Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 #include "G4LEPTSIonisationModel.hh" 27 #include "CLHEP/Units/PhysicalConstants.h" 28 29 //....oooOO0OOooo........oooOO0OOooo........oo 30 G4LEPTSIonisationModel::G4LEPTSIonisationModel 31 : G4VLEPTSModel( modelName ) 32 { 33 SetDeexcitationFlag(true); 34 fParticleChangeForGamma = nullptr; 35 theXSType = XSIonisation; 36 37 } // constructor 38 39 //....oooOO0OOooo........oooOO0OOooo........oo 40 G4LEPTSIonisationModel::~G4LEPTSIonisationMode 41 = default; 42 43 44 //....oooOO0OOooo........oooOO0OOooo........oo 45 void G4LEPTSIonisationModel::Initialise(const 46 const G4DataVector&) 47 { 48 Init(); 49 BuildPhysicsTable( *aParticle ); 50 fParticleChangeForGamma = GetParticleChangeF 51 52 } 53 54 55 //....oooOO0OOooo........oooOO0OOooo........oo 56 G4double G4LEPTSIonisationModel::CrossSectionP 57 const 58 G4dou 59 G4dou 60 G4dou 61 { 62 return 1./GetMeanFreePath( mate, aParticle, 63 64 } 65 66 67 void G4LEPTSIonisationModel::SampleSecondaries 68 const G4Mater 69 const G4Dynam 70 G4double, 71 G4double) 72 { 73 G4double P0KinEn = aDynamicParticle->GetKine 74 75 G4double Edep=0; 76 G4double Energylost=0; 77 G4ThreeVector P0Dir = aDynamicParticle->GetM 78 79 const G4Material* aMaterial = mateCuts->GetM 80 if(P0KinEn < theIonisPot[aMaterial]) { 81 theIonisPot[aMaterial] = P0KinEn; 82 } 83 Energylost = SampleEnergyLoss(aMaterial, the 84 G4ThreeVector P1Dir = SampleNewDirection(aMa 85 G4double P1KinEn = std::max(0., P0KinEn - En 86 fParticleChangeForGamma->ProposeMomentumDire 87 fParticleChangeForGamma->SetProposedKineticE 88 #ifdef DEBUG_LEPTS 89 G4cout << " G4LEPTSIonisationModel::SampleSe 90 #endif 91 92 G4double P2KinEn; 93 94 if( Energylost < theIonisPotInt[aMaterial]) 95 //- SetModelName("Ionisation"); 96 Edep = theIonisPot[aMaterial]; 97 P2KinEn = std::max(0.001*CLHEP::eV, (Energ 98 } 99 else { // Auger 100 //- SetModelName("IonisAuger"); 101 Edep = 35*CLHEP::eV; 102 P2KinEn = std::max(0.0, (Energylost - theI 103 G4double P3KinEn = std::max(0.0, theIonisP 104 105 G4ThreeVector P3Dir; 106 P3Dir.setX( G4UniformRand() ); 107 P3Dir.setY( G4UniformRand() ); 108 P3Dir.setZ( G4UniformRand() ); 109 P3Dir /= P3Dir.mag(); 110 111 auto e3 = new G4DynamicParticle(G4Electro 112 fvect->push_back(e3); 113 } 114 115 fParticleChangeForGamma->ProposeLocalEnergyD 116 117 if( P2KinEn > theLowestEnergyLimit) { 118 G4double cp0 = std::sqrt(P0KinEn*(P0KinEn 119 G4double cp1 = std::sqrt(P1KinEn*(P1KinEn 120 G4ThreeVector P2Momentum = cp0*P0Dir -cp1* 121 G4ThreeVector P2Dir = P2Momentum / P2Momen 122 P2Dir.rotateUz(P0Dir); 123 auto e2 = new G4DynamicParticle(G4Electro 124 fvect->push_back(e2); 125 } 126 127 } 128