Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4AnnihiToMuPair.cc,v 1.2 2004/12/01 18:13:44 vnivanch Exp $ >> 25 // GEANT4 tag $Name: geant4-08-00-patch-01 $ 27 // 26 // 28 // ------------ G4AnnihiToMuPair physi 27 // ------------ G4AnnihiToMuPair physics process ------ 29 // by H.Burkhardt, S. Kelner and R. Ko 28 // by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002 30 // ------------------------------------------- 29 // ----------------------------------------------------------------------------- 31 // 30 // 32 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......// 33 // 32 // 34 // 27.01.03 : first implementation (hbu) 33 // 27.01.03 : first implementation (hbu) 35 // 04.02.03 : cosmetic simplifications (mma) 34 // 04.02.03 : cosmetic simplifications (mma) 36 // 25.10.04 : migrade to new interfaces of Par 35 // 25.10.04 : migrade to new interfaces of ParticleChange (vi) 37 // 28.02.18 : cross section now including SSS << 38 // 36 // 39 //....oooOO0OOooo........oooOO0OOooo........oo 37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 40 38 41 #include "G4AnnihiToMuPair.hh" 39 #include "G4AnnihiToMuPair.hh" 42 40 43 #include "G4Exp.hh" << 44 #include "G4LossTableManager.hh" << 45 #include "G4Material.hh" << 46 #include "G4MuonMinus.hh" << 47 #include "G4MuonPlus.hh" << 48 #include "G4PhysicalConstants.hh" << 49 #include "G4Positron.hh" << 50 #include "G4Step.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "G4TauMinus.hh" << 53 #include "G4TauPlus.hh" << 54 #include "G4ios.hh" 41 #include "G4ios.hh" 55 #include "Randomize.hh" 42 #include "Randomize.hh" 56 43 >> 44 #include "G4Positron.hh" >> 45 #include "G4MuonPlus.hh" >> 46 #include "G4MuonMinus.hh" >> 47 #include "G4Material.hh" >> 48 #include "G4Step.hh" >> 49 57 //....oooOO0OOooo........oooOO0OOooo........oo 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 51 >> 52 using namespace std; >> 53 59 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4Str 54 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4String& processName, 60 G4ProcessType type):G4VDiscreteProcess (pr 55 G4ProcessType type):G4VDiscreteProcess (processName, type) 61 { 56 { 62 //e+ Energy threshold << 57 //e+ Energy threshold 63 if(processName == "AnnihiToTauPair") { << 58 const G4double Mu_massc2 = G4MuonPlus::MuonPlus()->GetPDGMass(); 64 SetProcessSubType(fAnnihilationToTauTau); << 59 LowestEnergyLimit = 2*Mu_massc2*Mu_massc2/electron_mass_c2 - electron_mass_c2; 65 part1 = G4TauPlus::TauPlus(); << 60 66 part2 = G4TauMinus::TauMinus(); << 61 //modele ok up to 1000 TeV due to neglected Z-interference 67 fInfo = "e+e->tau+tau-"; << 62 HighestEnergyLimit = 1000*TeV; 68 } else { << 63 69 SetProcessSubType(fAnnihilationToMuMu); << 64 CrossSecFactor = 1.; 70 part1 = G4MuonPlus::MuonPlus(); << 71 part2 = G4MuonMinus::MuonMinus(); << 72 } << 73 fMass = part1->GetPDGMass(); << 74 fLowEnergyLimit = 2. * fMass * fMass / CLHEP << 75 << 76 // model is ok up to 1000 TeV due to neglect << 77 fHighEnergyLimit = 1000. * TeV; << 78 << 79 fCurrentSigma = 0.0; << 80 fCrossSecFactor = 1.; << 81 fManager = G4LossTableManager::Instance(); << 82 fManager->Register(this); << 83 } 65 } 84 66 85 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 86 68 87 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empt 69 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empty) destructor 88 { << 70 { } 89 fManager->DeRegister(this); << 90 } << 91 71 92 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 93 73 94 G4bool G4AnnihiToMuPair::IsApplicable(const G4 74 G4bool G4AnnihiToMuPair::IsApplicable(const G4ParticleDefinition& particle) 95 { 75 { 96 return ( &particle == G4Positron::Positron() 76 return ( &particle == G4Positron::Positron() ); 97 } 77 } 98 78 99 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 100 80 101 void G4AnnihiToMuPair::BuildPhysicsTable(const 81 void G4AnnihiToMuPair::BuildPhysicsTable(const G4ParticleDefinition&) >> 82 // Build cross section and mean free path tables >> 83 //here no tables, just calling PrintInfoDefinition 102 { 84 { 103 PrintInfoDefinition(); << 85 PrintInfoDefinition(); 104 } 86 } 105 87 106 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 107 89 108 void G4AnnihiToMuPair::SetCrossSecFactor(G4dou 90 void G4AnnihiToMuPair::SetCrossSecFactor(G4double fac) 109 // Set the factor to artificially increase the 91 // Set the factor to artificially increase the cross section 110 { 92 { 111 fCrossSecFactor = fac; << 93 CrossSecFactor = fac; 112 //G4cout << "The cross section for AnnihiToM << 94 G4cout << "The cross section for AnnihiToMuPair is artificially " 113 // << "increased by the CrossSecFactor << 95 << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl; 114 } 96 } 115 97 116 //....oooOO0OOooo........oooOO0OOooo........oo 98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 99 118 G4double G4AnnihiToMuPair::ComputeCrossSection << 100 G4double G4AnnihiToMuPair::ComputeCrossSectionPerAtom(G4double Epos, G4double Z) 119 // Calculates the microscopic cross section in 101 // Calculates the microscopic cross section in GEANT4 internal units. 120 // It gives a good description from threshold 102 // It gives a good description from threshold to 1000 GeV 121 { 103 { 122 G4double rmuon = CLHEP::elm_coupling/fMass; << 104 static const G4double Mmuon = G4MuonPlus::MuonPlus()->GetPDGMass(); 123 G4double sig0 = CLHEP::pi*rmuon*rmuon/3.; << 105 static const G4double Rmuon = elm_coupling/Mmuon; //classical particle radius 124 const G4double pial = CLHEP::pi*CLHEP::fine_ << 106 static const G4double Sig0 = pi*Rmuon*Rmuon/3.; //constant in crossSection 125 107 126 if (e <= fLowEnergyLimit) return 0.0; << 108 G4double CrossSection = 0.; >> 109 if (Epos < LowestEnergyLimit) return CrossSection; 127 110 128 const G4double xi = fLowEnergyLimit/e; << 111 G4double xi = LowestEnergyLimit/Epos; 129 const G4double piaxi = pial * std::sqrt(xi); << 112 G4double SigmaEl = Sig0*xi*(1.+xi/2.)*sqrt(1.-xi); // per electron 130 G4double sigma = sig0 * xi * (1. + xi*0.5); << 113 CrossSection = SigmaEl*Z; // number of electrons per atom 131 //G4cout << "### xi= " << xi << " piaxi=" << << 114 CrossSection *= CrossSecFactor; //increase the CrossSection by (default 1) 132 << 115 return CrossSection; 133 // argument of the exponent below 0.1 or abo << 134 // Sigma per electron * number of electrons << 135 if(xi <= 1.0 - 100*piaxi*piaxi) { << 136 sigma *= std::sqrt(1.0 - xi); << 137 } << 138 else if (xi >= 1.0 - 0.01 * piaxi * piaxi) { << 139 sigma *= piaxi; << 140 } << 141 else { << 142 sigma *= piaxi / (1. - G4Exp(-piaxi / std: << 143 } << 144 // G4cout << "### sigma= " << sigma << G4end << 145 return sigma; << 146 } << 147 << 148 //....oooOO0OOooo........oooOO0OOooo........oo << 149 << 150 G4double G4AnnihiToMuPair::ComputeCrossSection << 151 << 152 { << 153 return ComputeCrossSectionPerElectron(energy << 154 } << 155 << 156 //....oooOO0OOooo........oooOO0OOooo........oo << 157 << 158 G4double G4AnnihiToMuPair::CrossSectionPerVolu << 159 const G4Material* aMaterial) << 160 { << 161 return ComputeCrossSectionPerElectron(energy << 162 } 116 } 163 117 164 //....oooOO0OOooo........oooOO0OOooo........oo 118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 165 119 166 G4double G4AnnihiToMuPair::GetMeanFreePath(con 120 G4double G4AnnihiToMuPair::GetMeanFreePath(const G4Track& aTrack, 167 G4d 121 G4double, G4ForceCondition*) >> 122 168 // returns the positron mean free path in GEAN 123 // returns the positron mean free path in GEANT4 internal units >> 124 169 { 125 { 170 const G4DynamicParticle* aDynamicPositron = 126 const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle(); 171 G4double energy = aDynamicPositron->GetTotal << 127 G4double PositronEnergy = aDynamicPositron->GetKineticEnergy() 172 const G4Material* aMaterial = aTrack.GetMate << 128 +electron_mass_c2; 173 << 129 G4Material* aMaterial = aTrack.GetMaterial(); 174 // cross section before step << 130 const G4ElementVector* theElementVector = aMaterial->GetElementVector(); 175 fCurrentSigma = CrossSectionPerVolume(energy << 131 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume(); 176 << 132 177 // increase the CrossSection by CrossSecFact << 133 G4double SIGMA = 0 ; 178 return (fCurrentSigma > 0.0) ? 1.0/(fCurrent << 134 >> 135 for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; i++ ) >> 136 { >> 137 G4double AtomicZ = (*theElementVector)[i]->GetZ(); >> 138 SIGMA += NbOfAtomsPerVolume[i] * >> 139 ComputeCrossSectionPerAtom(PositronEnergy,AtomicZ); >> 140 } >> 141 return SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX; 179 } 142 } 180 143 181 //....oooOO0OOooo........oooOO0OOooo........oo 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 182 145 183 G4VParticleChange* G4AnnihiToMuPair::PostStepD 146 G4VParticleChange* G4AnnihiToMuPair::PostStepDoIt(const G4Track& aTrack, 184 147 const G4Step& aStep) 185 // 148 // 186 // generation of e+e- -> mu+mu- 149 // generation of e+e- -> mu+mu- 187 // 150 // 188 { 151 { >> 152 189 aParticleChange.Initialize(aTrack); 153 aParticleChange.Initialize(aTrack); >> 154 static const G4double Mele=electron_mass_c2; >> 155 static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass(); 190 156 191 // current Positron energy and direction, re 157 // current Positron energy and direction, return if energy too low 192 const G4DynamicParticle *aDynamicPositron = 158 const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle(); 193 const G4double Mele = CLHEP::electron_mass_c << 159 G4double Epos = aDynamicPositron->GetKineticEnergy()+Mele; 194 G4double Epos = aDynamicPositron->GetTotalEn << 160 195 G4double xs = CrossSectionPerVolume(Epos, aT << 161 if (Epos < LowestEnergyLimit) 196 << 162 { G4cout 197 // test of cross section << 163 << "error in G4AnnihiToMuPair::PostStepDoIt called with energy below" 198 if(xs > 0.0 && fCurrentSigma*G4UniformRand() << 164 " threshold Epos= " 199 return G4VDiscreteProcess::PostStepDoIt(aT << 165 << Epos << G4endl; // shoud never happen >> 166 G4Exception(10); 200 } 167 } 201 168 202 const G4ThreeVector PosiDirection = aDynamic << 169 if (Epos < LowestEnergyLimit) 203 G4double xi = fLowEnergyLimit/Epos; // xi is << 170 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep); 204 // goes << 205 171 206 // generate cost; probability function 1+cos << 172 G4ParticleMomentum PositronDirection = >> 173 aDynamicPositron->GetMomentumDirection(); >> 174 G4double xi = LowestEnergyLimit/Epos; // xi is always less than 1, >> 175 // goes to 0 at high Epos >> 176 >> 177 // generate cost 207 // 178 // 208 G4double cost; 179 G4double cost; 209 do { cost = 2.*G4UniformRand()-1.; } << 180 do cost = 2.*G4UniformRand()-1.; 210 // Loop checking, 07-Aug-2015, Vladimir Ivan << 211 while (2.*G4UniformRand() > 1.+xi+cost*cost* 181 while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) ); 212 G4double sint = std::sqrt(1.-cost*cost); << 182 //1+cost**2 at high Epos >> 183 G4double sint = sqrt(1.-cost*cost); 213 184 214 // generate phi 185 // generate phi 215 // 186 // 216 G4double phi = 2.*CLHEP::pi*G4UniformRand(); << 187 G4double phi=2.*pi*G4UniformRand(); 217 188 218 G4double Ecm = std::sqrt(0.5*Mele*(Epos+Me << 189 G4double Ecm = sqrt(0.5*Mele*(Epos+Mele)); 219 G4double Pcm = std::sqrt(Ecm*Ecm - fMass*f << 190 G4double Pcm = sqrt(Ecm*Ecm-Mmuon*Mmuon); 220 G4double beta = std::sqrt((Epos-Mele)/(Epos << 191 G4double beta = sqrt((Epos-Mele)/(Epos+Mele)); 221 G4double gamma = Ecm/Mele; << 192 G4double gamma = Ecm/Mele; // =sqrt((Epos+Mele)/(2.*Mele)); 222 G4double Pt = Pcm*sint; 193 G4double Pt = Pcm*sint; 223 194 224 // energy and momentum of the muons in the L 195 // energy and momentum of the muons in the Lab 225 // 196 // 226 G4double EmuPlus = gamma*(Ecm + cost*beta* << 197 G4double EmuPlus = gamma*( Ecm+cost*beta*Pcm); 227 G4double EmuMinus = gamma*(Ecm - cost*beta* << 198 G4double EmuMinus = gamma*( Ecm-cost*beta*Pcm); 228 G4double PmuPlusZ = gamma*(beta*Ecm + cost* << 199 G4double PmuPlusZ = gamma*(beta*Ecm+cost* Pcm); 229 G4double PmuMinusZ = gamma*(beta*Ecm - cost* << 200 G4double PmuMinusZ = gamma*(beta*Ecm-cost* Pcm); 230 G4double PmuPlusX = Pt*std::cos(phi); << 201 G4double PmuPlusX = Pt*cos(phi); 231 G4double PmuPlusY = Pt*std::sin(phi); << 202 G4double PmuPlusY = Pt*sin(phi); 232 G4double PmuMinusX =-PmuPlusX; << 203 G4double PmuMinusX =-Pt*cos(phi); 233 G4double PmuMinusY =-PmuPlusY; << 204 G4double PmuMinusY =-Pt*sin(phi); 234 // absolute momenta 205 // absolute momenta 235 G4double PmuPlus = std::sqrt(Pt*Pt+PmuPlusZ << 206 G4double PmuPlus = sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ ); 236 G4double PmuMinus = std::sqrt(Pt*Pt+PmuMinus << 207 G4double PmuMinus = sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ); 237 208 238 // mu+ mu- directions for Positron in z-dire 209 // mu+ mu- directions for Positron in z-direction 239 // 210 // 240 G4ThreeVector MuPlusDirection(PmuPlusX / Pmu << 211 G4ThreeVector 241 G4ThreeVector MuMinusDirection(PmuMinusX / P << 212 MuPlusDirection ( PmuPlusX/PmuPlus, PmuPlusY/PmuPlus, PmuPlusZ/PmuPlus ); >> 213 G4ThreeVector >> 214 MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus); 242 215 243 // rotate to actual Positron direction 216 // rotate to actual Positron direction 244 // 217 // 245 MuPlusDirection.rotateUz(PosiDirection); << 218 MuPlusDirection.rotateUz(PositronDirection); 246 MuMinusDirection.rotateUz(PosiDirection); << 219 MuMinusDirection.rotateUz(PositronDirection); 247 220 248 aParticleChange.SetNumberOfSecondaries(2); 221 aParticleChange.SetNumberOfSecondaries(2); 249 << 250 // create G4DynamicParticle object for the p 222 // create G4DynamicParticle object for the particle1 251 auto aParticle1 = new G4DynamicParticle(part << 223 G4DynamicParticle* aParticle1= new G4DynamicParticle( >> 224 G4MuonPlus::MuonPlus(),MuPlusDirection,EmuPlus-Mmuon); 252 aParticleChange.AddSecondary(aParticle1); 225 aParticleChange.AddSecondary(aParticle1); 253 // create G4DynamicParticle object for the p 226 // create G4DynamicParticle object for the particle2 254 auto aParticle2 = new G4DynamicParticle(part << 227 G4DynamicParticle* aParticle2= new G4DynamicParticle( >> 228 G4MuonMinus::MuonMinus(),MuMinusDirection,EmuMinus-Mmuon); 255 aParticleChange.AddSecondary(aParticle2); 229 aParticleChange.AddSecondary(aParticle2); 256 230 257 // Kill the incident positron 231 // Kill the incident positron 258 // 232 // 259 aParticleChange.ProposeEnergy(0.); 233 aParticleChange.ProposeEnergy(0.); 260 aParticleChange.ProposeTrackStatus(fStopAndK 234 aParticleChange.ProposeTrackStatus(fStopAndKill); 261 235 262 return &aParticleChange; 236 return &aParticleChange; 263 } 237 } 264 238 265 //....oooOO0OOooo........oooOO0OOooo........oo 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 266 240 267 void G4AnnihiToMuPair::PrintInfoDefinition() 241 void G4AnnihiToMuPair::PrintInfoDefinition() 268 { 242 { 269 G4String comments = fInfo + " annihilation, << 243 G4String comments ="e+e->mu+mu- annihilation, atomic e- at rest.\n"; 270 G4cout << G4endl << GetProcessName() << ": << 244 G4cout << G4endl << GetProcessName() << ": " << comments 271 G4cout << " threshold at " << fLowEne << 245 << " threshold at " << LowestEnergyLimit/GeV << " GeV" 272 << " good description up to " << fHig << 246 << " good description up to " 273 << G4endl; << 247 << HighestEnergyLimit/TeV << " TeV for all Z." << G4endl; 274 } 248 } 275 249 276 //....oooOO0OOooo........oooOO0OOooo........oo 250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 277 251