Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/highenergy/src/G4mplIonisationModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/highenergy/src/G4mplIonisationModel.cc (Version 11.3.0) and /processes/electromagnetic/highenergy/src/G4mplIonisationModel.cc (Version 3.2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // -------------------------------------------    
 28 //                                                
 29 // GEANT4 Class header file                       
 30 //                                                
 31 //                                                
 32 // File name:     G4mplIonisationModel            
 33 //                                                
 34 // Author:        Vladimir Ivanchenko             
 35 //                                                
 36 // Creation date: 06.09.2005                      
 37 //                                                
 38 // Modifications:                                 
 39 // 12.08.2007 Changing low energy approximatio    
 40 //            Small bug fixing and refactoring    
 41 // 13.11.2007 Use low-energy asymptotic from [    
 42 //                                                
 43 //                                                
 44 // -------------------------------------------    
 45 // References                                     
 46 // [1] Steven P. Ahlen: Energy loss of relativ    
 47 //     S.P. Ahlen, Rev. Mod. Phys 52(1980), p1    
 48 // [2] K.A. Milton arXiv:hep-ex/0602040           
 49 // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev.    
 50                                                   
 51                                                   
 52 //....oooOO0OOooo........oooOO0OOooo........oo    
 53 //....oooOO0OOooo........oooOO0OOooo........oo    
 54                                                   
 55 #include "G4mplIonisationModel.hh"                
 56 #include "Randomize.hh"                           
 57 #include "G4PhysicalConstants.hh"                 
 58 #include "G4SystemOfUnits.hh"                     
 59 #include "G4ParticleChangeForLoss.hh"             
 60 #include "G4ProductionCutsTable.hh"               
 61 #include "G4MaterialCutsCouple.hh"                
 62 #include "G4Log.hh"                               
 63 #include "G4Pow.hh"                               
 64                                                   
 65 //....oooOO0OOooo........oooOO0OOooo........oo    
 66                                                   
 67 std::vector<G4double>* G4mplIonisationModel::d    
 68                                                   
 69 G4mplIonisationModel::G4mplIonisationModel(G4d    
 70   : G4VEmModel(nam),G4VEmFluctuationModel(nam)    
 71   magCharge(mCharge),                             
 72   twoln10(G4Log(100.0)),                          
 73   betalow(0.01),                                  
 74   betalim(0.1),                                   
 75   beta2lim(betalim*betalim),                      
 76   bg2lim(beta2lim*(1.0 + beta2lim))               
 77 {                                                 
 78   nmpl = G4int(std::abs(magCharge) * 2 * CLHEP    
 79   if(nmpl > 6)      { nmpl = 6; }                 
 80   else if(nmpl < 1) { nmpl = 1; }                 
 81   pi_hbarc2_over_mc2 = CLHEP::pi*CLHEP::hbarc*    
 82   chargeSquare = magCharge * magCharge;           
 83   dedxlim = 45.*nmpl*nmpl*CLHEP::GeV*CLHEP::cm    
 84 }                                                 
 85                                                   
 86 //....oooOO0OOooo........oooOO0OOooo........oo    
 87                                                   
 88 G4mplIonisationModel::~G4mplIonisationModel()     
 89 {                                                 
 90   if(IsMaster()) { delete dedx0; }                
 91 }                                                 
 92                                                   
 93 //....oooOO0OOooo........oooOO0OOooo........oo    
 94                                                   
 95 void G4mplIonisationModel::SetParticle(const G    
 96 {                                                 
 97   monopole = p;                                   
 98   mass     = monopole->GetPDGMass();              
 99   G4double emin =                                 
100     std::min(LowEnergyLimit(),0.1*mass*(1./std    
101   G4double emax =                                 
102     std::max(HighEnergyLimit(),10.*mass*(1./st    
103   SetLowEnergyLimit(emin);                        
104   SetHighEnergyLimit(emax);                       
105 }                                                 
106                                                   
107 //....oooOO0OOooo........oooOO0OOooo........oo    
108                                                   
109 void G4mplIonisationModel::Initialise(const G4    
110               const G4DataVector&)                
111 {                                                 
112   if(nullptr == monopole) { SetParticle(p); }     
113   if(nullptr == fParticleChange) { fParticleCh    
114   if(IsMaster()) {                                
115     if(nullptr == dedx0) { dedx0 = new std::ve    
116     G4ProductionCutsTable* theCoupleTable=        
117       G4ProductionCutsTable::GetProductionCuts    
118     G4int numOfCouples = (G4int)theCoupleTable    
119     G4int n = (G4int)dedx0->size();               
120     if(n < numOfCouples) { dedx0->resize(numOf    
121                                                   
122     G4Pow* g4calc = G4Pow::GetInstance();         
123                                                   
124     // initialise vector assuming low conducti    
125     for(G4int i=0; i<numOfCouples; ++i) {         
126                                                   
127       const G4Material* material =                
128         theCoupleTable->GetMaterialCutsCouple(    
129       G4double eDensity = material->GetElectro    
130       G4double vF2 = 2*electron_Compton_length    
131       (*dedx0)[i] = pi_hbarc2_over_mc2*eDensit    
132         (G4Log(vF2/fine_structure_const) - 0.5    
133     }                                             
134   }                                               
135 }                                                 
136                                                   
137 //....oooOO0OOooo........oooOO0OOooo........oo    
138                                                   
139 G4double G4mplIonisationModel::ComputeDEDXPerV    
140                 const G4ParticleDefinition* p,    
141                 G4double kineticEnergy,           
142                 G4double)                         
143 {                                                 
144   if(nullptr == monopole) { SetParticle(p); }     
145   G4double tau   = kineticEnergy / mass;          
146   G4double gam   = tau + 1.0;                     
147   G4double bg2   = tau * (tau + 2.0);             
148   G4double beta2 = bg2 / (gam * gam);             
149   G4double beta  = std::sqrt(beta2);              
150                                                   
151   // low-energy asymptotic formula                
152   //G4double dedx  = dedxlim*beta*material->Ge    
153   G4double dedx = (*dedx0)[CurrentCouple()->Ge    
154                                                   
155   // above asymptotic                             
156   if(beta > betalow) {                            
157                                                   
158     // high energy                                
159     if(beta >= betalim) {                         
160       dedx = ComputeDEDXAhlen(material, bg2);     
161                                                   
162     } else {                                      
163                                                   
164       //G4double dedx1 = dedxlim*betalow*mater    
165       G4double dedx1 = (*dedx0)[CurrentCouple(    
166       G4double dedx2 = ComputeDEDXAhlen(materi    
167                                                   
168       // extrapolation between two formula        
169       G4double kapa2 = beta - betalow;            
170       G4double kapa1 = betalim - beta;            
171       dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa    
172     }                                             
173   }                                               
174   return dedx;                                    
175 }                                                 
176                                                   
177 //....oooOO0OOooo........oooOO0OOooo........oo    
178                                                   
179 G4double G4mplIonisationModel::ComputeDEDXAhle    
180             G4double bg2)                         
181 {                                                 
182   G4double eDensity = material->GetElectronDen    
183   G4double eexc  = material->GetIonisation()->    
184   G4double cden  = material->GetIonisation()->    
185   G4double mden  = material->GetIonisation()->    
186   G4double aden  = material->GetIonisation()->    
187   G4double x0den = material->GetIonisation()->    
188   G4double x1den = material->GetIonisation()->    
189                                                   
190   // Ahlen's formula for nonconductors, [1]p15    
191   G4double dedx = std::log(2.0 * electron_mass    
192                                                   
193   // Kazama et al. cross-section correction       
194   G4double  k = 0.406;                            
195   if(nmpl > 1) k = 0.346;                         
196                                                   
197   // Bloch correction                             
198   const G4double B[7] = { 0.0, 0.248, 0.672, 1    
199                                                   
200   dedx += 0.5 * k - B[nmpl];                      
201                                                   
202   // density effect correction                    
203   G4double deltam;                                
204   G4double x = std::log(bg2) / twoln10;           
205   if ( x >= x0den ) {                             
206     deltam = twoln10 * x - cden;                  
207     if ( x < x1den ) deltam += aden * std::pow    
208     dedx -= 0.5 * deltam;                         
209   }                                               
210                                                   
211   // now compute the total ionization loss        
212   dedx *=  pi_hbarc2_over_mc2 * eDensity * nmp    
213                                                   
214   if (dedx < 0.0) dedx = 0.;                      
215   return dedx;                                    
216 }                                                 
217                                                   
218 //....oooOO0OOooo........oooOO0OOooo........oo    
219                                                   
220 void G4mplIonisationModel::SampleSecondaries(s    
221                const G4MaterialCutsCouple*,       
222                const G4DynamicParticle*,          
223                G4double,                          
224                G4double)                          
225 {}                                                
226                                                   
227 //....oooOO0OOooo........oooOO0OOooo........oo    
228                                                   
229 G4double G4mplIonisationModel::SampleFluctuati    
230                const G4MaterialCutsCouple* cou    
231                const G4DynamicParticle* dp,       
232                                        const G    
233                                        const G    
234                const G4double length,             
235                const G4double meanLoss)           
236 {                                                 
237   G4double siga = Dispersion(couple->GetMateri    
238   G4double loss = meanLoss;                       
239   siga = std::sqrt(siga);                         
240   G4double twomeanLoss = meanLoss + meanLoss;     
241                                                   
242   if(twomeanLoss < siga) {                        
243     G4double x;                                   
244     do {                                          
245       loss = twomeanLoss*G4UniformRand();         
246       x = (loss - meanLoss)/siga;                 
247       // Loop checking, 07-Aug-2015, Vladimir     
248     } while (1.0 - 0.5*x*x < G4UniformRand());    
249   } else {                                        
250     do {                                          
251       loss = G4RandGauss::shoot(meanLoss,siga)    
252       // Loop checking, 07-Aug-2015, Vladimir     
253     } while (0.0 > loss || loss > twomeanLoss)    
254   }                                               
255   return loss;                                    
256 }                                                 
257                                                   
258 //....oooOO0OOooo........oooOO0OOooo........oo    
259                                                   
260 G4double G4mplIonisationModel::Dispersion(cons    
261             const G4DynamicParticle* dp,          
262             const G4double tcut,                  
263             const G4double tmax,                  
264             const G4double length)                
265 {                                                 
266   G4double siga = 0.0;                            
267   G4double tau   = dp->GetKineticEnergy()/mass    
268   if(tau > 0.0) {                                 
269     const G4double beta = dp->GetBeta();          
270     siga  = (tmax/(beta*beta) - 0.5*tcut) * tw    
271       * material->GetElectronDensity() * charg    
272   }                                               
273   return siga;                                    
274 }                                                 
275                                                   
276 //....oooOO0OOooo........oooOO0OOooo........oo    
277