Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc (Version 11.3.0) and /processes/electromagnetic/highenergy/src/G4AnnihiToMuPair.cc (Version 10.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 //         ------------ G4AnnihiToMuPair physi     28 //         ------------ G4AnnihiToMuPair physics process ------
 29 //         by H.Burkhardt, S. Kelner and R. Ko     29 //         by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002
 30 // -------------------------------------------     30 // -----------------------------------------------------------------------------
 31 //                                                 31 //
 32 //....oooOO0OOooo........oooOO0OOooo........oo     32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......//
 33 //                                                 33 //
 34 // 27.01.03 : first implementation (hbu)           34 // 27.01.03 : first implementation (hbu)
 35 // 04.02.03 : cosmetic simplifications (mma)       35 // 04.02.03 : cosmetic simplifications (mma)
 36 // 25.10.04 : migrade to new interfaces of Par     36 // 25.10.04 : migrade to new interfaces of ParticleChange (vi)
 37 // 28.02.18 : cross section now including SSS      37 // 28.02.18 : cross section now including SSS threshold factor
 38 //                                                 38 //
 39 //....oooOO0OOooo........oooOO0OOooo........oo     39 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 40                                                    40 
 41 #include "G4AnnihiToMuPair.hh"                     41 #include "G4AnnihiToMuPair.hh"
 42                                                    42 
 43 #include "G4Exp.hh"                            <<  43 #include "G4ios.hh"
 44 #include "G4LossTableManager.hh"               <<  44 #include "Randomize.hh"
 45 #include "G4Material.hh"                       << 
 46 #include "G4MuonMinus.hh"                      << 
 47 #include "G4MuonPlus.hh"                       << 
 48 #include "G4PhysicalConstants.hh"                  45 #include "G4PhysicalConstants.hh"
                                                   >>  46 #include "G4SystemOfUnits.hh"
                                                   >>  47 
 49 #include "G4Positron.hh"                           48 #include "G4Positron.hh"
                                                   >>  49 #include "G4MuonPlus.hh"
                                                   >>  50 #include "G4MuonMinus.hh"
                                                   >>  51 #include "G4Material.hh"
 50 #include "G4Step.hh"                               52 #include "G4Step.hh"
 51 #include "G4SystemOfUnits.hh"                  <<  53 #include "G4LossTableManager.hh"
 52 #include "G4TauMinus.hh"                       << 
 53 #include "G4TauPlus.hh"                        << 
 54 #include "G4ios.hh"                            << 
 55 #include "Randomize.hh"                        << 
 56                                                    54 
 57 //....oooOO0OOooo........oooOO0OOooo........oo     55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 58                                                    56 
                                                   >>  57 using namespace std;
                                                   >>  58 
 59 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4Str     59 G4AnnihiToMuPair::G4AnnihiToMuPair(const G4String& processName,
 60     G4ProcessType type):G4VDiscreteProcess (pr     60     G4ProcessType type):G4VDiscreteProcess (processName, type)
 61 {                                                  61 {
 62   //e+ Energy threshold                            62   //e+ Energy threshold
 63   if(processName == "AnnihiToTauPair") {       <<  63   const G4double Mu_massc2 = G4MuonPlus::MuonPlus()->GetPDGMass();
 64     SetProcessSubType(fAnnihilationToTauTau);  <<  64   LowestEnergyLimit = 2.*Mu_massc2*Mu_massc2/electron_mass_c2 - electron_mass_c2;
 65     part1 = G4TauPlus::TauPlus();              <<  65  
 66     part2 = G4TauMinus::TauMinus();            <<  66   //modele ok up to 1000 TeV due to neglected Z-interference
 67     fInfo = "e+e->tau+tau-";                   <<  67   HighestEnergyLimit = 1000.*TeV;
 68   } else {                                     <<  68  
 69     SetProcessSubType(fAnnihilationToMuMu);    <<  69   CurrentSigma = 0.0;
 70     part1 = G4MuonPlus::MuonPlus();            <<  70   CrossSecFactor = 1.;
 71     part2 = G4MuonMinus::MuonMinus();          <<  71   SetProcessSubType(6);
 72   }                                            <<  72   G4LossTableManager::Instance()->Register(this);
 73   fMass = part1->GetPDGMass();                 << 
 74   fLowEnergyLimit = 2. * fMass * fMass / CLHEP << 
 75                                                << 
 76   // model is ok up to 1000 TeV due to neglect << 
 77   fHighEnergyLimit = 1000. * TeV;              << 
 78                                                << 
 79   fCurrentSigma = 0.0;                         << 
 80   fCrossSecFactor = 1.;                        << 
 81   fManager = G4LossTableManager::Instance();   << 
 82   fManager->Register(this);                    << 
 83 }                                                  73 }
 84                                                    74 
 85 //....oooOO0OOooo........oooOO0OOooo........oo     75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 86                                                    76 
 87 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empt     77 G4AnnihiToMuPair::~G4AnnihiToMuPair() // (empty) destructor
 88 {                                                  78 { 
 89   fManager->DeRegister(this);                  <<  79   G4LossTableManager::Instance()->DeRegister(this);
 90 }                                                  80 }
 91                                                    81 
 92 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 93                                                    83 
 94 G4bool G4AnnihiToMuPair::IsApplicable(const G4     84 G4bool G4AnnihiToMuPair::IsApplicable(const G4ParticleDefinition& particle)
 95 {                                                  85 {
 96   return ( &particle == G4Positron::Positron()     86   return ( &particle == G4Positron::Positron() );
 97 }                                                  87 }
 98                                                    88 
 99 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
100                                                    90 
101 void G4AnnihiToMuPair::BuildPhysicsTable(const     91 void G4AnnihiToMuPair::BuildPhysicsTable(const G4ParticleDefinition&)
                                                   >>  92 // Build cross section and mean free path tables
                                                   >>  93 //here no tables, just calling PrintInfoDefinition
102 {                                                  94 {
                                                   >>  95   CurrentSigma = 0.0;
103   PrintInfoDefinition();                           96   PrintInfoDefinition();
104 }                                                  97 }
105                                                    98 
106 //....oooOO0OOooo........oooOO0OOooo........oo     99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107                                                   100 
108 void G4AnnihiToMuPair::SetCrossSecFactor(G4dou    101 void G4AnnihiToMuPair::SetCrossSecFactor(G4double fac)
109 // Set the factor to artificially increase the    102 // Set the factor to artificially increase the cross section
110 {                                                 103 { 
111   fCrossSecFactor = fac;                       << 104   CrossSecFactor = fac;
112   //G4cout << "The cross section for AnnihiToM << 105   G4cout << "The cross section for AnnihiToMuPair is artificially "
113   //       << "increased by the CrossSecFactor << 106          << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
114 }                                                 107 }
115                                                   108 
116 //....oooOO0OOooo........oooOO0OOooo........oo    109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
117                                                   110 
118 G4double G4AnnihiToMuPair::ComputeCrossSection << 111 G4double G4AnnihiToMuPair::ComputeCrossSectionPerAtom(G4double Epos, G4double Z)
119 // Calculates the microscopic cross section in    112 // Calculates the microscopic cross section in GEANT4 internal units.
120 // It gives a good description from threshold     113 // It gives a good description from threshold to 1000 GeV
121 {                                                 114 {
122   G4double rmuon = CLHEP::elm_coupling/fMass;  << 115   static const G4double Mmuon = G4MuonPlus::MuonPlus()->GetPDGMass();
123   G4double sig0 = CLHEP::pi*rmuon*rmuon/3.;    << 116   static const G4double Rmuon = CLHEP::elm_coupling/Mmuon; //classical particle radius
124   const G4double pial = CLHEP::pi*CLHEP::fine_ << 117   static const G4double Sig0  = CLHEP::pi*Rmuon*Rmuon/3.;  //constant in crossSection
                                                   >> 118   static const G4double pia = CLHEP::pi * CLHEP::fine_structure_const; // pi * alphaQED
125                                                   119 
126   if (e <= fLowEnergyLimit) return 0.0;        << 120   G4double CrossSection = 0.;
                                                   >> 121   if (Epos < LowestEnergyLimit) return CrossSection;
127                                                   122    
128   const G4double xi = fLowEnergyLimit/e;       << 123   G4double xi = LowestEnergyLimit/Epos;
129   const G4double piaxi = pial * std::sqrt(xi); << 124   G4double piaxi = pia * sqrt(xi);
130   G4double sigma = sig0 * xi * (1. + xi*0.5);  << 125   G4double SigmaEl = Sig0 * xi * (1.+xi/2.) * piaxi;
131   //G4cout << "### xi= " << xi << " piaxi=" << << 126   if( Epos>LowestEnergyLimit+1.e-5 ) SigmaEl /= (1.-std::exp( -piaxi/std::sqrt(1-xi) ));
132                                                << 127   CrossSection = SigmaEl*Z; // SigmaEl per electron * number of electrons per atom
133   // argument of the exponent below 0.1 or abo << 128   return CrossSection;
134   // Sigma per electron * number of electrons  << 
135   if(xi <= 1.0 - 100*piaxi*piaxi) {            << 
136     sigma *= std::sqrt(1.0 - xi);              << 
137   }                                            << 
138   else if (xi >= 1.0 - 0.01 * piaxi * piaxi) { << 
139     sigma *= piaxi;                            << 
140   }                                            << 
141   else {                                       << 
142     sigma *= piaxi / (1. - G4Exp(-piaxi / std: << 
143   }                                            << 
144   // G4cout << "### sigma= " << sigma << G4end << 
145   return sigma;                                << 
146 }                                                 129 }
147                                                   130 
148 //....oooOO0OOooo........oooOO0OOooo........oo    131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
149                                                   132 
150 G4double G4AnnihiToMuPair::ComputeCrossSection << 133 G4double G4AnnihiToMuPair::CrossSectionPerVolume(G4double PositronEnergy, 
151                                                << 134              const G4Material* aMaterial)
152 {                                                 135 {
153   return ComputeCrossSectionPerElectron(energy << 136   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
154 }                                              << 137   const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
155                                                   138 
156 //....oooOO0OOooo........oooOO0OOooo........oo << 139   G4double SIGMA = 0.0;
157                                                   140 
158 G4double G4AnnihiToMuPair::CrossSectionPerVolu << 141   for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; ++i )
159              const G4Material* aMaterial)      << 142   {
160 {                                              << 143     G4double AtomicZ = (*theElementVector)[i]->GetZ();
161   return ComputeCrossSectionPerElectron(energy << 144     SIGMA += NbOfAtomsPerVolume[i] *
                                                   >> 145       ComputeCrossSectionPerAtom(PositronEnergy,AtomicZ);
                                                   >> 146   }
                                                   >> 147   return SIGMA;
162 }                                                 148 }
163                                                   149 
164 //....oooOO0OOooo........oooOO0OOooo........oo    150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
165                                                   151 
166 G4double G4AnnihiToMuPair::GetMeanFreePath(con    152 G4double G4AnnihiToMuPair::GetMeanFreePath(const G4Track& aTrack,
167                                            G4d    153                                            G4double, G4ForceCondition*)
                                                   >> 154 
168 // returns the positron mean free path in GEAN    155 // returns the positron mean free path in GEANT4 internal units
                                                   >> 156 
169 {                                                 157 {
170   const G4DynamicParticle* aDynamicPositron =     158   const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle();
171   G4double energy = aDynamicPositron->GetTotal << 159   G4double PositronEnergy = aDynamicPositron->GetKineticEnergy()
172   const G4Material* aMaterial = aTrack.GetMate << 160                                               +electron_mass_c2;
173                                                << 161   G4Material* aMaterial = aTrack.GetMaterial();
174   // cross section before step                 << 162   CurrentSigma = CrossSectionPerVolume(PositronEnergy, aMaterial);
175   fCurrentSigma = CrossSectionPerVolume(energy << 
176                                                   163 
177   // increase the CrossSection by CrossSecFact    164   // increase the CrossSection by CrossSecFactor (default 1)
178   return (fCurrentSigma > 0.0) ? 1.0/(fCurrent << 165   G4double mfp = DBL_MAX;
                                                   >> 166   if(CurrentSigma > DBL_MIN) mfp = 1.0/(CurrentSigma*CrossSecFactor);
                                                   >> 167 
                                                   >> 168   return mfp;
179 }                                                 169 }
180                                                   170 
181 //....oooOO0OOooo........oooOO0OOooo........oo    171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
182                                                   172 
183 G4VParticleChange* G4AnnihiToMuPair::PostStepD    173 G4VParticleChange* G4AnnihiToMuPair::PostStepDoIt(const G4Track& aTrack,
184                                                   174                                                   const G4Step&  aStep)
185 //                                                175 //
186 // generation of e+e- -> mu+mu-                   176 // generation of e+e- -> mu+mu-
187 //                                                177 //
188 {                                                 178 {
                                                   >> 179 
189   aParticleChange.Initialize(aTrack);             180   aParticleChange.Initialize(aTrack);
                                                   >> 181   static const G4double Mele=electron_mass_c2;
                                                   >> 182   static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
190                                                   183 
191   // current Positron energy and direction, re    184   // current Positron energy and direction, return if energy too low
192   const G4DynamicParticle *aDynamicPositron =     185   const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle();
193   const G4double Mele = CLHEP::electron_mass_c << 186   G4double Epos = aDynamicPositron->GetKineticEnergy() + Mele; 
194   G4double Epos = aDynamicPositron->GetTotalEn << 
195   G4double xs = CrossSectionPerVolume(Epos, aT << 
196                                                   187 
197   // test of cross section                        188   // test of cross section
198   if(xs > 0.0 && fCurrentSigma*G4UniformRand() << 189   if(CurrentSigma*G4UniformRand() > 
199     return G4VDiscreteProcess::PostStepDoIt(aT << 190      CrossSectionPerVolume(Epos, aTrack.GetMaterial())) 
                                                   >> 191     {
                                                   >> 192       return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
                                                   >> 193     }
                                                   >> 194 
                                                   >> 195   if (Epos < LowestEnergyLimit) {
                                                   >> 196      return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
200   }                                               197   }
201                                                   198 
202   const G4ThreeVector PosiDirection = aDynamic << 199   G4ParticleMomentum PositronDirection = 
203   G4double xi = fLowEnergyLimit/Epos; // xi is << 200                                        aDynamicPositron->GetMomentumDirection();
204                                       // goes  << 201   G4double xi = LowestEnergyLimit/Epos; // xi is always less than 1,
                                                   >> 202                                         // goes to 0 at high Epos
205                                                   203 
206   // generate cost; probability function 1+cos << 204   // generate cost
207   //                                              205   //
208   G4double cost;                                  206   G4double cost;
209   do { cost = 2.*G4UniformRand()-1.; }            207   do { cost = 2.*G4UniformRand()-1.; }
210   // Loop checking, 07-Aug-2015, Vladimir Ivan    208   // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
211   while (2.*G4UniformRand() > 1.+xi+cost*cost*    209   while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) ); 
212   G4double sint = std::sqrt(1.-cost*cost);     << 210                                                        //1+cost**2 at high Epos
                                                   >> 211   G4double sint = sqrt(1.-cost*cost);
213                                                   212 
214   // generate phi                                 213   // generate phi
215   //                                              214   //
216   G4double phi = 2.*CLHEP::pi*G4UniformRand(); << 215   G4double phi=2.*pi*G4UniformRand();
217                                                   216 
218   G4double Ecm   = std::sqrt(0.5*Mele*(Epos+Me << 217   G4double Ecm   = sqrt(0.5*Mele*(Epos+Mele));
219   G4double Pcm   = std::sqrt(Ecm*Ecm - fMass*f << 218   G4double Pcm   = sqrt(Ecm*Ecm-Mmuon*Mmuon);
220   G4double beta  = std::sqrt((Epos-Mele)/(Epos << 219   G4double beta  = sqrt((Epos-Mele)/(Epos+Mele));
221   G4double gamma = Ecm/Mele;                   << 220   G4double gamma = Ecm/Mele;                    // =sqrt((Epos+Mele)/(2.*Mele));
222   G4double Pt    = Pcm*sint;                      221   G4double Pt    = Pcm*sint;
223                                                   222   
224   // energy and momentum of the muons in the L    223   // energy and momentum of the muons in the Lab
225   //                                              224   //
226   G4double EmuPlus   = gamma*(Ecm + cost*beta* << 225   G4double EmuPlus   = gamma*(     Ecm+cost*beta*Pcm);
227   G4double EmuMinus  = gamma*(Ecm - cost*beta* << 226   G4double EmuMinus  = gamma*(     Ecm-cost*beta*Pcm);
228   G4double PmuPlusZ  = gamma*(beta*Ecm + cost* << 227   G4double PmuPlusZ  = gamma*(beta*Ecm+cost*     Pcm);
229   G4double PmuMinusZ = gamma*(beta*Ecm - cost* << 228   G4double PmuMinusZ = gamma*(beta*Ecm-cost*     Pcm);
230   G4double PmuPlusX  = Pt*std::cos(phi);       << 229   G4double PmuPlusX  = Pt*cos(phi);
231   G4double PmuPlusY  = Pt*std::sin(phi);       << 230   G4double PmuPlusY  = Pt*sin(phi);
232   G4double PmuMinusX =-PmuPlusX;               << 231   G4double PmuMinusX =-Pt*cos(phi);
233   G4double PmuMinusY =-PmuPlusY;               << 232   G4double PmuMinusY =-Pt*sin(phi);
234   // absolute momenta                             233   // absolute momenta
235   G4double PmuPlus  = std::sqrt(Pt*Pt+PmuPlusZ << 234   G4double PmuPlus  = sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
236   G4double PmuMinus = std::sqrt(Pt*Pt+PmuMinus << 235   G4double PmuMinus = sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
237                                                   236 
238   // mu+ mu- directions for Positron in z-dire    237   // mu+ mu- directions for Positron in z-direction
239   //                                              238   //
240   G4ThreeVector MuPlusDirection(PmuPlusX / Pmu << 239   G4ThreeVector
241   G4ThreeVector MuMinusDirection(PmuMinusX / P << 240     MuPlusDirection ( PmuPlusX/PmuPlus, PmuPlusY/PmuPlus,  PmuPlusZ/PmuPlus  );
                                                   >> 241   G4ThreeVector
                                                   >> 242     MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
242                                                   243 
243   // rotate to actual Positron direction          244   // rotate to actual Positron direction
244   //                                              245   //
245   MuPlusDirection.rotateUz(PosiDirection);     << 246   MuPlusDirection.rotateUz(PositronDirection);
246   MuMinusDirection.rotateUz(PosiDirection);    << 247   MuMinusDirection.rotateUz(PositronDirection);
247                                                   248 
248   aParticleChange.SetNumberOfSecondaries(2);      249   aParticleChange.SetNumberOfSecondaries(2);
249                                                << 
250   // create G4DynamicParticle object for the p    250   // create G4DynamicParticle object for the particle1
251   auto aParticle1 = new G4DynamicParticle(part << 251   G4DynamicParticle* aParticle1= new G4DynamicParticle(
                                                   >> 252                          G4MuonPlus::MuonPlus(),MuPlusDirection,EmuPlus-Mmuon);
252   aParticleChange.AddSecondary(aParticle1);       253   aParticleChange.AddSecondary(aParticle1);
253   // create G4DynamicParticle object for the p    254   // create G4DynamicParticle object for the particle2
254   auto aParticle2 = new G4DynamicParticle(part << 255   G4DynamicParticle* aParticle2= new G4DynamicParticle(
                                                   >> 256                      G4MuonMinus::MuonMinus(),MuMinusDirection,EmuMinus-Mmuon);
255   aParticleChange.AddSecondary(aParticle2);       257   aParticleChange.AddSecondary(aParticle2);
256                                                   258 
257   // Kill the incident positron                   259   // Kill the incident positron 
258   //                                              260   //
259   aParticleChange.ProposeEnergy(0.);              261   aParticleChange.ProposeEnergy(0.); 
260   aParticleChange.ProposeTrackStatus(fStopAndK    262   aParticleChange.ProposeTrackStatus(fStopAndKill);
261                                                   263 
262   return &aParticleChange;                        264   return &aParticleChange;
263 }                                                 265 }
264                                                   266 
265 //....oooOO0OOooo........oooOO0OOooo........oo    267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
266                                                   268 
267 void G4AnnihiToMuPair::PrintInfoDefinition()      269 void G4AnnihiToMuPair::PrintInfoDefinition()
268 {                                                 270 {
269   G4String comments = fInfo + " annihilation,  << 271   G4String comments ="e+e->mu+mu- annihilation, atomic e- at rest, SubType=.";
270   G4cout << G4endl << GetProcessName() << ":   << 272   G4cout << G4endl << GetProcessName() << ":  " << comments 
271   G4cout << "        threshold at " << fLowEne << 273    << GetProcessSubType() << G4endl;
272          << " good description up to " << fHig << 274   G4cout << "        threshold at " << LowestEnergyLimit/GeV << " GeV"
273          << G4endl;                            << 275          << " good description up to "
                                                   >> 276          << HighestEnergyLimit/TeV << " TeV for all Z." << G4endl;
274 }                                                 277 }
275                                                   278 
276 //....oooOO0OOooo........oooOO0OOooo........oo    279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
277                                                   280