Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4DNAMolecularMaterial.cc 65022 2012-11-12 16:43:12Z gcosmo $ 26 // 27 // 27 // Author: Mathieu Karamitros << 28 // << 29 << 30 #include "G4DNAMolecularMaterial.hh" 28 #include "G4DNAMolecularMaterial.hh" 31 << 32 #include "G4AutoLock.hh" << 33 #include "G4Material.hh" 29 #include "G4Material.hh" 34 #include "G4MoleculeTable.hh" << 35 #include "G4StateManager.hh" << 36 #include "G4Threading.hh" << 37 << 38 #include <utility> 30 #include <utility> >> 31 #include "G4StateManager.hh" 39 32 40 using namespace std; 33 using namespace std; 41 34 42 G4DNAMolecularMaterial* G4DNAMolecularMaterial << 43 35 44 namespace << 36 bool CompareMaterial::operator() (const G4Material* mat1, const G4Material* mat2) const 45 { 37 { 46 G4Mutex aMutex = G4MUTEX_INITIALIZER; << 38 if(mat1==0 && mat2==0) return false; //(mat1 == mat2) 47 } << 39 if(mat1==0) return true; // mat1 < mat2 >> 40 if(mat2==0) return false; //mat2 < mat1 48 41 49 //-------------------------------------------- << 42 const G4Material* baseMat1 = mat1->GetBaseMaterial(); >> 43 const G4Material* baseMat2 = mat2->GetBaseMaterial(); 50 44 51 bool CompareMaterial::operator()(const G4Mater << 45 if((baseMat1 || baseMat2) == 0) // None of the materials derives from a base material 52 const G4Mater << 46 { 53 { << 47 return mat1 < mat2; 54 if (mat1 == nullptr && mat2 == nullptr) retu << 48 } 55 if (mat1 == nullptr) return true; // mat1 < << 49 else if(baseMat1 && baseMat2) // Both materials derive from a base material 56 if (mat2 == nullptr) return false; //mat2 < << 50 { 57 << 51 return baseMat1 < baseMat2; 58 const G4Material* baseMat1 = mat1->GetBaseMa << 52 } 59 const G4Material* baseMat2 = mat2->GetBaseMa << 60 << 61 if ((baseMat1 == nullptr) && (baseMat2 == nu << 62 // None of the materials derives from a ba << 63 return mat1 < mat2; << 64 } << 65 if ((baseMat1 != nullptr) && (baseMat2 != nu << 66 // Both materials derive from a base mater << 67 return baseMat1 < baseMat2; << 68 } << 69 53 70 if ((baseMat1 != nullptr) && (baseMat2 == nu << 54 else if(baseMat1 && (baseMat2 == 0)) // Only the material 1 derives from a base material 71 // Only the material 1 derives from a base << 55 { 72 return baseMat1 < mat2; << 56 return baseMat1 < mat2; 73 } << 57 } 74 // only case baseMat1==nullptr && baseMat2 r << 58 // only case baseMat1==0 && baseMat2 remains 75 return mat1 < baseMat2; << 59 return mat1 < baseMat2; 76 } 60 } 77 61 78 //-------------------------------------------- << 62 G4DNAMolecularMaterial* G4DNAMolecularMaterial::fInstance(0); 79 63 80 G4DNAMolecularMaterial* G4DNAMolecularMaterial 64 G4DNAMolecularMaterial* G4DNAMolecularMaterial::Instance() 81 { 65 { 82 if (fInstance == nullptr) fInstance = new G4 << 66 if(! fInstance) new G4DNAMolecularMaterial(); 83 return fInstance; << 67 return fInstance; 84 } 68 } 85 69 86 //-------------------------------------------- << 70 void G4DNAMolecularMaterial::DeleteInstance() 87 << 88 void G4DNAMolecularMaterial::Create() << 89 { 71 { 90 fpCompFractionTable = nullptr; << 72 delete fInstance; 91 fpCompDensityTable = nullptr; << 73 fInstance = 0; 92 fpCompNumMolPerVolTable = nullptr; << 93 fIsInitialized = false; << 94 fNMaterials = 0; << 95 } 74 } 96 75 97 //-------------------------------------------- << 76 void G4DNAMolecularMaterial::Create() 98 << 99 void G4DNAMolecularMaterial::Clear() << 100 { 77 { 101 G4AutoLock l2(&aMutex); << 78 fpCompFractionTable = 0; 102 if (fpCompFractionTable != nullptr){ << 79 fpCompDensityTable = 0; 103 fpCompFractionTable->clear(); << 80 fpCompNumMolPerVolTable = 0; 104 delete fpCompFractionTable; << 81 fIsInitialized = false; 105 fpCompFractionTable = nullptr; << 82 fInstance = this; 106 } << 107 if (fpCompDensityTable != nullptr){ << 108 fpCompDensityTable->clear(); << 109 delete fpCompDensityTable; << 110 fpCompDensityTable = nullptr; << 111 } << 112 if (fpCompNumMolPerVolTable != nullptr){ << 113 fpCompNumMolPerVolTable->clear(); << 114 delete fpCompNumMolPerVolTable; << 115 fpCompNumMolPerVolTable = nullptr; << 116 } << 117 << 118 std::map<const G4Material*, std::vector<G4do << 119 << 120 for (it = fAskedDensityTable.begin(); it != << 121 if (it->second != nullptr){ << 122 delete it->second; << 123 it->second = nullptr; << 124 } << 125 } << 126 << 127 for (it = fAskedNumPerVolTable.begin(); it ! << 128 if (it->second != nullptr){ << 129 delete it->second; << 130 it->second = nullptr; << 131 } << 132 } << 133 l2.unlock(); << 134 } 83 } 135 84 136 << 85 G4DNAMolecularMaterial::G4DNAMolecularMaterial() :G4VStateDependent() 137 //-------------------------------------------- << 138 << 139 G4DNAMolecularMaterial::G4DNAMolecularMaterial << 140 { 86 { 141 Create(); << 87 Create(); >> 88 fInstance = this; 142 } 89 } 143 90 144 //-------------------------------------------- << 145 << 146 G4bool G4DNAMolecularMaterial::Notify(G4Applic 91 G4bool G4DNAMolecularMaterial::Notify(G4ApplicationState requestedState) 147 { 92 { 148 if (requestedState == G4State_Idle && G4Stat << 93 if(requestedState == G4State_Idle) Initialize(); 149 ->GetPreviousState() == G4State_PreInit) << 94 return true; 150 Initialize(); << 151 } << 152 return true; << 153 } 95 } 154 96 155 //-------------------------------------------- << 97 G4DNAMolecularMaterial::G4DNAMolecularMaterial(const G4DNAMolecularMaterial& /*rhs*/) : G4VStateDependent() 156 << 157 G4DNAMolecularMaterial::~G4DNAMolecularMateria << 158 { 98 { 159 Clear(); << 99 Create(); 160 } 100 } 161 101 162 //-------------------------------------------- << 102 G4DNAMolecularMaterial& G4DNAMolecularMaterial::operator=(const G4DNAMolecularMaterial& rhs) 163 << 164 void G4DNAMolecularMaterial::Initialize() << 165 { 103 { 166 if (fIsInitialized){ << 104 if(this == &rhs) return *this; 167 return; << 105 Create(); 168 } << 106 return *this; 169 << 170 const G4MaterialTable* materialTable = G4Mat << 171 << 172 fNMaterials = materialTable->size(); << 173 // This is to prevent segment fault if mater << 174 // Actually this creation should not be done << 175 << 176 G4AutoLock l1(&aMutex); << 177 if (fpCompFractionTable == nullptr){ << 178 fpCompFractionTable = new vector<Component << 179 } << 180 << 181 G4Material* mat(nullptr); << 182 << 183 for (std::size_t i = 0; i < fNMaterials; ++i << 184 mat = materialTable->at(i); << 185 SearchMolecularMaterial(mat, mat, 1); << 186 } << 187 << 188 InitializeDensity(); << 189 InitializeNumMolPerVol(); << 190 l1.unlock(); << 191 << 192 fIsInitialized = true; << 193 } 107 } 194 108 195 //-------------------------------------------- << 109 G4DNAMolecularMaterial::~G4DNAMolecularMaterial() 196 << 197 void G4DNAMolecularMaterial::InitializeDensity << 198 { << 199 if (fpCompFractionTable != nullptr){ << 200 const G4MaterialTable* materialTable = G4M << 201 fpCompDensityTable = new vector<ComponentM << 202 G4Material::GetMaterialTable()->size() << 203 << 204 G4Material* parentMat; << 205 const G4Material* compMat(nullptr); << 206 G4double massFraction = -1; << 207 G4double parentDensity = -1; << 208 << 209 for (std::size_t i = 0; i < fNMaterials; + << 210 parentMat = materialTable->at(i); << 211 ComponentMap& massFractionComp = (*fpCom << 212 ComponentMap& densityComp = (*fpCompDens << 213 << 214 parentDensity = parentMat->GetDensity(); << 215 << 216 for (const auto& it : massFractionComp){ << 217 compMat = it.first; << 218 massFraction = it.second; << 219 densityComp[compMat] = massFraction * << 220 compMat = nullptr; << 221 massFraction = -1; << 222 } << 223 } << 224 } << 225 else{ << 226 G4ExceptionDescription exceptionDescriptio << 227 exceptionDescription << "The pointer fpCom << 228 << G4endl; << 229 G4Exception("G4DNAMolecularMaterial::Initi << 230 "G4DNAMolecularMaterial001", F << 231 exceptionDescription); << 232 } << 233 } << 234 << 235 //-------------------------------------------- << 236 << 237 void G4DNAMolecularMaterial::InitializeNumMolP << 238 { 110 { 239 if (fpCompDensityTable != nullptr){ << 111 if(fpCompFractionTable) 240 fpCompNumMolPerVolTable = new vector<Compo << 112 { >> 113 fpCompFractionTable->clear(); >> 114 delete fpCompFractionTable; >> 115 fpCompFractionTable = 0; >> 116 } >> 117 if(fpCompDensityTable) >> 118 { >> 119 fpCompDensityTable->clear(); >> 120 delete fpCompDensityTable; >> 121 fpCompDensityTable = 0; >> 122 } >> 123 if(fpCompNumMolPerVolTable) >> 124 { >> 125 fpCompNumMolPerVolTable->clear(); >> 126 delete fpCompNumMolPerVolTable; >> 127 fpCompNumMolPerVolTable = 0; >> 128 } 241 129 242 const G4Material* compMat(nullptr); << 130 std::map<const G4Material*,std::vector<double>*,CompareMaterial>::iterator it; 243 131 244 for (std::size_t i = 0; i < fNMaterials; + << 132 for(it= fAskedDensityTable.begin() ; it != fAskedDensityTable.end() ;it++) 245 ComponentMap& massFractionComp = (*fpCom << 133 { 246 ComponentMap& densityComp = (*fpCompDens << 134 if(it->second) 247 ComponentMap& numMolPerVol = (*fpCompNum << 135 { >> 136 delete it->second; >> 137 it->second = 0; >> 138 } >> 139 } 248 140 249 for (auto& it : massFractionComp){ << 141 for(it= fAskedNumPerVolTable.begin() ; it != fAskedNumPerVolTable.end() ;it++) 250 compMat = it.first; << 142 { 251 numMolPerVol[compMat] = densityComp[co << 143 if(it->second) 252 / compMat->GetMassOfMolecule(); << 144 { 253 compMat = nullptr; << 145 delete it->second; 254 } << 146 it->second = 0; >> 147 } 255 } 148 } 256 } << 257 else{ << 258 G4ExceptionDescription exceptionDescriptio << 259 exceptionDescription << "The pointer fpCom << 260 << G4endl; << 261 G4Exception("G4DNAMolecularMaterial::Initi << 262 "G4DNAMolecularMaterial002", F << 263 exceptionDescription); << 264 } << 265 } 149 } 266 150 267 //-------------------------------------------- << 151 void G4DNAMolecularMaterial::RecordMolecularMaterial(G4Material* parentMaterial, G4Material* molecularMaterial, G4double fraction) 268 << 269 void << 270 G4DNAMolecularMaterial::RecordMolecularMateria << 271 << 272 << 273 { 152 { 274 ComponentMap& matComponent = << 153 ComponentMap& matComponent = (*fpCompFractionTable)[parentMaterial->GetIndex()]; 275 (*fpCompFractionTable)[parentMaterial->G << 276 154 277 if (matComponent.empty()){ << 155 if(matComponent.empty()) 278 matComponent[molecularMaterial] = fraction << 156 { 279 return; << 157 matComponent[molecularMaterial] = fraction; 280 } << 158 return; >> 159 } 281 160 282 auto it = matComponent.find(molecularMateria << 161 ComponentMap::iterator it = matComponent.find(molecularMaterial); 283 162 284 if (it == matComponent.cend()){ << 163 if(it == matComponent.end()) 285 matComponent[molecularMaterial] = fraction << 164 { 286 } << 165 matComponent[molecularMaterial] = fraction; 287 else{ << 166 } 288 matComponent[molecularMaterial] = it->seco << 167 else 289 // handle "base material" << 168 { 290 } << 169 matComponent[molecularMaterial] = it->second + fraction; >> 170 } 291 } 171 } 292 172 293 //-------------------------------------------- << 173 void G4DNAMolecularMaterial::SearchMolecularMaterial(G4Material* parentMaterial, G4Material* material, double currentFraction) 294 << 295 void G4DNAMolecularMaterial::SearchMolecularMa << 296 << 297 << 298 { 174 { 299 if (material->GetMassOfMolecule() != 0.0){ / << 175 if(material->GetMassOfMolecule() != 0.0) 300 RecordMolecularMaterial(parentMaterial, ma << 176 { 301 return; << 177 RecordMolecularMaterial(parentMaterial,material,currentFraction); 302 } << 178 return; >> 179 } 303 180 304 G4Material* compMat(nullptr); << 181 G4Material* compMat(0); 305 G4double fraction = -1.; << 182 G4double fraction = -1; 306 std::map<G4Material*, G4double> matComponent << 183 std::map<G4Material*,G4double> matComponent = material->GetMatComponents(); 307 auto it = matComponent.cbegin(); << 184 std::map<G4Material*,G4double>::iterator it = matComponent.begin(); 308 185 309 for (; it != matComponent.cend(); ++it){ << 186 for( ; it!=matComponent.end() ; it++) 310 compMat = it->first; << 187 { 311 fraction = it->second; << 188 compMat = it->first; 312 if (compMat->GetMassOfMolecule() == 0.0){ << 189 fraction = it->second; 313 SearchMolecularMaterial(parentMaterial, << 190 if(compMat->GetMassOfMolecule() == 0.0) 314 currentFraction << 191 { 315 } << 192 SearchMolecularMaterial(parentMaterial,compMat,currentFraction*fraction); 316 else{ // is a molecular material << 193 } 317 RecordMolecularMaterial(parentMaterial, << 194 else 318 currentFraction << 195 { >> 196 RecordMolecularMaterial(parentMaterial,compMat,currentFraction*fraction); >> 197 } >> 198 >> 199 compMat = 0; >> 200 fraction = -1; 319 } 201 } 320 } << 321 } 202 } 322 203 323 //-------------------------------------------- << 204 void G4DNAMolecularMaterial::InitializeDensity() 324 << 325 const std::vector<G4double>* << 326 G4DNAMolecularMaterial:: << 327 GetDensityTableFor(const G4Material* lookForMa << 328 { 205 { 329 if (fpCompDensityTable == nullptr){ << 206 if(fpCompFractionTable) 330 if (fIsInitialized){ << 207 { 331 G4ExceptionDescription exceptionDescript << 208 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 332 exceptionDescription << 209 fpCompDensityTable = new vector<ComponentMap>(G4Material::GetMaterialTable()->size()); 333 << "The pointer fpCompDensityTable i << 210 334 "singleton of G4DNAMolecularMaterial << 211 G4Material* parentMat; 335 << "has already been initialized." < << 212 const G4Material* compMat(0); 336 G4Exception("G4DNAMolecularMaterial::Get << 213 double massFraction = -1; 337 "G4DNAMolecularMaterial003", << 214 double parentDensity = -1; 338 exceptionDescription); << 215 >> 216 for(int i = 0 ; i < int(materialTable->size()) ; i++) >> 217 { >> 218 parentMat = materialTable->at(i); >> 219 ComponentMap& massFractionComp = (*fpCompFractionTable)[i]; >> 220 ComponentMap& densityComp = (*fpCompDensityTable)[i]; >> 221 >> 222 parentDensity = parentMat->GetDensity(); >> 223 >> 224 for(ComponentMap::iterator it = massFractionComp.begin() ; it!=massFractionComp.end() ; it++) >> 225 { >> 226 compMat = it->first; >> 227 massFraction = it->second; >> 228 densityComp[compMat] = massFraction*parentDensity; >> 229 compMat = 0; >> 230 massFraction = -1; >> 231 } >> 232 } >> 233 } >> 234 else >> 235 { >> 236 G4ExceptionDescription exceptionDescription; >> 237 exceptionDescription << "The pointer fpCompFractionTable is not initialized" << G4endl; >> 238 G4Exception("G4DNAMolecularMaterial::InitializeDensity","G4DNAMolecularMaterial001", >> 239 FatalException,exceptionDescription); 339 } 240 } >> 241 } 340 242 341 if (G4StateManager::GetStateManager()->Get << 243 void G4DNAMolecularMaterial::InitializeNumMolPerVol() 342 const_cast<G4DNAMolecularMaterial*>(this << 244 { 343 } << 245 if(fpCompDensityTable) 344 else{ << 246 { 345 G4ExceptionDescription exceptionDescript << 247 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 346 exceptionDescription << 248 fpCompNumMolPerVolTable = new vector<ComponentMap>(G4Material::GetMaterialTable()->size()); 347 << "The geant4 application is at the << 249 348 "G4State_Init." << 250 const G4Material* compMat(0); 349 << G4endl; << 251 350 G4Exception("G4DNAMolecularMaterial::Get << 252 for(int i = 0 ; i < int(materialTable->size()) ; i++) 351 "G4DNAMolecularMaterial_WRON << 253 { 352 FatalException, exceptionDes << 254 ComponentMap& massFractionComp = (*fpCompFractionTable)[i]; >> 255 ComponentMap& densityComp = (*fpCompDensityTable)[i]; >> 256 ComponentMap& numMolPerVol = (*fpCompNumMolPerVolTable)[i]; >> 257 >> 258 for(ComponentMap::iterator it = massFractionComp.begin() ; it!=massFractionComp.end() ; it++) >> 259 { >> 260 compMat = it->first; >> 261 numMolPerVol[compMat] = densityComp[compMat]/ compMat->GetMassOfMolecule(); >> 262 compMat = 0; >> 263 } >> 264 } >> 265 } >> 266 else >> 267 { >> 268 G4ExceptionDescription exceptionDescription; >> 269 exceptionDescription << "The pointer fpCompDensityTable is not initialized" << G4endl; >> 270 G4Exception("G4DNAMolecularMaterial::InitializeNumMolPerVol","G4DNAMolecularMaterial002", >> 271 FatalException,exceptionDescription); 353 } 272 } 354 } << 273 } 355 << 356 auto it_askedDensityTable = fAskedDensityTab << 357 << 358 if (it_askedDensityTable != fAskedDensityTab << 359 return it_askedDensityTable->second; << 360 } << 361 << 362 const G4MaterialTable* materialTable = G4Mat << 363 274 364 auto output = new std::vector<G4double>(mat << 275 void G4DNAMolecularMaterial::Initialize() >> 276 { >> 277 if(fIsInitialized) return; 365 278 366 ComponentMap::const_iterator it; << 279 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 367 280 368 G4bool materialWasNotFound = true; << 281 if(fpCompFractionTable==0) >> 282 { >> 283 fpCompFractionTable = new vector<ComponentMap>(materialTable->size()); >> 284 } 369 285 370 for (std::size_t i = 0; i < fNMaterials; ++i << 286 G4Material* mat(0); 371 ComponentMap& densityTable = (*fpCompDensi << 372 287 373 it = densityTable.find(lookForMaterial); << 288 for(int i = 0 ; i < int(materialTable->size()) ; i++) >> 289 { >> 290 mat = materialTable->at(i); >> 291 SearchMolecularMaterial(mat,mat,1); 374 292 375 if (it == densityTable.cend()){ << 293 mat = 0; 376 (*output)[i] = 0.0; << 377 } 294 } 378 else{ << 379 materialWasNotFound = false; << 380 (*output)[i] = it->second; << 381 } << 382 } << 383 << 384 if (materialWasNotFound){ << 385 PrintNotAMolecularMaterial("G4DNAMolecular << 386 lookForMaterial << 387 } << 388 295 389 fAskedDensityTable.insert(make_pair(lookForM << 296 InitializeDensity(); >> 297 InitializeNumMolPerVol(); 390 298 391 return output; << 299 fIsInitialized = true; 392 } 300 } 393 301 394 //-------------------------------------------- << 302 const std::vector<double>* G4DNAMolecularMaterial::GetDensityTableFor(const G4Material* lookForMaterial) const 395 << 396 const std::vector<G4double>* G4DNAMolecularMat << 397 const G4Material* lookForMaterial) const << 398 { 303 { 399 if(lookForMaterial==nullptr) return nullptr; << 304 if(!fpCompDensityTable) >> 305 { >> 306 if(fIsInitialized) >> 307 { >> 308 G4ExceptionDescription exceptionDescription; >> 309 exceptionDescription << "The pointer fpCompDensityTable is not initialized will the singleton of G4DNAMolecularMaterial " >> 310 << "has already been initialized."<< G4endl; >> 311 G4Exception("G4DNAMolecularMaterial::GetDensityTableFor","G4DNAMolecularMaterial003", >> 312 FatalException,exceptionDescription); >> 313 } 400 314 401 if (fpCompNumMolPerVolTable == nullptr){ << 315 if(G4StateManager::GetStateManager()->GetCurrentState() == G4State_Idle) 402 if (fIsInitialized){ << 316 const_cast<G4DNAMolecularMaterial*>(this)->Initialize(); 403 G4ExceptionDescription exceptionDescript << 317 else 404 exceptionDescription << 318 { 405 << "The pointer fpCompNumMolPerVolTa << 319 G4ExceptionDescription exceptionDescription; 406 "the singleton of G4DNAMolecularMate << 320 exceptionDescription << "The geant4 application is at the wrong state. State must be: G4State_Idle."<< G4endl; 407 << "has already been initialized." < << 321 G4Exception("G4DNAMolecularMaterial::GetDensityTableFor", 408 G4Exception("G4DNAMolecularMaterial::Get << 322 "G4DNAMolecularMaterial_WRONG_STATE_APPLICATION",FatalException,exceptionDescription); 409 "G4DNAMolecularMaterial005", << 323 } 410 exceptionDescription); << 411 } 324 } 412 325 413 if (G4StateManager::GetStateManager()->Get << 326 std::map<const G4Material*,std::vector<double>*,CompareMaterial>::const_iterator it_askedDensityTable = fAskedDensityTable.find(lookForMaterial); 414 const_cast<G4DNAMolecularMaterial*>(this << 327 if(it_askedDensityTable != fAskedDensityTable.end()) >> 328 { >> 329 return it_askedDensityTable->second; 415 } 330 } 416 else{ << 417 G4ExceptionDescription exceptionDescript << 418 exceptionDescription << 419 << "The geant4 application is at the << 420 "G4State_Init." << 421 << G4endl; << 422 G4Exception("G4DNAMolecularMaterial::Get << 423 "G4DNAMolecularMaterial_WRON << 424 FatalException, exceptionDes << 425 } << 426 } << 427 << 428 auto it_askedNumMolPerVolTable = fAskedNumPe << 429 if (it_askedNumMolPerVolTable != fAskedNumPe << 430 return it_askedNumMolPerVolTable->second; << 431 } << 432 331 433 const G4MaterialTable* materialTable = G4Mat << 332 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 434 333 435 auto output = new std::vector<G4double>(mat << 334 std::vector<double>* output = new std::vector<double>(materialTable->size()); 436 335 437 ComponentMap::const_iterator it; << 336 ComponentMap::const_iterator it; 438 337 439 G4bool materialWasNotFound = true; << 338 G4bool materialWasNotFound = true; 440 339 441 for (std::size_t i = 0; i < fNMaterials; ++i << 340 for(int i = 0 ; i < int(materialTable->size()) ; i++) 442 ComponentMap& densityTable = (*fpCompNumMo << 341 { >> 342 ComponentMap& densityTable = (*fpCompDensityTable)[i]; 443 343 444 it = densityTable.find(lookForMaterial); << 344 it = densityTable.find(lookForMaterial); 445 345 446 if (it == densityTable.cend()){ << 346 if(it==densityTable.end()) 447 (*output)[i] = 0.0; << 347 { >> 348 (*output)[i] = 0.0; >> 349 } >> 350 else >> 351 { >> 352 materialWasNotFound = false; >> 353 (*output)[i] = it->second; >> 354 } 448 } 355 } 449 else{ << 450 materialWasNotFound = false; << 451 (*output)[i] = it->second; << 452 } << 453 } << 454 356 455 if (materialWasNotFound){ << 357 if(materialWasNotFound) 456 PrintNotAMolecularMaterial( << 358 { 457 "G4DNAMolecularMaterial::GetNumMolPerV << 359 PrintNotAMolecularMaterial("G4DNAMolecularMaterial::GetDensityTableFor",lookForMaterial); 458 } << 360 } 459 361 460 fAskedNumPerVolTable.insert(make_pair(lookFo << 362 fAskedDensityTable.insert(make_pair(lookForMaterial, output)); 461 363 462 return output; << 364 return output; 463 } 365 } 464 366 465 //-------------------------------------------- << 367 const std::vector<double>* G4DNAMolecularMaterial::GetNumMolPerVolTableFor(const G4Material* lookForMaterial) const 466 << 467 void G4DNAMolecularMaterial:: << 468 PrintNotAMolecularMaterial(const char* methodN << 469 const G4Material* l << 470 { 368 { 471 auto it = fWarningPrinted.find(lookForMateri << 369 if(!fpCompNumMolPerVolTable) >> 370 { >> 371 if(fIsInitialized) >> 372 { >> 373 G4ExceptionDescription exceptionDescription; >> 374 exceptionDescription << "The pointer fpCompNumMolPerVolTable is not initialized will the singleton of G4DNAMolecularMaterial " >> 375 << "has already been initialized."<< G4endl; >> 376 G4Exception("G4DNAMolecularMaterial::GetNumMolPerVolTableFor","G4DNAMolecularMaterial005", >> 377 FatalException,exceptionDescription); >> 378 } 472 379 473 if (it == fWarningPrinted.cend()){ << 380 if(G4StateManager::GetStateManager()->GetCurrentState() == G4State_Idle) 474 G4ExceptionDescription exceptionDescriptio << 381 { 475 exceptionDescription << "The material " << << 382 const_cast<G4DNAMolecularMaterial*>(this)->Initialize(); 476 << " is not defined a << 383 } 477 << G4endl << 384 else 478 << "Meaning: The elem << 385 { 479 "material using atom << 386 G4ExceptionDescription exceptionDescription; 480 "(cf. G4Material)" << 387 exceptionDescription << "The geant4 application is at the wrong state. State must be : G4State_Idle."<< G4endl; 481 << G4endl << 388 G4Exception("G4DNAMolecularMaterial::GetNumMolPerVolTableFor", 482 << "If you want to use DNA processes on li << 389 "G4DNAMolecularMaterial_WRONG_STATE_APPLICATION",FatalException,exceptionDescription); 483 "the NistManager to create the water mater << 390 } 484 << G4endl << 391 } 485 << "Since this message is displayed, it me << 486 "be called." << 487 << "Please note that this message will onl << 488 "using other methods of G4DNAMolecularMate << 489 << G4endl; << 490 392 491 G4Exception(methodName, "MATERIAL_NOT_DEFI << 393 std::map<const G4Material*,std::vector<double>*,CompareMaterial>::const_iterator it_askedNumMolPerVolTable = fAskedNumPerVolTable.find(lookForMaterial); 492 exceptionDescription); << 394 if(it_askedNumMolPerVolTable != fAskedNumPerVolTable.end()) 493 fWarningPrinted[lookForMaterial] = true; << 395 { 494 } << 396 return it_askedNumMolPerVolTable->second; 495 } << 397 } 496 398 497 //-------------------------------------------- << 399 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); 498 400 499 G4MolecularConfiguration* << 401 std::vector<double>* output = new std::vector<double>(materialTable->size()); 500 G4DNAMolecularMaterial:: << 501 GetMolecularConfiguration(const G4Material* ma << 502 { << 503 auto material_id = (G4int)material->GetInde << 504 auto it = fMaterialToMolecularConf.find(mate << 505 if(it == fMaterialToMolecularConf.cend()) re << 506 return it->second; << 507 } << 508 402 509 //-------------------------------------------- << 403 ComponentMap::const_iterator it; 510 404 511 void << 405 G4bool materialWasNotFound = true; 512 G4DNAMolecularMaterial:: << 513 SetMolecularConfiguration(const G4Material* ma << 514 G4MolecularConfigura << 515 { << 516 assert(material != nullptr); << 517 auto material_id = (G4int)material->GetInde << 518 fMaterialToMolecularConf[material_id] = molC << 519 } << 520 406 521 //-------------------------------------------- << 407 for(int i = 0 ; i < int(materialTable->size()) ; i++) >> 408 { >> 409 ComponentMap& densityTable = (*fpCompNumMolPerVolTable)[i]; 522 410 523 void << 411 it = densityTable.find(lookForMaterial); 524 G4DNAMolecularMaterial::SetMolecularConfigurat << 525 << 526 { << 527 assert(material != nullptr); << 528 auto material_id = (G4int)material->GetInde << 529 fMaterialToMolecularConf[material_id] = << 530 G4MoleculeTable::Instance()->GetConfigurat << 531 } << 532 412 533 //-------------------------------------------- << 413 if(it==densityTable.end()) >> 414 { >> 415 (*output)[i] = 0.0; >> 416 } >> 417 else >> 418 { >> 419 materialWasNotFound = false; >> 420 (*output)[i] = it->second; >> 421 } >> 422 } 534 423 535 void << 424 if(materialWasNotFound) 536 G4DNAMolecularMaterial::SetMolecularConfigurat << 425 { 537 << 426 PrintNotAMolecularMaterial("G4DNAMolecularMaterial::GetNumMolPerVolTableFor",lookForMaterial); 538 { << 427 } 539 G4Material* material = G4Material::GetMateri << 540 428 541 if(material == nullptr){ << 429 fAskedNumPerVolTable.insert(make_pair(lookForMaterial, output)); 542 G4cout<< "Material " << materialName << 543 << " was not found and therefore won << 544 << molUserID << G4endl; << 545 return; << 546 } << 547 SetMolecularConfiguration(material, molUserI << 548 } << 549 430 550 //-------------------------------------------- << 431 return output; >> 432 } 551 433 552 G4double << 434 void G4DNAMolecularMaterial::PrintNotAMolecularMaterial(const char* methodName, const G4Material* lookForMaterial) const 553 G4DNAMolecularMaterial:: << 554 GetNumMoleculePerVolumeUnitForMaterial(const G << 555 { 435 { 556 G4Exception("G4DNAMolecularMaterial::GetNumM << 436 std::map<const G4Material*,bool,CompareMaterial>::iterator it = fWarningPrinted.find(lookForMaterial); 557 "DEPRECATED", << 558 FatalException,"Use standard met << 559 " at the run initialization to r << 560 " during stepping. The method is << 561 return 0.; << 562 } << 563 437 564 //-------------------------------------------- << 438 if(it == fWarningPrinted.end()) >> 439 { >> 440 G4ExceptionDescription exceptionDescription; >> 441 exceptionDescription >> 442 << "The material " << lookForMaterial->GetName() >> 443 << " is not defined as a molecular material."<< G4endl >> 444 << "Meaning: The elements should be added to the material using atom count rather than mass fraction (cf. G4Material)" >> 445 << G4endl >> 446 << "If you want to use DNA processes on liquid water, you should better use the NistManager to create the water material." >> 447 << G4endl >> 448 << "Since this message is displayed, it means that the DNA models will not be called." >> 449 << "Please note that this message will only appear once even if you are using other methods of G4DNAMolecularMaterial." >> 450 << G4endl; 565 451 566 G4double << 452 G4Exception(methodName,"MATERIAL_NOT_DEFINE_USING_ATOM_COUNT",JustWarning,exceptionDescription); 567 G4DNAMolecularMaterial:: << 453 fWarningPrinted[lookForMaterial] = true; 568 GetNumMolPerVolForComponentInComposite(const G << 454 } 569 const G << 570 G4doubl << 571 { << 572 G4Exception("G4DNAMolecularMaterial::GetNumM << 573 "DEPRECATED", << 574 FatalException,"Use standard me << 575 " at the run initialization to r << 576 " during stepping. The method is << 577 return 0.; << 578 } 455 } 579 456