 G4double invbeta2 = (gam*gam)/(tau * (tau+2.0)); >> 228 siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length >> 229 * electronDensity * chargeSquare; 272 } 230 } 273 return siga; 231 return siga; 274 } 232 } 275 233 276 //....oooOO0OOooo........oooOO0OOooo........oo 234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277 235