Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc (Version 11.3.0) and /processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc (Version 8.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4AnnihiToMuPair.cc,v 1.3 2006/06/29 19:32:34 gunter Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-08-02 $
 27 //                                                 29 //
 28 //         ------------ G4AnnihiToMuPair physi     30 //         ------------ G4AnnihiToMuPair physics process ------
 29 //         by H.Burkhardt, S. Kelner and R. Ko     31 //         by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002
 30 // -------------------------------------------     32 // -----------------------------------------------------------------------------
 31 //                                                 33 //
 32 //....oooOO0OOooo........oooOO0OOooo........oo     34 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......//
 33 //                                                 35 //
 34 // 27.01.03 : first implementation (hbu)           36 // 27.01.03 : first implementation (hbu)
 35 // 04.02.03 : cosmetic simplifications (mma)       37 // 04.02.03 : cosmetic simplifications (mma)
 36 // 25.10.04 : migrade to new interfaces of Par     38 // 25.10.04 : migrade to new interfaces of ParticleChange (vi)
 37 // 28.02.18 : cross section now including SSS  << 
 38 //                                                 39 //
 39 //....oooOO0OOooo........oooOO0OOooo........oo     40 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 40                                                    41 
 41 #include "G4AnnihiToMuPair.hh"                     42 #include "G4AnnihiToMuPair.hh"
 42                                                    43 
 43 #include "G4Exp.hh"                            << 
 44 #include "G4LossTableManager.hh"               << 
 45 #include "G4Material.hh"                       << 
 46 #include "G4MuonMinus.hh"                      << 
 47 #include "G4MuonPlus.hh"                       << 
 48 #include "G4PhysicalConstants.hh"              << 
 49 #include "G4Positron.hh"                       << 
 50 #include "G4Step.hh"                           << 
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "G4TauMinus.hh"                       << 
 53 #include "G4TauPlus.hh"                        << 
 54 #include "G4ios.hh"                                44 #include "G4ios.hh"
 55 #include "Randomize.hh"                            45 #include "Randomize.hh"
 56                                                    46 
                                                   >>  47 #include "G4Positron.hh"
                                                   >>  48 #include "G4MuonPlus.hh"
                                                   >>  49 #include "G4MuonMinus.hh"
                                                   >>  50 #include "G4Material.hh"
                                                   >>  51 #include "G4Step.hh"
                                                   >>  52 
 57 //....oooOO0OOooo........oooOO0OOooo........oo     53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 58                                                    54 
                                                   >>  55 using namespace std;
                                                   >>  56 
 59 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4Str     57 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4String& processName,
 60     G4ProcessType type):G4VDiscreteProcess (pr     58     G4ProcessType type):G4VDiscreteProcess (processName, type)
 61 {                                                  59 {
 62   //e+ Energy threshold                        <<  60  //e+ Energy threshold
 63   if(processName == "AnnihiToTauPair") {       <<  61  const G4double Mu_massc2 = G4MuonPlus::MuonPlus()->GetPDGMass();
 64     SetProcessSubType(fAnnihilationToTauTau);  <<  62  LowestEnergyLimit  = 2*Mu_massc2*Mu_massc2/electron_mass_c2 - electron_mass_c2;
 65     part1 = G4TauPlus::TauPlus();              <<  63  
 66     part2 = G4TauMinus::TauMinus();            <<  64  //modele ok up to 1000 TeV due to neglected Z-interference
 67     fInfo = "e+e->tau+tau-";                   <<  65  HighestEnergyLimit = 1000*TeV;
 68   } else {                                     <<  66  
 69     SetProcessSubType(fAnnihilationToMuMu);    <<  67  CrossSecFactor = 1.;
 70     part1 = G4MuonPlus::MuonPlus();            << 
 71     part2 = G4MuonMinus::MuonMinus();          << 
 72   }                                            << 
 73   fMass = part1->GetPDGMass();                 << 
 74   fLowEnergyLimit = 2. * fMass * fMass / CLHEP << 
 75                                                << 
 76   // model is ok up to 1000 TeV due to neglect << 
 77   fHighEnergyLimit = 1000. * TeV;              << 
 78                                                << 
 79   fCurrentSigma = 0.0;                         << 
 80   fCrossSecFactor = 1.;                        << 
 81   fManager = G4LossTableManager::Instance();   << 
 82   fManager->Register(this);                    << 
 83 }                                                  68 }
 84                                                    69 
 85 //....oooOO0OOooo........oooOO0OOooo........oo     70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 86                                                    71 
 87 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empt     72 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empty) destructor
 88 {                                              <<  73 { }
 89   fManager->DeRegister(this);                  << 
 90 }                                              << 
 91                                                    74 
 92 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 93                                                    76 
 94 G4bool G4AnnihiToMuPair::IsApplicable(const G4     77 G4bool G4AnnihiToMuPair::IsApplicable(const G4ParticleDefinition& particle)
 95 {                                                  78 {
 96   return ( &particle == G4Positron::Positron()     79   return ( &particle == G4Positron::Positron() );
 97 }                                                  80 }
 98                                                    81 
 99 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
100                                                    83 
101 void G4AnnihiToMuPair::BuildPhysicsTable(const     84 void G4AnnihiToMuPair::BuildPhysicsTable(const G4ParticleDefinition&)
                                                   >>  85 // Build cross section and mean free path tables
                                                   >>  86 //here no tables, just calling PrintInfoDefinition
102 {                                                  87 {
103   PrintInfoDefinition();                       <<  88    PrintInfoDefinition();
104 }                                                  89 }
105                                                    90 
106 //....oooOO0OOooo........oooOO0OOooo........oo     91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107                                                    92 
108 void G4AnnihiToMuPair::SetCrossSecFactor(G4dou     93 void G4AnnihiToMuPair::SetCrossSecFactor(G4double fac)
109 // Set the factor to artificially increase the     94 // Set the factor to artificially increase the cross section
110 {                                                  95 { 
111   fCrossSecFactor = fac;                       <<  96   CrossSecFactor = fac;
112   //G4cout << "The cross section for AnnihiToM <<  97   G4cout << "The cross section for AnnihiToMuPair is artificially "
113   //       << "increased by the CrossSecFactor <<  98          << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
114 }                                                  99 }
115                                                   100 
116 //....oooOO0OOooo........oooOO0OOooo........oo    101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
117                                                   102 
118 G4double G4AnnihiToMuPair::ComputeCrossSection << 103 G4double G4AnnihiToMuPair::ComputeCrossSectionPerAtom(G4double Epos, G4double Z)
119 // Calculates the microscopic cross section in    104 // Calculates the microscopic cross section in GEANT4 internal units.
120 // It gives a good description from threshold     105 // It gives a good description from threshold to 1000 GeV
121 {                                                 106 {
122   G4double rmuon = CLHEP::elm_coupling/fMass;  << 107   static const G4double Mmuon = G4MuonPlus::MuonPlus()->GetPDGMass();
123   G4double sig0 = CLHEP::pi*rmuon*rmuon/3.;    << 108   static const G4double Rmuon = elm_coupling/Mmuon; //classical particle radius
124   const G4double pial = CLHEP::pi*CLHEP::fine_ << 109   static const G4double Sig0  = pi*Rmuon*Rmuon/3.;  //constant in crossSection
125                                                   110 
126   if (e <= fLowEnergyLimit) return 0.0;        << 111   G4double CrossSection = 0.;
                                                   >> 112   if (Epos < LowestEnergyLimit) return CrossSection;
127                                                   113    
128   const G4double xi = fLowEnergyLimit/e;       << 114   G4double xi = LowestEnergyLimit/Epos;
129   const G4double piaxi = pial * std::sqrt(xi); << 115   G4double SigmaEl = Sig0*xi*(1.+xi/2.)*sqrt(1.-xi); // per electron
130   G4double sigma = sig0 * xi * (1. + xi*0.5);  << 116   CrossSection = SigmaEl*Z;         // number of electrons per atom
131   //G4cout << "### xi= " << xi << " piaxi=" << << 117   CrossSection *= CrossSecFactor;   //increase the CrossSection by  (default 1)
132                                                << 118   return CrossSection;
133   // argument of the exponent below 0.1 or abo << 
134   // Sigma per electron * number of electrons  << 
135   if(xi <= 1.0 - 100*piaxi*piaxi) {            << 
136     sigma *= std::sqrt(1.0 - xi);              << 
137   }                                            << 
138   else if (xi >= 1.0 - 0.01 * piaxi * piaxi) { << 
139     sigma *= piaxi;                            << 
140   }                                            << 
141   else {                                       << 
142     sigma *= piaxi / (1. - G4Exp(-piaxi / std: << 
143   }                                            << 
144   // G4cout << "### sigma= " << sigma << G4end << 
145   return sigma;                                << 
146 }                                              << 
147                                                << 
148 //....oooOO0OOooo........oooOO0OOooo........oo << 
149                                                << 
150 G4double G4AnnihiToMuPair::ComputeCrossSection << 
151                                                << 
152 {                                              << 
153   return ComputeCrossSectionPerElectron(energy << 
154 }                                              << 
155                                                << 
156 //....oooOO0OOooo........oooOO0OOooo........oo << 
157                                                << 
158 G4double G4AnnihiToMuPair::CrossSectionPerVolu << 
159              const G4Material* aMaterial)      << 
160 {                                              << 
161   return ComputeCrossSectionPerElectron(energy << 
162 }                                                 119 }
163                                                   120 
164 //....oooOO0OOooo........oooOO0OOooo........oo    121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
165                                                   122 
166 G4double G4AnnihiToMuPair::GetMeanFreePath(con    123 G4double G4AnnihiToMuPair::GetMeanFreePath(const G4Track& aTrack,
167                                            G4d    124                                            G4double, G4ForceCondition*)
                                                   >> 125 
168 // returns the positron mean free path in GEAN    126 // returns the positron mean free path in GEANT4 internal units
                                                   >> 127 
169 {                                                 128 {
170   const G4DynamicParticle* aDynamicPositron =     129   const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle();
171   G4double energy = aDynamicPositron->GetTotal << 130   G4double PositronEnergy = aDynamicPositron->GetKineticEnergy()
172   const G4Material* aMaterial = aTrack.GetMate << 131                                               +electron_mass_c2;
173                                                << 132   G4Material* aMaterial = aTrack.GetMaterial();
174   // cross section before step                 << 133   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
175   fCurrentSigma = CrossSectionPerVolume(energy << 134   const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
176                                                << 135 
177   // increase the CrossSection by CrossSecFact << 136   G4double SIGMA = 0 ;
178   return (fCurrentSigma > 0.0) ? 1.0/(fCurrent << 137 
                                                   >> 138   for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; i++ )
                                                   >> 139   {
                                                   >> 140     G4double AtomicZ = (*theElementVector)[i]->GetZ();
                                                   >> 141     SIGMA += NbOfAtomsPerVolume[i] *
                                                   >> 142       ComputeCrossSectionPerAtom(PositronEnergy,AtomicZ);
                                                   >> 143   }
                                                   >> 144   return SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX;
179 }                                                 145 }
180                                                   146 
181 //....oooOO0OOooo........oooOO0OOooo........oo    147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
182                                                   148 
183 G4VParticleChange* G4AnnihiToMuPair::PostStepD    149 G4VParticleChange* G4AnnihiToMuPair::PostStepDoIt(const G4Track& aTrack,
184                                                   150                                                   const G4Step&  aStep)
185 //                                                151 //
186 // generation of e+e- -> mu+mu-                   152 // generation of e+e- -> mu+mu-
187 //                                                153 //
188 {                                                 154 {
                                                   >> 155 
189   aParticleChange.Initialize(aTrack);             156   aParticleChange.Initialize(aTrack);
                                                   >> 157   static const G4double Mele=electron_mass_c2;
                                                   >> 158   static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
190                                                   159 
191   // current Positron energy and direction, re    160   // current Positron energy and direction, return if energy too low
192   const G4DynamicParticle *aDynamicPositron =     161   const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle();
193   const G4double Mele = CLHEP::electron_mass_c << 162   G4double Epos = aDynamicPositron->GetKineticEnergy()+Mele;
194   G4double Epos = aDynamicPositron->GetTotalEn << 163 
195   G4double xs = CrossSectionPerVolume(Epos, aT << 164  if (Epos < LowestEnergyLimit)
196                                                << 165   { G4cout 
197   // test of cross section                     << 166         << "error in G4AnnihiToMuPair::PostStepDoIt called with energy below"
198   if(xs > 0.0 && fCurrentSigma*G4UniformRand() << 167      " threshold Epos= "
199     return G4VDiscreteProcess::PostStepDoIt(aT << 168   << Epos << G4endl;       // shoud never happen
                                                   >> 169   G4Exception(10);
200   }                                               170   }
201                                                   171 
202   const G4ThreeVector PosiDirection = aDynamic << 172   if (Epos < LowestEnergyLimit)
203   G4double xi = fLowEnergyLimit/Epos; // xi is << 173      return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
204                                       // goes  << 
205                                                   174 
206   // generate cost; probability function 1+cos << 175   G4ParticleMomentum PositronDirection = 
                                                   >> 176                                        aDynamicPositron->GetMomentumDirection();
                                                   >> 177   G4double xi = LowestEnergyLimit/Epos; // xi is always less than 1,
                                                   >> 178                                         // goes to 0 at high Epos
                                                   >> 179 
                                                   >> 180   // generate cost
207   //                                              181   //
208   G4double cost;                                  182   G4double cost;
209   do { cost = 2.*G4UniformRand()-1.; }         << 183   do cost = 2.*G4UniformRand()-1.;
210   // Loop checking, 07-Aug-2015, Vladimir Ivan << 
211   while (2.*G4UniformRand() > 1.+xi+cost*cost*    184   while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) ); 
212   G4double sint = std::sqrt(1.-cost*cost);     << 185                                                        //1+cost**2 at high Epos
                                                   >> 186   G4double sint = sqrt(1.-cost*cost);
213                                                   187 
214   // generate phi                                 188   // generate phi
215   //                                              189   //
216   G4double phi = 2.*CLHEP::pi*G4UniformRand(); << 190   G4double phi=2.*pi*G4UniformRand();
217                                                   191 
218   G4double Ecm   = std::sqrt(0.5*Mele*(Epos+Me << 192   G4double Ecm   = sqrt(0.5*Mele*(Epos+Mele));
219   G4double Pcm   = std::sqrt(Ecm*Ecm - fMass*f << 193   G4double Pcm   = sqrt(Ecm*Ecm-Mmuon*Mmuon);
220   G4double beta  = std::sqrt((Epos-Mele)/(Epos << 194   G4double beta  = sqrt((Epos-Mele)/(Epos+Mele));
221   G4double gamma = Ecm/Mele;                   << 195   G4double gamma = Ecm/Mele;                    // =sqrt((Epos+Mele)/(2.*Mele));
222   G4double Pt    = Pcm*sint;                      196   G4double Pt    = Pcm*sint;
223                                                   197   
224   // energy and momentum of the muons in the L    198   // energy and momentum of the muons in the Lab
225   //                                              199   //
226   G4double EmuPlus   = gamma*(Ecm + cost*beta* << 200   G4double EmuPlus   = gamma*(     Ecm+cost*beta*Pcm);
227   G4double EmuMinus  = gamma*(Ecm - cost*beta* << 201   G4double EmuMinus  = gamma*(     Ecm-cost*beta*Pcm);
228   G4double PmuPlusZ  = gamma*(beta*Ecm + cost* << 202   G4double PmuPlusZ  = gamma*(beta*Ecm+cost*     Pcm);
229   G4double PmuMinusZ = gamma*(beta*Ecm - cost* << 203   G4double PmuMinusZ = gamma*(beta*Ecm-cost*     Pcm);
230   G4double PmuPlusX  = Pt*std::cos(phi);       << 204   G4double PmuPlusX  = Pt*cos(phi);
231   G4double PmuPlusY  = Pt*std::sin(phi);       << 205   G4double PmuPlusY  = Pt*sin(phi);
232   G4double PmuMinusX =-PmuPlusX;               << 206   G4double PmuMinusX =-Pt*cos(phi);
233   G4double PmuMinusY =-PmuPlusY;               << 207   G4double PmuMinusY =-Pt*sin(phi);
234   // absolute momenta                             208   // absolute momenta
235   G4double PmuPlus  = std::sqrt(Pt*Pt+PmuPlusZ << 209   G4double PmuPlus  = sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
236   G4double PmuMinus = std::sqrt(Pt*Pt+PmuMinus << 210   G4double PmuMinus = sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
237                                                   211 
238   // mu+ mu- directions for Positron in z-dire    212   // mu+ mu- directions for Positron in z-direction
239   //                                              213   //
240   G4ThreeVector MuPlusDirection(PmuPlusX / Pmu << 214   G4ThreeVector
241   G4ThreeVector MuMinusDirection(PmuMinusX / P << 215     MuPlusDirection ( PmuPlusX/PmuPlus, PmuPlusY/PmuPlus,  PmuPlusZ/PmuPlus  );
                                                   >> 216   G4ThreeVector
                                                   >> 217     MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
242                                                   218 
243   // rotate to actual Positron direction          219   // rotate to actual Positron direction
244   //                                              220   //
245   MuPlusDirection.rotateUz(PosiDirection);     << 221   MuPlusDirection.rotateUz(PositronDirection);
246   MuMinusDirection.rotateUz(PosiDirection);    << 222   MuMinusDirection.rotateUz(PositronDirection);
247                                                   223 
248   aParticleChange.SetNumberOfSecondaries(2);      224   aParticleChange.SetNumberOfSecondaries(2);
249                                                << 
250   // create G4DynamicParticle object for the p    225   // create G4DynamicParticle object for the particle1
251   auto aParticle1 = new G4DynamicParticle(part << 226   G4DynamicParticle* aParticle1= new G4DynamicParticle(
                                                   >> 227                          G4MuonPlus::MuonPlus(),MuPlusDirection,EmuPlus-Mmuon);
252   aParticleChange.AddSecondary(aParticle1);       228   aParticleChange.AddSecondary(aParticle1);
253   // create G4DynamicParticle object for the p    229   // create G4DynamicParticle object for the particle2
254   auto aParticle2 = new G4DynamicParticle(part << 230   G4DynamicParticle* aParticle2= new G4DynamicParticle(
                                                   >> 231                      G4MuonMinus::MuonMinus(),MuMinusDirection,EmuMinus-Mmuon);
255   aParticleChange.AddSecondary(aParticle2);       232   aParticleChange.AddSecondary(aParticle2);
256                                                   233 
257   // Kill the incident positron                   234   // Kill the incident positron 
258   //                                              235   //
259   aParticleChange.ProposeEnergy(0.);              236   aParticleChange.ProposeEnergy(0.); 
260   aParticleChange.ProposeTrackStatus(fStopAndK    237   aParticleChange.ProposeTrackStatus(fStopAndKill);
261                                                   238 
262   return &aParticleChange;                        239   return &aParticleChange;
263 }                                                 240 }
264                                                   241 
265 //....oooOO0OOooo........oooOO0OOooo........oo    242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
266                                                   243 
267 void G4AnnihiToMuPair::PrintInfoDefinition()      244 void G4AnnihiToMuPair::PrintInfoDefinition()
268 {                                                 245 {
269   G4String comments = fInfo + " annihilation,  << 246   G4String comments ="e+e->mu+mu- annihilation, atomic e- at rest.\n";
270   G4cout << G4endl << GetProcessName() << ":   << 247   G4cout << G4endl << GetProcessName() << ":  " << comments
271   G4cout << "        threshold at " << fLowEne << 248          << "        threshold at " << LowestEnergyLimit/GeV << " GeV"
272          << " good description up to " << fHig << 249          << " good description up to "
273          << G4endl;                            << 250          << HighestEnergyLimit/TeV << " TeV for all Z." << G4endl;
274 }                                                 251 }
275                                                   252 
276 //....oooOO0OOooo........oooOO0OOooo........oo    253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
277                                                   254