Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4mplIonisation 33 // 34 // Author: Vladimir Ivanchenko 35 // 36 // Creation date: 25.08.2005 37 // 38 // Modifications: 39 // 40 // 41 // ------------------------------------------- 42 // 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oo 45 46 #include "G4mplIonisation.hh" 47 #include "G4PhysicalConstants.hh" 48 #include "G4SystemOfUnits.hh" 49 #include "G4Electron.hh" 50 #include "G4mplIonisationModel.hh" 51 #include "G4mplIonisationWithDeltaModel.hh" 52 #include "G4EmParameters.hh" 53 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 56 G4mplIonisation::G4mplIonisation(G4double mCha 57 : G4VEnergyLossProcess(name), 58 magneticCharge(mCharge) 59 { 60 // By default classical magnetic charge is u 61 if(magneticCharge == 0.0) { magneticCharge = 62 63 SetVerboseLevel(0); 64 SetProcessSubType(fIonisation); 65 SetSecondaryParticle(G4Electron::Electron()) 66 } 67 68 //....oooOO0OOooo........oooOO0OOooo........oo 69 70 G4mplIonisation::~G4mplIonisation() 71 {} 72 73 //....oooOO0OOooo........oooOO0OOooo........oo 74 75 G4bool G4mplIonisation::IsApplicable(const G4P 76 { 77 return true; 78 } 79 80 //....oooOO0OOooo........oooOO0OOooo........oo 81 82 G4double G4mplIonisation::MinPrimaryEnergy(con 83 con 84 G4d 85 { 86 G4double x = 0.5*cut/electron_mass_c2; 87 G4double mass = mpl->GetPDGMass(); 88 G4double ratio = electron_mass_c2/mass; 89 G4double gam = x*ratio + std::sqrt((1. + x 90 return mass*(gam - 1.0); 91 } 92 93 //....oooOO0OOooo........oooOO0OOooo........oo 94 95 void G4mplIonisation::InitialiseEnergyLossProc 96 97 { 98 if(isInitialised) { return; } 99 100 // monopole model is responsible both for en 101 G4mplIonisationWithDeltaModel* ion = 102 new G4mplIonisationWithDeltaModel(magnetic 103 ion->SetParticle(p); 104 105 // define size of dedx and range tables 106 G4EmParameters* param = G4EmParameters::Inst 107 G4double emin = std::min(param->MinKinEnerg 108 G4double emax = std::max(param->MaxKinEnerg 109 G4int bin = G4lrint(param->NumberOfBinsPerDe 110 ion->SetLowEnergyLimit(emin); 111 ion->SetHighEnergyLimit(emax); 112 SetMinKinEnergy(emin); 113 SetMaxKinEnergy(emax); 114 SetDEDXBinning(bin); 115 116 SetEmModel(ion); 117 AddEmModel(1,ion,ion); 118 119 isInitialised = true; 120 } 121 122 //....oooOO0OOooo........oooOO0OOooo........oo 123 124 void G4mplIonisation::ProcessDescription(std:: 125 { 126 out << "Magnetic monopole ionisation" << G4e 127 G4VEnergyLossProcess::ProcessDescription(out 128 } 129 130 //....oooOO0OOooo........oooOO0OOooo........oo 131 132