Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/dna/models/src/G4VLEPTSModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/dna/models/src/G4VLEPTSModel.cc (Version 11.3.0) and /processes/electromagnetic/dna/models/src/G4VLEPTSModel.cc (Version 11.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 #include "G4VLEPTSModel.hh"                        26 #include "G4VLEPTSModel.hh"
 27                                                    27 
 28 #include "CLHEP/Units/SystemOfUnits.h"             28 #include "CLHEP/Units/SystemOfUnits.h"
 29                                                    29 
 30 //....oooOO0OOooo........oooOO0OOooo........oo     30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 G4VLEPTSModel::G4VLEPTSModel(const G4String& m     31 G4VLEPTSModel::G4VLEPTSModel(const G4String& modelName) : G4VEmModel(modelName)
 32 {                                                  32 {
 33   theMeanFreePathTable=nullptr;                    33   theMeanFreePathTable=nullptr;
 34                                                    34 
 35   theNumbBinTable=100;                             35   theNumbBinTable=100;
 36                                                    36 
 37   verboseLevel = 0;                                37   verboseLevel = 0;
 38                                                    38 
 39   theLowestEnergyLimit = 0.5*CLHEP::eV;            39   theLowestEnergyLimit = 0.5*CLHEP::eV;
 40                                                    40   
 41   theHighestEnergyLimit = 1.0*CLHEP::MeV;          41   theHighestEnergyLimit = 1.0*CLHEP::MeV;
 42                                                    42 
 43   theXSType = XSEnergy;                            43   theXSType = XSEnergy;
 44 }                                                  44 }
 45                                                    45 
 46                                                    46 
 47 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 48 G4VLEPTSModel::~G4VLEPTSModel()                    48 G4VLEPTSModel::~G4VLEPTSModel() 
 49 {                                                  49 {
 50                                                    50 
 51   if(theMeanFreePathTable != nullptr) {            51   if(theMeanFreePathTable != nullptr) {
 52     theMeanFreePathTable->clearAndDestroy();       52     theMeanFreePathTable->clearAndDestroy();
 53     delete theMeanFreePathTable;                   53     delete theMeanFreePathTable;
 54   }                                                54   }
 55 }                                                  55 }
 56                                                    56 
 57                                                    57 
 58 //....oooOO0OOooo........oooOO0OOooo........oo     58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 59 void G4VLEPTSModel::Init()                         59 void G4VLEPTSModel::Init() 
 60 {                                                  60 {
 61   theLowestEnergyLimit = 0.5*CLHEP::eV;            61   theLowestEnergyLimit = 0.5*CLHEP::eV;
 62   theHighestEnergyLimit = 1.0*CLHEP::MeV;          62   theHighestEnergyLimit = 1.0*CLHEP::MeV;
 63   //t    theHighestEnergyLimit = 15.0*CLHEP::M     63   //t    theHighestEnergyLimit = 15.0*CLHEP::MeV;
 64   SetLowEnergyLimit(theLowestEnergyLimit);         64   SetLowEnergyLimit(theLowestEnergyLimit);
 65   SetHighEnergyLimit(theHighestEnergyLimit);       65   SetHighEnergyLimit(theHighestEnergyLimit);
 66   theNumbBinTable = 100;                           66   theNumbBinTable = 100;
 67                                                    67 
 68 }                                                  68 }
 69                                                    69 
 70                                                    70 
 71                                                    71 
 72 //....oooOO0OOooo........oooOO0OOooo........oo     72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 73 G4double G4VLEPTSModel::GetMeanFreePath(const      73 G4double G4VLEPTSModel::GetMeanFreePath(const G4Material* aMaterial,
 74              const G4ParticleDefinition* ,         74              const G4ParticleDefinition* ,
 75              G4double kineticEnergy )              75              G4double kineticEnergy )
 76 {                                                  76 {
 77   G4double MeanFreePath;                           77   G4double MeanFreePath;
 78                                                    78 
 79   if( verboseLevel >= 3 ) G4cout << aMaterial-     79   if( verboseLevel >= 3 ) G4cout << aMaterial->GetIndex() << " G4VLEPTSModel::GetMeanFreePath " << kineticEnergy << " > " << theHighestEnergyLimit << " < " << theLowestEnergyLimit << G4endl;
 80   if (kineticEnergy > theHighestEnergyLimit ||     80   if (kineticEnergy > theHighestEnergyLimit || kineticEnergy < theLowestEnergyLimit)
 81     MeanFreePath = DBL_MAX;                        81     MeanFreePath = DBL_MAX;
 82   else                                             82   else
 83     MeanFreePath = (*theMeanFreePathTable)(aMa     83     MeanFreePath = (*theMeanFreePathTable)(aMaterial->GetIndex())->Value(kineticEnergy);
 84                                                    84 
 85   return MeanFreePath;                             85   return MeanFreePath;
 86 }                                                  86 }
 87                                                    87 
 88                                                    88 
 89 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 90 void G4VLEPTSModel::BuildPhysicsTable(const G4     90 void G4VLEPTSModel::BuildPhysicsTable(const G4ParticleDefinition& aParticleType) 
 91 {                                                  91 {
 92   //CHECK IF PATH VARIABLE IS DEFINED              92   //CHECK IF PATH VARIABLE IS DEFINED
 93   const char* path = G4FindDataDir("G4LEDATA")     93   const char* path = G4FindDataDir("G4LEDATA");
 94   if( path == nullptr ) {                          94   if( path == nullptr ) {
 95     G4Exception("G4VLEPTSModel",                   95     G4Exception("G4VLEPTSModel",
 96     "",                                            96     "",
 97     FatalException,                                97     FatalException,
 98     "variable G4LEDATA not defined");              98     "variable G4LEDATA not defined");
 99   }                                                99   }
100                                                   100 
101   // Build microscopic cross section table and    101   // Build microscopic cross section table and mean free path table
102                                                   102    
103   G4String aParticleName = aParticleType.GetPa    103   G4String aParticleName = aParticleType.GetParticleName();
104                                                   104 
105   if (theMeanFreePathTable != nullptr) {          105   if (theMeanFreePathTable != nullptr) {
106     theMeanFreePathTable->clearAndDestroy();      106     theMeanFreePathTable->clearAndDestroy();
107     delete theMeanFreePathTable;                  107     delete theMeanFreePathTable;
108   }                                               108   }
109                                                   109   
110   theMeanFreePathTable = new G4PhysicsTable(G4    110   theMeanFreePathTable = new G4PhysicsTable(G4Material::GetNumberOfMaterials());
111                                                   111 
112   //LOOP TO MATERIALS IN GEOMETRY                 112   //LOOP TO MATERIALS IN GEOMETRY 
113   const G4MaterialTable * materialTable = G4Ma    113   const G4MaterialTable * materialTable = G4Material::GetMaterialTable() ;
114   std::vector<G4Material*>::const_iterator mat    114   std::vector<G4Material*>::const_iterator matite;
115   for( matite = materialTable->cbegin(); matit << 115   for( matite = materialTable->begin(); matite != materialTable->end(); matite++ ) {
116     const G4Material * aMaterial = (*matite);     116     const G4Material * aMaterial = (*matite);
117     G4String mateName = aMaterial->GetName();     117     G4String mateName = aMaterial->GetName();
118                                                   118 
119     //READ PARAMETERS FOR THIS MATERIAL           119     //READ PARAMETERS FOR THIS MATERIAL
120     std::string dirName = std::string(path) +     120     std::string dirName = std::string(path) + "/lepts/";
121     std::string fnParam  = dirName + mateName     121     std::string fnParam  = dirName + mateName + "." + aParticleName + ".param.dat";  
122     std::string baseName = std::string(path) +    122     std::string baseName = std::string(path) + "/lepts/" + mateName + "." + aParticleName;
123     G4bool bData = ReadParam( fnParam, aMateri    123     G4bool bData = ReadParam( fnParam, aMaterial );
124     if( !bData )  continue; // MATERIAL NOT EX    124     if( !bData )  continue; // MATERIAL NOT EXISTING, DO NOT READ OTHER FILES
125                                                   125 
126     //READ INTEGRAL CROSS SECTION FOR THIS MAT    126     //READ INTEGRAL CROSS SECTION FOR THIS MATERIAL
127     std::string fnIXS  = baseName + ".IXS.dat"    127     std::string fnIXS  = baseName + ".IXS.dat";
128                                                   128     
129     std::map< G4int, std::vector<G4double> > i    129     std::map< G4int, std::vector<G4double> > integralXS = ReadIXS(fnIXS, aMaterial);
130     if( verboseLevel >= 2 ) G4cout << GetName(    130     if( verboseLevel >= 2 ) G4cout << GetName() << " : " << theXSType << " " << mateName << " INTEGRALXS " << integralXS.size() << G4endl;
131                                                   131 
132     if( integralXS.empty() ) {                    132     if( integralXS.empty() ) {
133       G4cerr << " Integral cross sections will    133       G4cerr << " Integral cross sections will be set to 0. for material " << mateName << G4endl;
134       auto  ptrVector = new G4PhysicsLogVector    134       auto  ptrVector = new G4PhysicsLogVector(theLowestEnergyLimit, theHighestEnergyLimit, 2);
135       ptrVector->PutValue(0, DBL_MAX);            135       ptrVector->PutValue(0, DBL_MAX);
136       ptrVector->PutValue(1, DBL_MAX);            136       ptrVector->PutValue(1, DBL_MAX);
137                                                   137 
138       std::size_t matIdx = aMaterial->GetIndex    138       std::size_t matIdx = aMaterial->GetIndex();
139       theMeanFreePathTable->insertAt( matIdx ,    139       theMeanFreePathTable->insertAt( matIdx , ptrVector ) ;
140                                                   140 
141     } else {                                      141     } else {
142                                                   142     
143       if( verboseLevel >= 2 ) {                   143       if( verboseLevel >= 2 ) {
144   std::map< G4int, std::vector<G4double> >::co    144   std::map< G4int, std::vector<G4double> >::const_iterator itei;
145   for( itei = integralXS.begin(); itei != inte    145   for( itei = integralXS.begin(); itei != integralXS.end(); itei++ ){
146     G4cout << GetName() << " : " << (*itei).fi    146     G4cout << GetName() << " : " << (*itei).first << " INTEGRALXS NDATA " << (*itei).second.size() << G4endl;
147   }                                               147   }
148       }                                           148       }
149                                                   149       
150       BuildMeanFreePathTable( aMaterial, integ    150       BuildMeanFreePathTable( aMaterial, integralXS );
151                                                   151 
152       std::string fnDXS = baseName + ".DXS.dat    152       std::string fnDXS = baseName + ".DXS.dat";
153       std::string fnRMT = baseName + ".RMT.dat    153       std::string fnRMT = baseName + ".RMT.dat";
154       std::string fnEloss = baseName + ".Eloss    154       std::string fnEloss = baseName + ".Eloss.dat";
155       std::string fnEloss2 = baseName + ".Elos    155       std::string fnEloss2 = baseName + ".Eloss2.dat";
156                                                   156       
157       theDiffXS[aMaterial] = new G4LEPTSDiffXS    157       theDiffXS[aMaterial] = new G4LEPTSDiffXS(fnDXS);
158       if( !theDiffXS[aMaterial]->IsFileFound()    158       if( !theDiffXS[aMaterial]->IsFileFound() ) {
159   G4Exception("G4VLEPTSModel::BuildPhysicsTabl    159   G4Exception("G4VLEPTSModel::BuildPhysicsTable",
160         "",                                       160         "",
161         FatalException,                           161         FatalException,
162         (G4String("File not found :" + fnDXS).    162         (G4String("File not found :" + fnDXS).c_str()));
163       }                                           163       }
164                                                   164 
165       theRMTDistr[aMaterial] = new G4LEPTSDist    165       theRMTDistr[aMaterial] = new G4LEPTSDistribution();
166       theRMTDistr[aMaterial]->ReadFile(fnRMT);    166       theRMTDistr[aMaterial]->ReadFile(fnRMT);
167                                                   167 
168       theElostDistr[aMaterial] = new G4LEPTSEl    168       theElostDistr[aMaterial] = new G4LEPTSElossDistr(fnEloss);
169       if( !theElostDistr[aMaterial]->IsFileFou    169       if( !theElostDistr[aMaterial]->IsFileFound() ) {
170   G4Exception("G4VLEPTSModel::BuildPhysicsTabl    170   G4Exception("G4VLEPTSModel::BuildPhysicsTable",
171         "",                                       171         "",
172         FatalException,                           172         FatalException,
173         (G4String("File not found :" + fnEloss    173         (G4String("File not found :" + fnEloss).c_str()));
174       }                                           174       }
175     }                                             175     }
176                                                   176 
177   }                                               177   }
178                                                   178   
179 }                                                 179 }
180                                                   180 
181 void G4VLEPTSModel::BuildMeanFreePathTable( co    181 void G4VLEPTSModel::BuildMeanFreePathTable( const G4Material* aMaterial, std::map< G4int, std::vector<G4double> >& integralXS )
182 {                                                 182 {
183   G4double LowEdgeEnergy, fValue;                 183   G4double LowEdgeEnergy, fValue;
184                                                   184 
185   //BUILD MEAN FREE PATH TABLE FROM INTEGRAL C    185   //BUILD MEAN FREE PATH TABLE FROM INTEGRAL CROSS SECTION
186   std::size_t matIdx = aMaterial->GetIndex();     186   std::size_t matIdx = aMaterial->GetIndex();
187   auto  ptrVector = new G4PhysicsLogVector(the    187   auto  ptrVector = new G4PhysicsLogVector(theLowestEnergyLimit, theHighestEnergyLimit, theNumbBinTable);
188                                                   188   
189   for (G4int ii=0; ii < theNumbBinTable; ++ii)    189   for (G4int ii=0; ii < theNumbBinTable; ++ii) {
190     LowEdgeEnergy = ptrVector->Energy(ii);        190     LowEdgeEnergy = ptrVector->Energy(ii);
191     if( verboseLevel >= 2 ) G4cout << GetName(    191     if( verboseLevel >= 2 ) G4cout << GetName() << " " << ii << " Energy " << LowEdgeEnergy << " > " << theLowestEnergyLimit << " < " << theHighestEnergyLimit << G4endl;
192     //-      fValue = ComputeMFP(LowEdgeEnergy    192     //-      fValue = ComputeMFP(LowEdgeEnergy, material, aParticleName);
193     fValue = 0.;                                  193     fValue = 0.;
194     if( LowEdgeEnergy >= theLowestEnergyLimit     194     if( LowEdgeEnergy >= theLowestEnergyLimit && 
195   LowEdgeEnergy <= theHighestEnergyLimit) {       195   LowEdgeEnergy <= theHighestEnergyLimit) {
196       G4double NbOfMoleculesPerVolume = aMater    196       G4double NbOfMoleculesPerVolume = aMaterial->GetDensity()/theMolecularMass[aMaterial]*CLHEP::Avogadro; 
197                                                   197       
198       G4double SIGMA = 0. ;                       198       G4double SIGMA = 0. ;
199       //-      for ( std::size_t elm=0 ; elm <    199       //-      for ( std::size_t elm=0 ; elm < aMaterial->GetNumberOfElements() ; elm++ ) {
200   G4double crossSection = 0.;                     200   G4double crossSection = 0.;
201                                                   201   
202   G4double eVEnergy = LowEdgeEnergy/CLHEP::eV;    202   G4double eVEnergy = LowEdgeEnergy/CLHEP::eV;
203                                                   203   
204   //-    if( verboseLevel >= 2 )  G4cout << "     204   //-    if( verboseLevel >= 2 )  G4cout << " eVEnergy " << eVEnergy << " LowEdgeE " << LowEdgeEnergy << " " << integralXS[theXSType][1] << G4endl;
205                                                   205   
206   if(eVEnergy < integralXS[0][1] ) {              206   if(eVEnergy < integralXS[0][1] ) {
207     crossSection = 0.;                            207     crossSection = 0.;
208   } else {                                        208   } else {
209     G4int Bin = 0; // locate bin                  209     G4int Bin = 0; // locate bin                                                                           
210     G4double aa, bb;                              210     G4double aa, bb;
211     for( G4int jj=1; jj<theNXSdat[aMaterial];     211     for( G4int jj=1; jj<theNXSdat[aMaterial]; jj++) {  // Extrapolate for E > Emax !!!                               
212       if( verboseLevel >= 3 ) G4cout << " GET     212       if( verboseLevel >= 3 ) G4cout << " GET BIN " << jj << " "<< eVEnergy << " > " << integralXS[0][jj] << G4endl; 
213       if( eVEnergy > integralXS[0][jj]) {         213       if( eVEnergy > integralXS[0][jj]) {
214         Bin = jj;                                 214         Bin = jj;
215       } else {                                    215       } else {
216         break;                                    216         break;
217       }                                           217       }
218     }                                             218     }
219     aa = integralXS[0][Bin];                      219     aa = integralXS[0][Bin];
220     bb = integralXS[0][Bin+1];                    220     bb = integralXS[0][Bin+1];
221     crossSection = (integralXS[theXSType][Bin]    221     crossSection = (integralXS[theXSType][Bin] + (integralXS[theXSType][Bin+1]-integralXS[theXSType][Bin])/(bb-aa)*(eVEnergy-aa) ) * 1.e-16*CLHEP::cm2;
222                                                   222     
223     if( verboseLevel >= 3 ) G4cout << " crossS    223     if( verboseLevel >= 3 ) G4cout << " crossSection " <<  crossSection << " " <<integralXS[theXSType][Bin] << " + " << (integralXS[theXSType][Bin+1]-integralXS[theXSType][Bin]) << " / " << (bb-aa) << " *" << (eVEnergy-aa) << " * " << 1.e-16*CLHEP::cm2 << G4endl;;
224                                                   224     
225     //    SIGMA += NbOfAtomsPerVolume[elm] * c    225     //    SIGMA += NbOfAtomsPerVolume[elm] * crossSection;
226     SIGMA = NbOfMoleculesPerVolume * crossSect    226     SIGMA = NbOfMoleculesPerVolume * crossSection;
227     if( verboseLevel >= 2 ) G4cout << GetName(    227     if( verboseLevel >= 2 ) G4cout << GetName() << " ADDING SIGMA " << SIGMA << " NAtoms " << NbOfMoleculesPerVolume
228            << " Bin " << Bin << " TOTAL " << a    228            << " Bin " << Bin << " TOTAL " << aa << " " << bb 
229            << " XS " << integralXS[theXSType][    229            << " XS " << integralXS[theXSType][Bin]  << " " << integralXS[theXSType][Bin+1] << G4endl;
230   }                                               230   }
231                                                   231   
232   //-}                                            232   //-}
233                                                   233       
234       fValue = SIGMA > DBL_MIN ? 1./SIGMA : DB    234       fValue = SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX;
235     }                                             235     }
236                                                   236     
237     ptrVector->PutValue(ii, fValue);              237     ptrVector->PutValue(ii, fValue);
238     if( verboseLevel >= 2 ) G4cout << GetName(    238     if( verboseLevel >= 2 ) G4cout << GetName() << " BUILDXS " << ii << " : " << LowEdgeEnergy << " = " << fValue << G4endl;
239   }                                               239   }
240                                                   240   
241   theMeanFreePathTable->insertAt( matIdx , ptr    241   theMeanFreePathTable->insertAt( matIdx , ptrVector ) ;
242 }                                                 242 }
243                                                   243 
244                                                   244 
245 //....oooOO0OOooo........oooOO0OOooo........oo    245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
246 G4double G4VLEPTSModel::SampleAngle(const G4Ma    246 G4double G4VLEPTSModel::SampleAngle(const G4Material* aMaterial, G4double e, G4double el) 
247 {                                                 247 {
248   G4double x;                                     248   G4double x;
249                                                   249 
250   if( e < 10001) {                                250   if( e < 10001) {
251     x = theDiffXS[aMaterial]->SampleAngleMT(e,    251     x = theDiffXS[aMaterial]->SampleAngleMT(e, el);
252   }                                               252   }
253   else {                                          253   else {
254     G4double Ei = e;                              254     G4double Ei = e;                                       //incidente
255     G4double Ed = e -el;                          255     G4double Ed = e -el;                                   //dispersado
256                                                   256       
257     G4double Pi = std::sqrt( std::pow( (Ei/27.    257     G4double Pi = std::sqrt( std::pow( (Ei/27.2/137),2) +2*Ei/27.2); //incidente
258     G4double Pd = std::sqrt( std::pow( (Ed/27.    258     G4double Pd = std::sqrt( std::pow( (Ed/27.2/137),2) +2*Ed/27.2); //dispersado
259                                                   259 
260     G4double Kmin = Pi - Pd;                      260     G4double Kmin = Pi - Pd;
261     G4double Kmax = Pi + Pd;                      261     G4double Kmax = Pi + Pd;
262                                                   262 
263     G4double KR = theRMTDistr[aMaterial]->Samp    263     G4double KR = theRMTDistr[aMaterial]->Sample(Kmin, Kmax);          //sorteo mom. transf.
264                                                   264       
265     G4double co = (Pi*Pi + Pd*Pd - KR*KR) / (2    265     G4double co = (Pi*Pi + Pd*Pd - KR*KR) / (2*Pi*Pd);    //cos ang. disp.
266     if( co > 1. ) co = 1.;                        266     if( co > 1. ) co = 1.;
267     x = std::acos(co); //*360/twopi;              267     x = std::acos(co); //*360/twopi;                         //ang. dispers.
268   }                                               268   }
269   return(x);                                      269   return(x);
270 }                                                 270 }
271                                                   271 
272 //....oooOO0OOooo........oooOO0OOooo........oo    272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
273 G4ThreeVector G4VLEPTSModel::SampleNewDirectio    273 G4ThreeVector G4VLEPTSModel::SampleNewDirection(const G4Material* aMaterial, G4ThreeVector P0Dir, G4double e, G4double el) {
274                                                   274   
275   G4double x = SampleAngle(aMaterial, e, el);     275   G4double x = SampleAngle(aMaterial, e, el);
276                                                   276 
277   G4double cosTeta = std::cos(x); //*twopi/360    277   G4double cosTeta = std::cos(x); //*twopi/360.0);
278   G4double sinTeta = std::sqrt(1.0-cosTeta*cos    278   G4double sinTeta = std::sqrt(1.0-cosTeta*cosTeta);
279   G4double Phi     = CLHEP::twopi * G4UniformR    279   G4double Phi     = CLHEP::twopi * G4UniformRand() ;
280   G4double dirx    = sinTeta*std::cos(Phi) , d    280   G4double dirx    = sinTeta*std::cos(Phi) , diry = sinTeta*std::sin(Phi) , dirz = cosTeta ;
281                                                   281 
282   G4ThreeVector P1Dir(dirx, diry, dirz);          282   G4ThreeVector P1Dir(dirx, diry, dirz);
283 #ifdef DEBUG_LEPTS                                283 #ifdef DEBUG_LEPTS
284   if( verboseLevel >= 2 ) G4cout << " G4VLEPTS    284   if( verboseLevel >= 2 ) G4cout << " G4VLEPTSModel::SampleNewDirection " <<P1Dir << G4endl; 
285 #endif                                            285 #endif
286   P1Dir.rotateUz(P0Dir);                          286   P1Dir.rotateUz(P0Dir);
287 #ifdef DEBUG_LEPTS                                287 #ifdef DEBUG_LEPTS
288   if( verboseLevel >= 2 ) G4cout << " G4VLEPTS    288   if( verboseLevel >= 2 ) G4cout << " G4VLEPTSModel::SampleNewDirection rotated " <<P1Dir << " " << P0Dir <<  G4endl; 
289 #endif                                            289 #endif
290                                                   290 
291   return(P1Dir);                                  291   return(P1Dir);
292 }                                                 292 }
293                                                   293 
294                                                   294 
295 //....oooOO0OOooo........oooOO0OOooo........oo    295 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
296 G4ThreeVector G4VLEPTSModel::SampleNewDirectio    296 G4ThreeVector G4VLEPTSModel::SampleNewDirection(G4ThreeVector P0Dir, G4double x) 
297 {                                                 297 {
298   G4double cosTeta = std::cos(x); //*twopi/360    298   G4double cosTeta = std::cos(x); //*twopi/360.0);
299   G4double sinTeta = std::sqrt(1.0-cosTeta*cos    299   G4double sinTeta = std::sqrt(1.0-cosTeta*cosTeta);
300   G4double Phi     = CLHEP::twopi * G4UniformR    300   G4double Phi     = CLHEP::twopi * G4UniformRand() ;
301   G4double dirx    = sinTeta*std::cos(Phi) , d    301   G4double dirx    = sinTeta*std::cos(Phi) , diry = sinTeta*std::sin(Phi) , dirz = cosTeta ;
302                                                   302 
303   G4ThreeVector P1Dir( dirx,diry,dirz );          303   G4ThreeVector P1Dir( dirx,diry,dirz );
304   P1Dir.rotateUz(P0Dir);                          304   P1Dir.rotateUz(P0Dir);
305                                                   305 
306   return(P1Dir);                                  306   return(P1Dir);
307 }                                                 307 }
308                                                   308 
309                                                   309 
310 //....oooOO0OOooo........oooOO0OOooo........oo    310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311 G4double G4VLEPTSModel::SampleEnergyLoss(const    311 G4double G4VLEPTSModel::SampleEnergyLoss(const G4Material* aMaterial, G4double eMin, G4double eMax) 
312 {                                                 312 {
313   G4double el;                                    313   G4double el;
314   el = theElostDistr[aMaterial]->Sample(eMin/C    314   el = theElostDistr[aMaterial]->Sample(eMin/CLHEP::eV, eMax/CLHEP::eV)*CLHEP::eV;
315                                                   315 
316 #ifdef DEBUG_LEPTS                                316 #ifdef DEBUG_LEPTS
317   if( verboseLevel >= 2 ) G4cout << aMaterial-    317   if( verboseLevel >= 2 ) G4cout << aMaterial->GetName() <<"SampleEnergyLoss/eV " << el/CLHEP::eV << " eMax/eV " << eMax/CLHEP::eV << " "
318    << " " << GetName() << G4endl;                 318    << " " << GetName() << G4endl;
319 #endif                                            319 #endif
320   return el;                                      320   return el;
321 }                                                 321 }
322                                                   322 
323                                                   323 
324 //....oooOO0OOooo........oooOO0OOooo........oo    324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
325 G4bool G4VLEPTSModel::ReadParam(const G4String << 325 G4bool G4VLEPTSModel::ReadParam(G4String fnParam, const G4Material* aMaterial ) 
326 {                                                 326 {
327   std::ifstream fin(fnParam);                     327   std::ifstream fin(fnParam);
328   if (!fin.is_open()) {                           328   if (!fin.is_open()) {
329     G4Exception("G4VLEPTSModel::ReadParam",       329     G4Exception("G4VLEPTSModel::ReadParam",
330     "",                                           330     "",
331     JustWarning,                                  331     JustWarning,
332     (G4String("File not found: ")+ fnParam).c_    332     (G4String("File not found: ")+ fnParam).c_str());
333     return false;                                 333     return false;
334   }                                               334   }
335                                                   335 
336   G4double IonisPot, IonisPotInt;                 336   G4double IonisPot, IonisPotInt;
337                                                   337 
338   fin >> IonisPot >> IonisPotInt;                 338   fin >> IonisPot >> IonisPotInt;
339   if( verboseLevel >= 1 ) G4cout << "Read para    339   if( verboseLevel >= 1 ) G4cout << "Read param   (" << fnParam << ")\t IonisPot: " << IonisPot
340    << " IonisPotInt: "  << IonisPotInt << G4en    340    << " IonisPotInt: "  << IonisPotInt << G4endl;
341                                                   341 
342   theIonisPot[aMaterial] = IonisPot * CLHEP::e    342   theIonisPot[aMaterial] = IonisPot * CLHEP::eV;
343   theIonisPotInt[aMaterial] = IonisPotInt * CL    343   theIonisPotInt[aMaterial] = IonisPotInt * CLHEP::eV;
344                                                   344 
345   G4double MolecularMass = 0;                     345   G4double MolecularMass = 0;
346   auto  nelem = (G4int)aMaterial->GetNumberOfE    346   auto  nelem = (G4int)aMaterial->GetNumberOfElements();
347   const G4int*  atomsV = aMaterial->GetAtomsVe    347   const G4int*  atomsV = aMaterial->GetAtomsVector();
348   for( G4int ii = 0; ii < nelem; ++ii ) {         348   for( G4int ii = 0; ii < nelem; ++ii ) {
349     MolecularMass += aMaterial->GetElement(ii)    349     MolecularMass += aMaterial->GetElement(ii)->GetA()*atomsV[ii]/CLHEP::g;
350     //    G4cout << " MMASS1 " << mmass/CLHEP:    350     //    G4cout << " MMASS1 " << mmass/CLHEP::g << " " << aMaterial->GetElement(ii)->GetName() << " " << aMaterial->GetElement(ii)->GetA()/CLHEP::g << G4endl;
351   }                                               351   }
352   //  G4cout << " MMASS " << MolecularMass <<     352   //  G4cout << " MMASS " << MolecularMass << " " << MolecularMass*CLHEP::g <<  " ME " << mmass << " " << mmass/CLHEP::g << G4endl; 
353   theMolecularMass[aMaterial] = MolecularMass*    353   theMolecularMass[aMaterial] = MolecularMass* CLHEP::g/CLHEP::mole;
354   //  theMolecularMass[aMaterial] = aMaterial-    354   //  theMolecularMass[aMaterial] = aMaterial->GetMassOfMolecule()*CLHEP::Avogadro;  // Material mixtures do not calculate molecular mass
355                                                   355 
356   if( verboseLevel >= 1) G4cout << " IonisPot:    356   if( verboseLevel >= 1) G4cout << " IonisPot: " << IonisPot/CLHEP::eV << " eV " 
357         << " IonisPotInt: " << IonisPotInt/CLH    357         << " IonisPotInt: " << IonisPotInt/CLHEP::eV << " eV" 
358         << " MolecularMass " << MolecularMass/    358         << " MolecularMass " << MolecularMass/(CLHEP::g/CLHEP::mole) << " g/mole" << G4endl;
359                                                   359 
360   return true;                                    360   return true;
361 }                                                 361 }
362                                                   362 
363 //....oooOO0OOooo........oooOO0OOooo........oo    363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
364 std::map< G4int, std::vector<G4double> > G4VLE << 364 std::map< G4int, std::vector<G4double> > G4VLEPTSModel::ReadIXS(G4String fnIXS, const G4Material* aMaterial ) 
365 {                                                 365 {
366   std::map< G4int, std::vector<G4double> > int    366   std::map< G4int, std::vector<G4double> > integralXS; // process type - energy
367   //G4cout << "fnIXS (" << fnIXS << ")" << G4e    367   //G4cout << "fnIXS (" << fnIXS << ")" << G4endl;
368                                                   368 
369   std::ifstream fin(fnIXS);                       369   std::ifstream fin(fnIXS);
370   if (!fin.is_open()) {                           370   if (!fin.is_open()) {
371     G4Exception("G4VLEPTSModel::ReadIXS",         371     G4Exception("G4VLEPTSModel::ReadIXS",
372     "",                                           372     "",
373     JustWarning,                                  373     JustWarning,
374     (G4String("File not found: ")+ fnIXS).c_st    374     (G4String("File not found: ")+ fnIXS).c_str());
375     return integralXS;                            375     return integralXS;
376   }                                               376   }
377                                                   377 
378   G4int nXSdat, nXSsub;                           378   G4int nXSdat, nXSsub;
379   fin >> nXSdat >> nXSsub;                        379   fin >> nXSdat >> nXSsub;
380   if( verboseLevel >= 1 ) G4cout << "Read IXS     380   if( verboseLevel >= 1 ) G4cout << "Read IXS   (" << fnIXS << ")\t nXSdat: " << nXSdat
381    << " nXSsub: "  << nXSsub << G4endl;           381    << " nXSsub: "  << nXSsub << G4endl;
382   theNXSdat[aMaterial] = nXSdat;                  382   theNXSdat[aMaterial] = nXSdat;
383   theNXSsub[aMaterial] = nXSsub;                  383   theNXSsub[aMaterial] = nXSsub;
384                                                   384 
385   G4double xsdat;                                 385   G4double xsdat;
386   for (G4int ip=0; ip<=nXSsub; ip++) {            386   for (G4int ip=0; ip<=nXSsub; ip++) {   
387     integralXS[ip].push_back(0.);                 387     integralXS[ip].push_back(0.);
388   }                                               388   }
389   for (G4int ie=1; ie<=nXSdat; ie++) {            389   for (G4int ie=1; ie<=nXSdat; ie++) {
390     for (G4int ip=0; ip<=nXSsub; ip++) {          390     for (G4int ip=0; ip<=nXSsub; ip++) {   
391       fin >> xsdat;                               391       fin >> xsdat;
392       integralXS[ip].push_back(xsdat);            392       integralXS[ip].push_back(xsdat);
393       if( verboseLevel >= 3 )  G4cout << GetNa    393       if( verboseLevel >= 3 )  G4cout << GetName() << " FILL IXS " << ip << " " << ie << " = " << integralXS[ip][ie] << " " << xsdat << G4endl; 
394       // xsdat 1e-16*cm2                          394       // xsdat 1e-16*cm2
395     }                                             395     }
396   }                                               396   }
397   fin.close();                                    397   fin.close();
398                                                   398 
399   return integralXS;                              399   return integralXS;
400 }                                                 400 }
401                                                   401 
402                                                   402